OpenCL GPU miner
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1225 lines
38 KiB

// -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
// phatk and others.
// Modified version copyright 2011-2012 Con Kolivas
// This file is taken and modified from the public-domain poclbm project, and
// we have therefore decided to keep it public-domain in Phoenix.
#ifdef VECTORS4
typedef uint4 u;
#elif defined VECTORS2
typedef uint2 u;
#else
typedef uint u;
#endif
__constant uint K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
// This part is not from the stock poclbm kernel. It's part of an optimization
// added in the Phoenix Miner.
// Some AMD devices have a BFI_INT opcode, which behaves exactly like the
// SHA-256 ch function, but provides it in exactly one instruction. If
// detected, use it for ch. Otherwise, construct ch out of simpler logical
// primitives.
#ifdef BITALIGN
#pragma OPENCL EXTENSION cl_amd_media_ops : enable
#define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
#ifdef BFI_INT
// Well, slight problem... It turns out BFI_INT isn't actually exposed to
// OpenCL (or CAL IL for that matter) in any way. However, there is
// a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
// amd_bytealign, takes the same inputs, and provides the same output.
// We can use that as a placeholder for BFI_INT and have the application
// patch it after compilation.
// This is the BFI_INT function
#define ch(x, y, z) amd_bytealign(x, y, z)
// Ma can also be implemented in terms of BFI_INT...
#define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
#else // BFI_INT
// Later SDKs optimise this to BFI INT without patching and GCN
// actually fails if manually patched with BFI_INT
#define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
#define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
#endif
#else // BITALIGN
#define ch(x, y, z) (z ^ (x & (y ^ z)))
#define Ma(x, y, z) ((x & z) | (y & (x | z)))
#define rotr(x, y) rotate((u)x, (u)(32 - y))
#endif
// AMD's KernelAnalyzer throws errors compiling the kernel if we use
// amd_bytealign on constants with vectors enabled, so we use this to avoid
// problems. (this is used 4 times, and likely optimized out by the compiler.)
#define Ma2(x, y, z) ((y & z) | (x & (y | z)))
__kernel void search(const uint state0, const uint state1, const uint state2, const uint state3,
const uint state4, const uint state5, const uint state6, const uint state7,
const uint b1, const uint c1, const uint d1,
const uint f1, const uint g1, const uint h1,
const u base,
const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2,
__global uint * output)
{
u W[24];
//u Vals[8]; Now put at W[16] to be in same array
#ifdef VECTORS4
const u nonce = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u);
#elif defined VECTORS2
const u nonce = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u);
#else
const u nonce = base + get_local_id(0) + get_group_id(0) * (WORKSIZE);
#endif
W[20]=fcty_e;
W[20]+=nonce;
W[16]=state0;
W[16]+=W[20];
W[19]=d1;
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],b1,c1);
W[19]+=K[4];
W[23]=h1;
W[19]+=0x80000000;
W[23]+=W[19];
W[20]+=fcty_e2;
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[18]=c1;
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],b1);
W[18]+=K[5];
W[22]=g1;
W[22]+=W[18];
W[19]+=Ma2(g1,W[20],f1);
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[17]=b1;
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[6];
W[21]=f1;
W[21]+=W[17];
W[18]+=Ma2(f1,W[19],W[20]);
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[7];
W[17]+=Ma(W[20],W[18],W[19]);
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[16]+=Ma(W[19],W[17],W[18]);
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[8];
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[22]+=Ma(W[17],W[23],W[16]);
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[10];
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[20]+=Ma(W[23],W[21],W[22]);
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[12];
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[18]+=Ma(W[21],W[19],W[20]);
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[14];
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[15];
W[16]+=0x00000280U;
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[16];
W[23]+=fw0;
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[17];
W[22]+=fw1;
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
W[2]+=fw2;
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[18];
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[3]=nonce;
W[3]+=fw3;
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[19];
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[4]+=0x80000000;
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[20];
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[21];
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[6]+=0x00000280U;
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[22];
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
W[7]+=fw0;
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[23];
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[8]+=fw1;
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[24];
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[9]=W[2];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[25];
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[26];
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[11]=W[4];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[27];
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[28];
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[13]=W[6];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[29];
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]=0x00a00055U;
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[30];
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[15]=fw15;
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[31];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]=fw01r;
W[0]+=W[9];
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[32];
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[1]=fw1;
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[33];
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[34];
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[35];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[36];
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[37];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[38];
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[39];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[40];
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[41];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[42];
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[43];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[44];
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[45];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[46];
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[47];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[48];
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[49];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[50];
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[51];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[52];
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[53];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[54];
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[55];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[56];
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[57];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[58];
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[59];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[60];
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[61];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[62];
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[63];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[16]+=Ma(W[19],W[17],W[18]);
W[0]=W[16];
W[7]=W[23];
W[7]+=state7;
W[23]=0xb0edbdd0;
W[23]+=K[0];
W[0]+=state0;
W[23]+=W[0];
W[3]=W[19];
W[3]+=state3;
W[19]=0xa54ff53a;
