|
|
|
// -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
|
|
|
|
// phatk and others.
|
|
|
|
// Modified version copyright 2011-2012 Con Kolivas
|
|
|
|
|
|
|
|
// This file is taken and modified from the public-domain poclbm project, and
|
|
|
|
// we have therefore decided to keep it public-domain in Phoenix.
|
|
|
|
|
|
|
|
#ifdef VECTORS4
|
|
|
|
typedef uint4 u;
|
|
|
|
#elif defined VECTORS2
|
|
|
|
typedef uint2 u;
|
|
|
|
#else
|
|
|
|
typedef uint u;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
__constant uint K[64] = {
|
|
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// This part is not from the stock poclbm kernel. It's part of an optimization
|
|
|
|
// added in the Phoenix Miner.
|
|
|
|
|
|
|
|
// Some AMD devices have a BFI_INT opcode, which behaves exactly like the
|
|
|
|
// SHA-256 ch function, but provides it in exactly one instruction. If
|
|
|
|
// detected, use it for ch. Otherwise, construct ch out of simpler logical
|
|
|
|
// primitives.
|
|
|
|
|
|
|
|
#ifdef BITALIGN
|
|
|
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable
|
|
|
|
#define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
|
|
|
|
#ifdef BFI_INT
|
|
|
|
// Well, slight problem... It turns out BFI_INT isn't actually exposed to
|
|
|
|
// OpenCL (or CAL IL for that matter) in any way. However, there is
|
|
|
|
// a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
|
|
|
|
// amd_bytealign, takes the same inputs, and provides the same output.
|
|
|
|
// We can use that as a placeholder for BFI_INT and have the application
|
|
|
|
// patch it after compilation.
|
|
|
|
|
|
|
|
// This is the BFI_INT function
|
|
|
|
#define ch(x, y, z) amd_bytealign(x, y, z)
|
|
|
|
|
|
|
|
// Ma can also be implemented in terms of BFI_INT...
|
|
|
|
#define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
|
|
|
|
#else // BFI_INT
|
|
|
|
// Later SDKs optimise this to BFI INT without patching and GCN
|
|
|
|
// actually fails if manually patched with BFI_INT
|
|
|
|
|
|
|
|
#define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
|
|
|
|
#define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
|
|
|
|
#endif
|
|
|
|
#else // BITALIGN
|
|
|
|
#define ch(x, y, z) (z ^ (x & (y ^ z)))
|
|
|
|
#define Ma(x, y, z) ((x & z) | (y & (x | z)))
|
|
|
|
#define rotr(x, y) rotate((u)x, (u)(32 - y))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// AMD's KernelAnalyzer throws errors compiling the kernel if we use
|
|
|
|
// amd_bytealign on constants with vectors enabled, so we use this to avoid
|
|
|
|
// problems. (this is used 4 times, and likely optimized out by the compiler.)
|
|
|
|
#define Ma2(x, y, z) ((y & z) | (x & (y | z)))
|
|
|
|
|
|
|
|
__kernel void search(const uint state0, const uint state1, const uint state2, const uint state3,
|
|
|
|
const uint state4, const uint state5, const uint state6, const uint state7,
|
|
|
|
const uint b1, const uint c1, const uint d1,
|
|
|
|
const uint f1, const uint g1, const uint h1,
|
|
|
|
const u base,
|
|
|
|
const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2,
|
|
|
|
__global uint * output)
|
|
|
|
{
|
|
|
|
u W[24];
|
|
|
|
//u Vals[8]; Now put at W[16] to be in same array
|
|
|
|
|
|
|
|
#ifdef VECTORS4
|
|
|
|
const u nonce = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u);
|
|
|
|
#elif defined VECTORS2
|
|
|
|
const u nonce = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u);
|
|
|
|
#else
|
|
|
|
const u nonce = base + get_local_id(0) + get_group_id(0) * (WORKSIZE);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
W[20]=fcty_e;
|
|
|
|
W[20]+=nonce;
|
|
|
|
W[16]=state0;
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[19]=d1;
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],b1,c1);
|
|
|
|
W[19]+=K[4];
|
|
|
|
W[23]=h1;
|
|
|
|
W[19]+=0x80000000;
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[20]+=fcty_e2;
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[18]=c1;
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],b1);
|
|
|
|
W[18]+=K[5];
|
|
|
|
W[22]=g1;
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[19]+=Ma2(g1,W[20],f1);
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[17]=b1;
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[6];
|
|
|
|
W[21]=f1;
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[18]+=Ma2(f1,W[19],W[20]);
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[7];
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[8];
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[9];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[10];
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[11];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[12];
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[13];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[14];
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[15];
|
|
|
|
W[16]+=0x00000280U;
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[16];
|
|
|
|
W[23]+=fw0;
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[17];
|
|
|
|
W[22]+=fw1;
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
|
|
|
|
W[2]+=fw2;
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[18];
|
|
|
|
W[21]+=W[2];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[3]=nonce;
|
|
|
|
W[3]+=fw3;
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[19];
|
|
|
|
W[20]+=W[3];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
|
W[4]+=0x80000000;
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[20];
|
|
|
|
W[19]+=W[4];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[21];
|
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
|
W[18]+=W[5];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
|
W[6]+=0x00000280U;
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[22];
|
|
|
|
W[17]+=W[6];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
|
W[7]+=fw0;
