Browse Source

myr-gr: remove unused allocated memory + pascal tweak

+ cleanup...
2upstream
Tanguy Pruvot 8 years ago
parent
commit
3fe4dda4c1
  1. 616
      cuda_myriadgroestl.cu
  2. 17
      myriadgroestl.cpp

616
cuda_myriadgroestl.cu

@ -5,6 +5,11 @@
#include "cuda_helper.h" #include "cuda_helper.h"
#ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500
#define __funnelshift_r(x,y,n) (x >> n)
#endif
#if __CUDA_ARCH__ >= 300 #if __CUDA_ARCH__ >= 300
// 64 Registers Variant for Compute 3.0 // 64 Registers Variant for Compute 3.0
#include "quark/groestl_functions_quad.h" #include "quark/groestl_functions_quad.h"
@ -21,238 +26,240 @@ __constant__ uint32_t myriadgroestl_gpu_msg[32];
// muss expandiert werden // muss expandiert werden
__constant__ uint32_t myr_sha256_gpu_constantTable[64]; __constant__ uint32_t myr_sha256_gpu_constantTable[64];
__constant__ uint32_t myr_sha256_gpu_constantTable2[64]; __constant__ uint32_t myr_sha256_gpu_constantTable2[64];
__constant__ uint32_t myr_sha256_gpu_hashTable[8];
const uint32_t myr_sha256_cpu_constantTable[] = {
uint32_t myr_sha256_cpu_hashTable[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
uint32_t myr_sha256_cpu_constantTable[] = { 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
}; };
uint32_t myr_sha256_cpu_w2Table[] = { const uint32_t myr_sha256_cpu_w2Table[] = {
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020, 0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020,
0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549, 0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549,
0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91, 0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91,
0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7, 0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7,
0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d, 0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d,
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 }; 0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484
};
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) #define SWAB32(x) cuda_swab32(x)
#if __CUDA_ARCH__ < 320 #if __CUDA_ARCH__ < 320
// Kepler (Compute 3.0) // Kepler (Compute 3.0)
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#else #else
// Kepler (Compute 3.5) // Kepler (Compute 3.5)
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) #define ROTR32(x, n) __funnelshift_r( (x), (x), (n) )
#endif #endif
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22)) #define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25)) #define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) #define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) #define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
__device__ void myriadgroestl_gpu_sha256(uint32_t *message) __device__ void myriadgroestl_gpu_sha256(uint32_t *message)
{ {
uint32_t W1[16]; uint32_t regs[8], hash[8];
uint32_t W2[16]; const uint32_t myr_sha256_gpu_hashTable[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
// Initialisiere die register a bis h mit der Hash-Tabelle };
uint32_t regs[8];
uint32_t hash[8]; // pre
#pragma unroll 8
// pre for (int k=0; k < 8; k++)
#pragma unroll 8 {
for (int k=0; k < 8; k++) regs[k] = myr_sha256_gpu_hashTable[k];
{ hash[k] = regs[k];
regs[k] = myr_sha256_gpu_hashTable[k]; }
hash[k] = regs[k];
} uint32_t W1[16];
#pragma unroll 16
#pragma unroll 16 for(int k=0; k<16; k++)
for(int k=0;k<16;k++) W1[k] = SWAB32(message[k]);
W1[k] = SWAB32(message[k]);
// Progress W1
// Progress W1 #pragma unroll 16
#pragma unroll 16 for(int j=0; j<16; j++)
for(int j=0;j<16;j++) {
{ uint32_t T1, T2;
uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
#pragma unroll 7 for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; regs[0] = T1 + T2;
regs[0] = T1 + T2; regs[4] += T1;
regs[4] += T1; }
}
// Progress W2...W3
// Progress W2...W3 uint32_t W2[16];
////// PART 1
#pragma unroll 2 ////// PART 1
for(int j=0;j<2;j++) #pragma unroll 2
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; for(int j=0; j<2; j++)
#pragma unroll 5 W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
for(int j=2;j<7;j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 5
for(int j=2;j<7;j++)
#pragma unroll 8 W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
for(int j=7;j<15;j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; #pragma unroll 8
for(int j=7; j<15; j++)
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
