|
|
|
@ -75,8 +75,8 @@ __kernel void search(const uint state0, const uint state1, const uint state2, co
@@ -75,8 +75,8 @@ __kernel void search(const uint state0, const uint state1, const uint state2, co
|
|
|
|
|
const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2, |
|
|
|
|
__global uint * output) |
|
|
|
|
{ |
|
|
|
|
u W[16]; |
|
|
|
|
u Vals[8]; |
|
|
|
|
u W[24]; |
|
|
|
|
//u Vals[8]; Now put at W[16] to be in same array |
|
|
|
|
u nonce; |
|
|
|
|
|
|
|
|
|
#ifdef VECTORS4 |
|
|
|
@ -88,572 +88,572 @@ __kernel void search(const uint state0, const uint state1, const uint state2, co
@@ -88,572 +88,572 @@ __kernel void search(const uint state0, const uint state1, const uint state2, co
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
W[3] = nonce + fw3; |
|
|
|
|
Vals[4] = fcty_e + nonce; |
|
|
|
|
Vals[0] = state0 + Vals[4]; |
|
|
|
|
Vals[4] += fcty_e2; |
|
|
|
|
Vals[3] = d1 + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], b1, c1) + K[ 4] + 0x80000000; |
|
|
|
|
Vals[7] = h1 + Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma2(g1, Vals[4], f1); |
|
|
|
|
Vals[2] = c1 + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], b1) + K[ 5]; |
|
|
|
|
Vals[6] = g1 + Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma2(f1, Vals[3], Vals[4]); |
|
|
|
|
Vals[1] = b1 + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[ 6]; |
|
|
|
|
Vals[5] = f1 + Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[ 7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[ 8]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[ 9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[12]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[13]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[14]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[15] + 0x00000280U; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[16] + fw0; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[17] + fw1; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[20] = fcty_e + nonce; |
|
|
|
|
W[16] = state0 + W[20]; |
|
|
|
|
W[20] += fcty_e2; |
|
|
|
|
W[19] = d1 + (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], b1, c1) + K[ 4] + 0x80000000; |
|
|
|
|
W[23] = h1 + W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma2(g1, W[20], f1); |
|
|
|
|
W[18] = c1 + (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], b1) + K[ 5]; |
|
|
|
|
W[22] = g1 + W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma2(f1, W[19], W[20]); |
|
|
|
|
W[17] = b1 + (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[ 6]; |
|
|
|
|
W[21] = f1 + W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[ 7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[ 8]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[ 9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[12]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[13]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[14]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[15] + 0x00000280U; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[16] + fw0; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[17] + fw1; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[2] = (rotr(nonce, 7) ^ rotr(nonce, 18) ^ (nonce >> 3U)) + fw2; |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[18] + W[2]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[19] + W[3]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[18] + W[2]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[19] + W[3]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[4] = (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)) + 0x80000000; |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[20] + W[4]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[20] + W[4]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[5] = (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[21] + W[5]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[21] + W[5]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[6] = (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)) + 0x00000280U; |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[22] + W[6]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[22] + W[6]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[7] = (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)) + fw0; |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[23] + W[7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[23] + W[7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[8] = (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)) + fw1; |
|
|
|
|
|
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[24] + W[8]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[24] + W[8]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[25] + W[9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[25] + W[9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[26] + W[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[26] + W[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[27] + W[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[27] + W[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[28] + W[12]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[28] + W[12]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[29] + W[13]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[29] + W[13]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[14] = 0x00a00055U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[30] + W[14]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[30] + W[14]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[15] = fw15 + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[31] + W[15]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[31] + W[15]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[0] = fw01r + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[32] + W[0]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[32] + W[0]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[1] = fw1 + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[33] + W[1]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[33] + W[1]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[34] + W[2]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[34] + W[2]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[35] + W[3]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[35] + W[3]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[36] + W[4]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[36] + W[4]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[37] + W[5]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[37] + W[5]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[38] + W[6]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[38] + W[6]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[39] + W[7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[39] + W[7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[40] + W[8]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[40] + W[8]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[41] + W[9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[41] + W[9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[42] + W[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[42] + W[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[43] + W[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[43] + W[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[44] + W[12]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[44] + W[12]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[45] + W[13]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[45] + W[13]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