W[19]+=W[23];
W[1]=W[17];
W[1]+=state1;
W[6]=W[22];
W[6]+=state6;
W[22]=0x1f83d9abU;
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U));
W[22]+=K[1];
W[22]+=W[1];
W[2]=W[18];
W[2]+=state2;
W[18]=0x3c6ef372U;
W[18]+=W[22];
W[23]+=0x08909ae5U;
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[5]=W[21];
W[5]+=state5;
W[21]=0x9b05688cU;
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],0x510e527fU);
W[21]+=K[2];
W[21]+=W[2];
W[17]=0xbb67ae85U;
W[17]+=W[21];
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U);
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[4]=W[20];
W[4]+=state4;
W[20]=0x510e527fU;
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[3];
W[20]+=W[3];
W[16]=0x6a09e667U;
W[16]+=W[20];
W[21]+=Ma2(0x6a09e667U,W[22],W[23]);
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[4];
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[5];
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[6];
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[7];
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[8];
W[23]+=0x80000000;
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[22]+=Ma(W[17],W[23],W[16]);
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[10];
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[20]+=Ma(W[23],W[21],W[22]);
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[12];
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[18]+=Ma(W[21],W[19],W[20]);
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[14];
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[15];
W[16]+=0x00000100U;
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[16];
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=0x00a00000U;
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[17];
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[18];
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[19];
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[20];
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[21];
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=0x00000100U;
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[22];
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[7]+=0x11002000U;
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[23];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]=0x80000000;
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[24];
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[9]=W[2];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[25];
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[26];
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[11]=W[4];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[27];
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[28];
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[13]=W[6];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[29];
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]=0x00400022U;
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[30];
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[15]=0x00000100U;
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[31];
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[32];
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[33];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[34];
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[35];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[36];
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[37];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[38];
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[39];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[40];
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[41];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
W[22]+=W[9];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[42];
W[21]+=W[10];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[43];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
W[20]+=W[11];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[44];
W[19]+=W[12];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
W[13]+=W[6];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[45];
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
W[18]+=W[13];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[46];
W[17]+=W[14];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
W[15]+=W[8];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[47];
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
W[16]+=W[15];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[48];
W[23]+=W[0];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=W[10];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[49];
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
W[22]+=W[1];
W[18]+=W[22];
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[50];
W[21]+=W[2];
W[22]+=Ma(W[17],W[23],W[16]);
W[17]+=W[21];
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22));
W[21]+=Ma(W[16],W[22],W[23]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=W[12];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[51];
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
W[20]+=W[3];
W[16]+=W[20];
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22));
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[19]+=ch(W[16],W[17],W[18]);
W[19]+=K[52];
W[19]+=W[4];
W[20]+=Ma(W[23],W[21],W[22]);
W[23]+=W[19];
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
W[19]+=Ma(W[22],W[20],W[21]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=W[14];
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25));
W[18]+=ch(W[23],W[16],W[17]);
W[18]+=K[53];
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
W[18]+=W[5];
W[22]+=W[18];
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22));
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25));
W[17]+=ch(W[22],W[23],W[16]);
W[17]+=K[54];
W[17]+=W[6];
W[18]+=Ma(W[21],W[19],W[20]);
W[21]+=W[17];
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22));
W[17]+=Ma(W[20],W[18],W[19]);
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
W[7]+=W[0];
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25));
W[16]+=ch(W[21],W[22],W[23]);
W[16]+=K[55];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
W[16]+=W[7];
W[20]+=W[16];
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25));
W[23]+=ch(W[20],W[21],W[22]);
W[23]+=K[56];
W[23]+=W[8];
W[16]+=Ma(W[19],W[17],W[18]);
W[19]+=W[23];
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22));
W[23]+=Ma(W[18],W[16],W[17]);
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
W[9]+=W[2];
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25));
W[22]+=ch(W[19],W[20],W[21]);
W[22]+=K[57];
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
W[22]+=W[9];
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
W[18]+=W[22];
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25));
W[21]+=ch(W[18],W[19],W[20]);
W[21]+=K[58];
W[21]+=W[10];
W[17]+=W[21];
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
W[11]+=W[4];
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25));
W[20]+=ch(W[17],W[18],W[19]);
W[20]+=K[59];
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
W[20]+=W[11];
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
W[23]+=W[19];
W[16]+=W[20];
W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25));
W[23]+=ch(W[16],W[17],W[18]);
W[23]+=K[60];
W[23]+=W[12];
#define FOUND (0x80)
#define NFLAG (0x7F)
#if defined(VECTORS4)
W[23] ^= -0x5be0cd19U;
bool result = W[23].x & W[23].y & W[23].z & W[23].w;
if (!result) {
if (!W[23].x)
output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
if (!W[23].y)
output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
if (!W[23].z)
output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
if (!W[23].w)
output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
}
#elif defined(VECTORS2)
W[23] ^= -0x5be0cd19U;
bool result = W[23].x & W[23].y;
if (!result) {
if (!W[23].x)
output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
if (!W[23].y)
output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
}
#else
if (W[23] == -0x5be0cd19U)
output[FOUND] = output[NFLAG & nonce] = nonce;
#endif
}