|
|
|
@ -68,13 +68,13 @@ __constant uint K[64] = {
@@ -68,13 +68,13 @@ __constant uint K[64] = {
|
|
|
|
|
|
|
|
|
|
__kernel void search( const uint state0, const uint state1, const uint state2, const uint state3, |
|
|
|
|
const uint state4, const uint state5, const uint state6, const uint state7, |
|
|
|
|
const uint B1, const uint C1, const uint D1, |
|
|
|
|
const uint F1, const uint G1, const uint H1, |
|
|
|
|
const uint b1, const uint c1, const uint d1, |
|
|
|
|
const uint f1, const uint g1, const uint h1, |
|
|
|
|
const uint base, |
|
|
|
|
const uint fW0, const uint fW1, const uint fW2, const uint fW3, const uint fW15, const uint fW01r, const uint fcty_e, const uint fcty_e2, |
|
|
|
|
const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2, |
|
|
|
|
__global uint * output) |
|
|
|
|
{ |
|
|
|
|
u W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15; |
|
|
|
|
u W[26]; |
|
|
|
|
u A,B,C,D,E,F,G,H; |
|
|
|
|
u nonce; |
|
|
|
|
uint it; |
|
|
|
@ -87,11 +87,11 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -87,11 +87,11 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
nonce = base + get_global_id(0); |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
W3 = nonce + fW3; |
|
|
|
|
W[3] = nonce + fw3; |
|
|
|
|
E = fcty_e + nonce; A = state0 + E; E = E + fcty_e2; |
|
|
|
|
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] + 0x80000000; H = H1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma2(G1, E, F1); |
|
|
|
|
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5]; G = G1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma2(F1, D, E); |
|
|
|
|
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6]; F = F1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
D = d1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, b1, c1) + K[ 4] + 0x80000000; H = h1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma2(g1, E, f1); |
|
|
|
|
C = c1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, b1) + K[ 5]; G = g1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma2(f1, D, E); |
|
|
|
|
B = b1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6]; F = f1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
@ -101,113 +101,113 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -101,113 +101,113 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280U; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W2 = (rotr(nonce, 7) ^ rotr(nonce, 18) ^ (nonce >> 3U)) + fW2; |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)) + 0x80000000; |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)) + 0x00000280U; |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)) + fW0; |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)) + fW1; |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W14 = 0x00a00055U + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3U)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3U)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3U)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3U)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fw0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fw1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[2] = (rotr(nonce, 7) ^ rotr(nonce, 18) ^ (nonce >> 3U)) + fw2; |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[4] = (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)) + 0x80000000; |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[5] = (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[6] = (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)) + 0x00000280U; |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[7] = (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)) + fw0; |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[8] = (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)) + fw1; |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[14] = 0x00a00055U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[15] = fw15 + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[0] = fw01r + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[1] = fw1 + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[13] = W[13] + (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[14] = W[14] + (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[15] = W[15] + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[13] = W[13] + (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[14] = W[14] + (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[15] = W[15] + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
|
|
|
|
|
W0 = A + state0; W1 = B + state1; |
|
|
|
|
W2 = C + state2; W3 = D + state3; |
|
|
|
|
W4 = E + state4; W5 = F + state5; |
|
|
|
|
W6 = G + state6; W7 = H + state7; |
|
|
|
|
W[0] = A + state0; W[1] = B + state1; |
|
|
|
|
W[2] = C + state2; W[3] = D + state3; |
|
|
|
|
W[4] = E + state4; W[5] = F + state5; |
|
|
|
|
W[6] = G + state6; W[7] = H + state7; |
|
|
|
|
|
|
|
|
|
H = 0xb0edbdd0 + K[ 0] + W0; D = 0xa54ff53a + H; H = H + 0x08909ae5U; |
|
|
|
|
G = 0x1f83d9abU + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688cU ^ (D & 0xca0b3af3U)) + K[ 1] + W1; C = 0x3c6ef372U + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma2(0xbb67ae85U, H, 0x6a09e667U); |
|
|
|
|
F = 0x9b05688cU + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527fU) + K[ 2] + W2; B = 0xbb67ae85U + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma2(0x6a09e667U, G, H); |
|
|
|
|
E = 0x510e527fU + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W3; A = 0x6a09e667U + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = 0xb0edbdd0 + K[ 0] + W[0]; D = 0xa54ff53a + H; H = H + 0x08909ae5U; |
|
|
|
|
G = 0x1f83d9abU + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688cU ^ (D & 0xca0b3af3U)) + K[ 1] + W[1]; C = 0x3c6ef372U + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma2(0xbb67ae85U, H, 0x6a09e667U); |
|
|
|
|
F = 0x9b05688cU + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527fU) + K[ 2] + W[2]; B = 0xbb67ae85U + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma2(0x6a09e667U, G, H); |
|
|
|
|
E = 0x510e527fU + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W[3]; A = 0x6a09e667U + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
@ -216,96 +216,96 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -216,96 +216,96 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100U; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + 0x00a00000U; |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + 0x00000100U + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W7 = W7 + 0x11002000U + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W14 = 0x00400022U + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W15 = 0x00000100U + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3U)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3U)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3U)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3U)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3U)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3U)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3U)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3U)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3U)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3U)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3U)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3U)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3U)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; C = C + G; |
|
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3U)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; B = B + F; |
|
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3U)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; A = A + E; |
|
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3U)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10U)); |
|
|
|
|
H = H + D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + 0x00a00000U; |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + 0x00000100U + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[7] = W[7] + 0x11002000U + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[8] = 0x80000000 + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[14] = 0x00400022U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[15] = 0x00000100U + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[13] = W[13] + (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[14] = W[14] + (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[15] = W[15] + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W[9]; C = C + G; |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W[10]; B = B + F; |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W[11]; A = A + E; |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
H = H + D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W[12]; |
|
|
|
|
|
|
|
|
|
H+=0x5be0cd19U; |
|
|
|
|
|
|
|
|
|