[46] + W[14]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[46] + W[14]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[47] + W[15]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[47] + W[15]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[48] + W[0]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[48] + W[0]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[49] + W[1]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[49] + W[1]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[50] + W[2]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[50] + W[2]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[51] + W[3]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[51] + W[3]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[52] + W[4]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[52] + W[4]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[53] + W[5]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[53] + W[5]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[54] + W[6]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[54] + W[6]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[55] + W[7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[55] + W[7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[56] + W[8]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[56] + W[8]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[57] + W[9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[57] + W[9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[58] + W[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[58] + W[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[59] + W[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[59] + W[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[60] + W[12]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[60] + W[12]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[61] + W[13]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[61] + W[13]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[62] + W[14]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[62] + W[14]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[63] + W[15]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[63] + W[15]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
|
|
|
|
|
W[0] = Vals[0] + state0; |
|
|
|
|
W[7] = Vals[7] + state7; |
|
|
|
|
Vals[7] = 0xb0edbdd0 + K[ 0] + W[0]; |
|
|
|
|
W[0] = W[16] + state0; |
|
|
|
|
W[7] = W[23] + state7; |
|
|
|
|
W[23] = 0xb0edbdd0 + K[ 0] + W[0]; |
|
|
|
|
|
|
|
|
|
W[3] = Vals[3] + state3; |
|
|
|
|
Vals[3] = 0xa54ff53a + Vals[7]; |
|
|
|
|
Vals[7] += 0x08909ae5U; |
|
|
|
|
W[3] = W[19] + state3; |
|
|
|
|
W[19] = 0xa54ff53a + W[23]; |
|
|
|
|
W[23] += 0x08909ae5U; |
|
|
|
|
|
|
|
|
|
W[1] = Vals[1] + state1; |
|
|
|
|
W[6] = Vals[6] + state6; |
|
|
|
|
Vals[6] = 0x1f83d9abU + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + (0x9b05688cU ^ (Vals[3] & 0xca0b3af3U)) + K[ 1] + W[1]; |
|
|
|
|
W[1] = W[17] + state1; |
|
|
|
|
W[6] = W[22] + state6; |
|
|
|
|
W[22] = 0x1f83d9abU + (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + (0x9b05688cU ^ (W[19] & 0xca0b3af3U)) + K[ 1] + W[1]; |
|
|
|
|
|
|
|
|
|
W[2] = Vals[2] + state2; |
|
|
|
|
Vals[2] = 0x3c6ef372U + Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma2(0xbb67ae85U, Vals[7], 0x6a09e667U); |
|
|
|
|
W[2] = W[18] + state2; |
|
|
|
|
W[18] = 0x3c6ef372U + W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma2(0xbb67ae85U, W[23], 0x6a09e667U); |
|
|
|
|
|
|
|
|
|
W[5] = Vals[5] + state5; |
|
|
|
|
Vals[5] = 0x9b05688cU + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], 0x510e527fU) + K[ 2] + W[2]; |
|
|
|
|
Vals[1] = 0xbb67ae85U + Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma2(0x6a09e667U, Vals[6], Vals[7]); |
|
|
|
|
W[5] = W[21] + state5; |
|
|
|
|
W[21] = 0x9b05688cU + (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], 0x510e527fU) + K[ 2] + W[2]; |
|
|
|
|
W[17] = 0xbb67ae85U + W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma2(0x6a09e667U, W[22], W[23]); |
|
|
|
|
|
|
|
|
|
W[4] = Vals[4] + state4; |
|
|
|
|
Vals[4] = 0x510e527fU + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[ 3] + W[3]; |
|
|
|
|
Vals[0] = 0x6a09e667U + Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[ 4] + W[4]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[ 5] + W[5]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[ 6] + W[6]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[ 7] + W[7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[ 8] + 0x80000000; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[ 9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[12]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[13]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[14]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[15] + 0x00000100U; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[4] = W[20] + state4; |
|
|
|
|
W[20] = 0x510e527fU + (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[ 3] + W[3]; |
|
|
|
|
W[16] = 0x6a09e667U + W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[ 4] + W[4]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[ 5] + W[5]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[ 6] + W[6]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[ 7] + W[7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[ 8] + 0x80000000; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[ 9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[12]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[13]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[14]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[15] + 0x00000100U; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[16] + W[0]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[16] + W[0]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + 0x00a00000U; |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[17] + W[1]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[17] + W[1]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[18] + W[2]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[18] + W[2]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[19] + W[3]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[19] + W[3]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[20] + W[4]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[20] + W[4]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[21] + W[5]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[21] + W[5]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + 0x00000100U + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[22] + W[6]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[22] + W[6]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[7] += 0x11002000U + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[23] + W[7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[23] + W[7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[8] = 0x80000000 + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[24] + W[8]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[24] + W[8]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[25] + W[9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[25] + W[9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[26] + W[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[26] + W[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[27] + W[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[27] + W[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[28] + W[12]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[28] + W[12]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[29] + W[13]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[29] + W[13]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[14] = 