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[23];
|
|
|
|
W[16]+=W[7];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
|
W[8]+=fw1;
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[24];
|
|
|
|
W[23]+=W[8];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[9]=W[2];
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[25];
|
|
|
|
W[22]+=W[9];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[10]=W[3];
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[26];
|
|
|
|
W[21]+=W[10];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[11]=W[4];
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[27];
|
|
|
|
W[20]+=W[11];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[12]=W[5];
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[28];
|
|
|
|
W[19]+=W[12];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[13]=W[6];
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[29];
|
|
|
|
W[18]+=W[13];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[14]=0x00a00055U;
|
|
|
|
W[14]+=W[7];
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[30];
|
|
|
|
W[17]+=W[14];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[15]=fw15;
|
|
|
|
W[15]+=W[8];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[31];
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
|
W[16]+=W[15];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[0]=fw01r;
|
|
|
|
W[0]+=W[9];
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[32];
|
|
|
|
W[23]+=W[0];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[1]=fw1;
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
W[1]+=W[10];
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[33];
|
|
|
|
W[22]+=W[1];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
W[2]+=W[11];
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[34];
|
|
|
|
W[21]+=W[2];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
W[3]+=W[12];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[35];
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
|
W[20]+=W[3];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
W[4]+=W[13];
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[36];
|
|
|
|
W[19]+=W[4];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
W[5]+=W[14];
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[37];
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
|
W[18]+=W[5];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
W[6]+=W[15];
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[38];
|
|
|
|
W[17]+=W[6];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
W[7]+=W[0];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[39];
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
|
W[16]+=W[7];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
W[8]+=W[1];
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[40];
|
|
|
|
W[23]+=W[8];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
W[9]+=W[2];
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[41];
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
|
W[22]+=W[9];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
|
W[10]+=W[3];
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[42];
|
|
|
|
W[21]+=W[10];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
W[11]+=W[4];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[43];
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
W[20]+=W[11];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
|
W[12]+=W[5];
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[44];
|
|
|
|
W[19]+=W[12];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
W[13]+=W[6];
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[45];
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
|
W[18]+=W[13];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
|
|
|
|
W[14]+=W[7];
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[46];
|
|
|
|
W[17]+=W[14];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
W[15]+=W[8];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[47];
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
|
W[16]+=W[15];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
|
W[0]+=W[9];
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[48];
|
|
|
|
W[23]+=W[0];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
W[1]+=W[10];
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[49];
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
|
W[22]+=W[1];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
W[2]+=W[11];
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[50];
|
|
|
|
W[21]+=W[2];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
W[3]+=W[12];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[51];
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
|
W[20]+=W[3];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
W[4]+=W[13];
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[52];
|
|
|
|
W[19]+=W[4];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
W[5]+=W[14];
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[53];
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
|
W[18]+=W[5];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
W[6]+=W[15];
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[54];
|
|
|
|
W[17]+=W[6];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
W[7]+=W[0];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[55];
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
|
W[16]+=W[7];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
W[8]+=W[1];
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[56];
|
|
|
|
W[23]+=W[8];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
W[9]+=W[2];
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[57];
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
|
W[22]+=W[9];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
|
W[10]+=W[3];
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[58];
|
|
|
|