// Rundenfunktion W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
#pragma unroll 16
for(int j=0;j<16;j++) // Round function
{ #pragma unroll 16
uint32_t T1, T2; for(int j=0; j<16; j++)
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j]; {
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
#pragma unroll 7 T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2; #pragma unroll 7
regs[4] += T1; for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
} regs[0] = T1 + T2;
regs[4] += T1;
////// PART 2 }
#pragma unroll 2
for(int j=0;j<2;j++) ////// PART 2
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j]; #pragma unroll 2
#pragma unroll 5 for(int j=0; j<2; j++)
for(int j=2;j<7;j++) W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j]; #pragma unroll 5
for(int j=2; j<7; j++)
#pragma unroll 8 W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
for(int j=7;j<15;j++)
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j]; #pragma unroll 8
for(int j=7; j<15; j++)
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
// Rundenfunktion W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
#pragma unroll 16
for(int j=0;j<16;j++) // Round function
{ #pragma unroll 16
uint32_t T1, T2; for(int j=0; j<16; j++)
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j]; {
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
#pragma unroll 7 T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2; #pragma unroll 7
regs[4] += T1; for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
} regs[0] = T1 + T2;
regs[4] += T1;
////// PART 3 }
#pragma unroll 2
for(int j=0;j<2;j++) ////// PART 3
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 2
#pragma unroll 5 for(int j=0; j<2; j++)
for(int j=2;j<7;j++) W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 5
for(int j=2; j<7; j++)
#pragma unroll 8 W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
for(int j=7;j<15;j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; #pragma unroll 8
for(int j=7; j<15; j++)
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
// Rundenfunktion W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
#pragma unroll 16
for(int j=0;j<16;j++) // Round function
{ #pragma unroll 16
uint32_t T1, T2; for(int j=0; j<16; j++)
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j]; {
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
#pragma unroll 7 T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2; #pragma unroll 7
regs[4] += T1; for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
} regs[0] = T1 + T2;
regs[4] += T1;
#pragma unroll 8 }
for(int k=0;k<8;k++)
hash[k] += regs[k]; #pragma unroll 8
for(int k=0; k<8; k++)
///// hash[k] += regs[k];
///// Zweite Runde (wegen Msg-Padding)
///// /////
#pragma unroll 8 ///// 2nd Round (wegen Msg-Padding)
for(int k=0;k<8;k++) /////
regs[k] = hash[k]; #pragma unroll 8
for(int k=0; k<8; k++)
// Progress W1 regs[k] = hash[k];
#pragma unroll 64
for(int j=0;j<64;j++) // Progress W1
{ #pragma unroll 64
uint32_t T1, T2; for(int j=0; j<64; j++)
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j]; {
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
#pragma unroll 7 T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
regs[0] = T1 + T2; #pragma unroll 7
regs[4] += T1; for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
} regs[0] = T1 + T2;
regs[4] += T1;
#pragma unroll 8 }
for(int k=0;k<8;k++)
hash[k] += regs[k]; #pragma unroll 8
for(int k=0; k<8; k++)
//// FERTIG hash[k] += regs[k];
#pragma unroll 8 //// Close
for(int k=0;k<8;k++)
message[k] = SWAB32(hash[k]); #pragma unroll 8
for(int k=0; k<8; k++)
message[k] = SWAB32(hash[k]);
} }
__global__ void __launch_bounds__(256, 4) __global__ void __launch_bounds__(256, 4)
myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer) myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer)
{ {
#if __CUDA_ARCH__ >= 300 #if __CUDA_ARCH__ >= 300
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen // durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4; uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4;
if (thread < threads) if (thread < threads)
{ {
// GROESTL // GROESTL
uint32_t paddedInput[8]; uint32_t paddedInput[8];
#pragma unroll 8 #pragma unroll 8
for(int k=0;k<8;k++) paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4]; for(int k=0; k<8; k++)
paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4];
uint32_t nounce = startNounce + thread;
if ((threadIdx.x % 4) == 3) uint32_t nounce = startNounce + thread;