0x00400022U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[30] + W[14]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[30] + W[14]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[15] = 0x00000100U + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[31] + W[15]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[31] + W[15]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[32] + W[0]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[32] + W[0]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[33] + W[1]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[33] + W[1]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[34] + W[2]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[34] + W[2]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[35] + W[3]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[35] + W[3]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[36] + W[4]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[36] + W[4]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[37] + W[5]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[37] + W[5]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[38] + W[6]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[38] + W[6]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[39] + W[7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[39] + W[7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[40] + W[8]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[40] + W[8]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[41] + W[9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[41] + W[9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[42] + W[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[42] + W[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[43] + W[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[43] + W[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[44] + W[12]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[44] + W[12]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[45] + W[13]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[45] + W[13]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[46] + W[14]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[46] + W[14]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[47] + W[15]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[47] + W[15]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[48] + W[0]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[48] + W[0]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[49] + W[1]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
Vals[6] += (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[49] + W[1]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]); |
|
|
|
|
W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[50] + W[2]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
Vals[5] += (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[50] + W[2]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]); |
|
|
|
|
W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[51] + W[3]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
Vals[4] += (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[51] + W[3]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]); |
|
|
|
|
W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[3] += (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[52] + W[4]; |
|
|
|
|
Vals[7] += Vals[3]; |
|
|
|
|
Vals[3] += (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[52] + W[4]; |
|
|
|
|
W[23] += W[19]; |
|
|
|
|
W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]); |
|
|
|
|
W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[2] += (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[53] + W[5]; |
|
|
|
|
Vals[6] += Vals[2]; |
|
|
|
|
Vals[2] += (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[53] + W[5]; |
|
|
|
|
W[22] += W[18]; |
|
|
|
|
W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]); |
|
|
|
|
W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[1] += (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[54] + W[6]; |
|
|
|
|
Vals[5] += Vals[1]; |
|
|
|
|
Vals[1] += (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[54] + W[6]; |
|
|
|
|
W[21] += W[17]; |
|
|
|
|
W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]); |
|
|
|
|
W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[0] += (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[55] + W[7]; |
|
|
|
|
Vals[4] += Vals[0]; |
|
|
|
|
Vals[0] += (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[55] + W[7]; |
|
|
|
|
W[20] += W[16]; |
|
|
|
|
W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]); |
|
|
|
|
W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[7] += (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[56] + W[8]; |
|
|
|
|
Vals[3] += Vals[7]; |
|
|
|
|
Vals[7] += (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[56] + W[8]; |
|
|
|
|
W[19] += W[23]; |
|
|
|
|
W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]); |
|
|
|
|
W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[6] += (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[57] + W[9]; |
|
|
|
|
Vals[2] += Vals[6]; |
|
|
|
|
W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[57] + W[9]; |
|
|
|
|
W[18] += W[22]; |
|
|
|
|
W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[5] += (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[58] + W[10]; |
|
|
|
|
Vals[1] += Vals[5]; |
|
|
|
|
W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[58] + W[10]; |
|
|
|
|
W[17] += W[21]; |
|
|
|
|
W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[4] += (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[59] + W[11]; |
|
|
|
|
Vals[0] += Vals[4]; |
|
|
|
|
W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[59] + W[11]; |
|
|
|
|
W[16] += W[20]; |
|
|
|
|
W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
|
|
|
|
|
Vals[7] += Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[60] + W[12]; |
|
|
|
|
W[23] += W[19] + (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[60] + W[12]; |
|
|
|
|
|
|
|
|
|
#define FOUND (0x80) |
|
|
|
|
#define NFLAG (0x7F) |
|
|
|
|
|
|
|
|
|
#if defined(VECTORS4) |
|
|
|
|
Vals[7] ^= -0x5be0cd19U; |
|
|
|
|
bool result = Vals[7].x & Vals[7].y & Vals[7].z & Vals[7].w; |
|
|
|
|
W[23] ^= -0x5be0cd19U; |
|
|
|
|
bool result = W[23].x & W[23].y & W[23].z & W[23].w; |
|
|
|
|
if (!result) { |
|
|
|
|
if (!Vals[7].x) |
|
|
|
|
if (!W[23].x) |
|
|
|
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x; |
|
|
|
|
if (!Vals[7].y) |
|
|
|
|
if (!W[23].y) |
|
|
|
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y; |
|
|
|
|
if (!Vals[7].z) |
|
|
|
|
if (!W[23].z) |
|
|
|
|
output[FOUND] = output[NFLAG & nonce.z] = nonce.z; |
|
|
|
|
if (!Vals[7].w) |
|
|
|
|
if (!W[23].w) |
|
|
|
|
output[FOUND] = output[NFLAG & nonce.w] = nonce.w; |
|
|
|
|
} |
|
|
|
|
#elif defined(VECTORS2) |
|
|
|
|
Vals[7] ^= -0x5be0cd19U; |
|
|
|
|
bool result = Vals[7].x & Vals[7].y; |
|
|
|
|
W[23] ^= -0x5be0cd19U; |
|
|
|
|
bool result = W[23].x & W[23].y; |
|
|
|
|
if (!result) { |
|
|
|
|
if (!Vals[7].x) |
|
|
|
|
if (!W[23].x) |
|
|
|
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x; |
|
|
|
|
if (!Vals[7].y) |
|
|
|
|
if (!W[23].y) |
|
|
|
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y; |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
if (Vals[7] == -0x5be0cd19U) |
|
|
|
|
if (W[23] == -0x5be0cd19U) |
|
|
|
|
output[FOUND] = output[NFLAG & nonce] = nonce; |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|