W[21]+=W[10];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
W[11]+=W[4];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[59];
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
W[20]+=W[11];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
|
W[12]+=W[5];
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[60];
|
|
|
|
W[19]+=W[12];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
W[13]+=W[6];
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[61];
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
|
W[18]+=W[13];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
|
|
|
|
W[14]+=W[7];
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[62];
|
|
|
|
W[17]+=W[14];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
W[15]+=W[8];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[63];
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
|
W[16]+=W[15];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[0]=W[16];
|
|
|
|
W[7]=W[23];
|
|
|
|
W[7]+=state7;
|
|
|
|
W[23]=0xb0edbdd0;
|
|
|
|
W[23]+=K[0];
|
|
|
|
W[0]+=state0;
|
|
|
|
W[23]+=W[0];
|
|
|
|
W[3]=W[19];
|
|
|
|
W[3]+=state3;
|
|
|
|
W[19]=0xa54ff53a;
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[1]=W[17];
|
|
|
|
W[1]+=state1;
|
|
|
|
W[6]=W[22];
|
|
|
|
W[6]+=state6;
|
|
|
|
W[22]=0x1f83d9abU;
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U));
|
|
|
|
W[22]+=K[1];
|
|
|
|
W[22]+=W[1];
|
|
|
|
W[2]=W[18];
|
|
|
|
W[2]+=state2;
|
|
|
|
W[18]=0x3c6ef372U;
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[23]+=0x08909ae5U;
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[5]=W[21];
|
|
|
|
W[5]+=state5;
|
|
|
|
W[21]=0x9b05688cU;
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],0x510e527fU);
|
|
|
|
W[21]+=K[2];
|
|
|
|
W[21]+=W[2];
|
|
|
|
W[17]=0xbb67ae85U;
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U);
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[4]=W[20];
|
|
|
|
W[4]+=state4;
|
|
|
|
W[20]=0x510e527fU;
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[3];
|
|
|
|
W[20]+=W[3];
|
|
|
|
W[16]=0x6a09e667U;
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[21]+=Ma2(0x6a09e667U,W[22],W[23]);
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[4];
|
|
|
|
W[19]+=W[4];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[5];
|
|
|
|
W[18]+=W[5];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[6];
|
|
|
|
W[17]+=W[6];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[7];
|
|
|
|
W[16]+=W[7];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[8];
|
|
|
|
W[23]+=0x80000000;
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[9];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[10];
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[11];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[12];
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[13];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[14];
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[15];
|
|
|
|
W[16]+=0x00000100U;
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[16];
|
|
|
|
W[23]+=W[0];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
W[1]+=0x00a00000U;
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[17];
|
|
|
|
W[22]+=W[1];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[18];
|
|
|
|
W[21]+=W[2];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[19];
|
|
|
|
W[20]+=W[3];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[20];
|
|
|
|
W[19]+=W[4];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[21];
|
|
|
|
W[18]+=W[5];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
W[6]+=0x00000100U;
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[22];
|
|
|
|
W[17]+=W[6];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[7]+=0x11002000U;
|
|
|
|
W[7]+=W[0];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[23];
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
|
W[16]+=W[7];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[8]=0x80000000;
|
|
|
|
W[8]+=W[1];
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[24];
|
|
|
|
W[23]+=W[8];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[9]=W[2];
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[25];
|
|
|
|
W[22]+=W[9];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[10]=W[3];
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[26];
|
|
|
|
W[21]+=W[10];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[11]=W[4];
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[27];
|
|
|
|
W[20]+=W[11];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[12]=W[5];
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[28];
|
|
|
|
W[19]+=W[12];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[13]=W[6];
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[29];
|
|
|
|
W[18]+=W[13];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[14]=0x00400022U;
|
|
|
|
W[14]+=W[7];
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[30];
|
|
|
|
W[17]+=W[14];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[15]=0x00000100U;
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
W[15]+=W[8];
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[31];
|
|
|
|
W[16]+=W[15];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
|
W[0]+=W[9];
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[32];
|
|
|
|
W[23]+=W[0];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
W[1]+=W[10];
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[33];
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
|
W[22]+=W[1];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
W[2]+=W[11];
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[34];
|
|
|
|
W[21]+=W[2];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
W[3]+=W[12];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[35];
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
|
W[20]+=W[3];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
W[4]+=W[13];
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[36];
|
|
|
|
W[19]+=W[4];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
W[5]+=W[14];
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[37];
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
|
W[18]+=W[5];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
W[6]+=W[15];
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[38];
|
|
|
|
W[17]+=W[6];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
W[7]+=W[0];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[39];
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
|
W[16]+=W[7];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
W[8]+=W[1];
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[40];
|
|
|
|
W[23]+=W[8];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
W[9]+=W[2];
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[41];
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
|
W[22]+=W[9];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
|
W[10]+=W[3];
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[42];
|
|
|
|
W[21]+=W[10];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
W[11]+=W[4];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[43];
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
W[20]+=W[11];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
|
W[12]+=W[5];
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[44];
|
|
|
|
W[19]+=W[12];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
W[13]+=W[6];
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[45];
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
|
W[18]+=W[13];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
|
|
|
|
W[14]+=W[7];
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[46];
|
|
|
|
W[17]+=W[14];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
W[15]+=W[8];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[47];
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
|
W[16]+=W[15];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
|
W[0]+=W[9];
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[48];
|
|
|
|
W[23]+=W[0];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
W[1]+=W[10];
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[49];
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
|
W[22]+=W[1];
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
W[2]+=W[11];
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[50];
|
|
|
|
W[21]+=W[2];
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]);
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
W[3]+=W[12];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[51];
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
|
W[20]+=W[3];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
W[4]+=W[13];
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[19]+=K[52];
|
|
|
|
W[19]+=W[4];
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]);
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
W[5]+=W[14];
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]);
|
|
|
|
W[18]+=K[53];
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
|
W[18]+=W[5];
|
|
|
|
W[22]+=W[18];
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
W[6]+=W[15];
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]);
|
|
|
|
W[17]+=K[54];
|
|
|
|
W[17]+=W[6];
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]);
|
|
|
|
W[21]+=W[17];
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
W[7]+=W[0];
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]);
|
|
|
|
W[16]+=K[55];
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
|
W[16]+=W[7];
|
|
|
|
W[20]+=W[16];
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
W[8]+=W[1];
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]);
|
|
|
|
W[23]+=K[56];
|
|
|
|
W[23]+=W[8];
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]);
|
|
|
|
W[19]+=W[23];
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
W[9]+=W[2];
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]);
|
|
|
|
W[22]+=K[57];
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
|
W[22]+=W[9];
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
|
W[10]+=W[3];
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
|
W[18]+=W[22];
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]);
|
|
|
|
W[21]+=K[58];
|
|
|
|
W[21]+=W[10];
|
|
|
|
W[17]+=W[21];
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
W[11]+=W[4];
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]);
|
|
|
|
W[20]+=K[59];
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
W[20]+=W[11];
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
|
W[12]+=W[5];
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
|
W[23]+=W[19];
|
|
|
|
W[16]+=W[20];
|
|
|
|
W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
|
|
|
|
W[23]+=ch(W[16],W[17],W[18]);
|
|
|
|
W[23]+=K[60];
|
|
|
|
W[23]+=W[12];
|
|
|
|
|
|
|
|
#define FOUND (0x80)
|
|
|
|
#define NFLAG (0x7F)
|
|
|
|
|
|
|
|
#if defined(VECTORS4)
|
|
|
|
W[23] ^= -0x5be0cd19U;
|
|
|
|
bool result = W[23].x & W[23].y & W[23].z & W[23].w;
|
|
|
|
if (!result) {
|
|
|
|
if (!W[23].x)
|
|
|
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
|
|
|
|
if (!W[23].y)
|
|
|
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
|
|
|
|
if (!W[23].z)
|
|
|
|
output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
|
|
|
|
if (!W[23].w)
|
|
|
|
output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
|
|
|
|
}
|
|
|
|
#elif defined(VECTORS2)
|
|
|
|
W[23] ^= -0x5be0cd19U;
|
|
|
|
bool result = W[23].x & W[23].y;
|
|
|
|
if (!result) {
|
|
|
|
if (!W[23].x)
|
|
|
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
|
|
|
|
if (!W[23].y)
|
|
|
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
if (W[23] == -0x5be0cd19U)
|
|
|
|
output[FOUND] = output[NFLAG & nonce] = nonce;
|
|
|
|
#endif
|
|
|
|
}
|