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19 if ((threadIdx.x % 4) == 3)
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19
uint32_t msgBitsliced[8];
to_bitslice_quad(paddedInput, msgBitsliced); uint32_t msgBitsliced[8];
to_bitslice_quad(paddedInput, msgBitsliced);
uint32_t state[8];
uint32_t state[8];
groestl512_progressMessage_quad(state, msgBitsliced);
groestl512_progressMessage_quad(state, msgBitsliced);
uint32_t out_state[16];
from_bitslice_quad(state, out_state); uint32_t out_state[16];
from_bitslice_quad(state, out_state);
if ((threadIdx.x & 0x03) == 0)
{ if ((threadIdx.x & 0x03) == 0)
uint32_t *outpHash = &hashBuffer[16 * thread]; {
#pragma unroll 16 uint32_t *outpHash = &hashBuffer[16 * thread];
for(int k=0;k<16;k++) outpHash[k] = out_state[k]; #pragma unroll 16
} for(int k=0; k<16; k++) outpHash[k] = out_state[k];
} }
}
#endif #endif
} }
@ -260,42 +267,42 @@ __global__ void
myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer) myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer)
{ {
#if __CUDA_ARCH__ >= 300 #if __CUDA_ARCH__ >= 300
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads) if (thread < threads)
{ {
uint32_t nounce = startNounce + thread; uint32_t nounce = startNounce + thread;
uint32_t out_state[16]; uint32_t out_state[16];
uint32_t *inpHash = &hashBuffer[16 * thread]; uint32_t *inpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for (int i=0; i < 16; i++) #pragma unroll 16
out_state[i] = inpHash[i]; for (int i=0; i < 16; i++)
out_state[i] = inpHash[i];
myriadgroestl_gpu_sha256(out_state);
myriadgroestl_gpu_sha256(out_state);
int i, position = -1;
bool rc = true; int i, position = -1;
bool rc = true;
#pragma unroll 8
for (i = 7; i >= 0; i--) { #pragma unroll 8
if (out_state[i] > pTarget[i]) { for (i = 7; i >= 0; i--) {
if(position < i) { if (out_state[i] > pTarget[i]) {
position = i; if(position < i) {
rc = false; position = i;
} rc = false;
} }
if (out_state[i] < pTarget[i]) { }
if(position < i) { if (out_state[i] < pTarget[i]) {
position = i; if(position < i) {
rc = true; position = i;
} rc = true;
} }
} }
}
if(rc == true)
if(resNounce[0] > nounce) if(rc && resNounce[0] > nounce)
resNounce[0] = nounce; resNounce[0] = nounce;
} }
#endif #endif
} }
@ -303,93 +310,76 @@ __global__ void
__host__ __host__
void myriadgroestl_cpu_init(int thr_id, uint32_t threads) void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
{ {
cudaMemcpyToSymbol( myr_sha256_gpu_hashTable, uint32_t temp[64];
myr_sha256_cpu_hashTable, for(int i=0; i<64; i++)
sizeof(uint32_t) * 8 ); temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable, cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2,
myr_sha256_cpu_constantTable, temp,
sizeof(uint32_t) * 64 ); sizeof(uint32_t) * 64 );
// zweite CPU-Tabelle bauen und auf die GPU laden cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
uint32_t temp[64]; myr_sha256_cpu_constantTable,
for(int i=0;i<64;i++) sizeof(uint32_t) * 64 );
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads);
temp, cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
sizeof(uint32_t) * 64 );
// Speicher für Gewinner-Nonce belegen
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
// Speicher für temporäreHashes
cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads);
} }
__host__ __host__
void myriadgroestl_cpu_free(int thr_id) void myriadgroestl_cpu_free(int thr_id)
{ {
cudaFree(d_resultNonce[thr_id]); cudaFree(d_outputHashes[thr_id]);
cudaFree(d_outputHashes[thr_id]); cudaFree(d_resultNonce[thr_id]);
} }
__host__ __host__
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn) void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
{ {
// Nachricht expandieren und setzen // Nachricht expandieren und setzen
uint32_t msgBlock[32]; uint32_t msgBlock[32] = { 0 };
memcpy(&msgBlock[0], data, 80);
memset(msgBlock, 0, sizeof(uint32_t) * 32); // Erweitere die Nachricht auf den Nachrichtenblock (padding)
memcpy(&msgBlock[0], data, 80); // Unsere Nachricht hat 80 Byte
msgBlock[20] = 0x80;
msgBlock[31] = 0x01000000;
// Erweitere die Nachricht auf den Nachrichtenblock (padding) // groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
// Unsere Nachricht hat 80 Byte // auf der GPU ausgeführt)
msgBlock[20] = 0x80;
msgBlock[31] = 0x01000000;
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird // Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
// auf der GPU ausgeführt) cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128);
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
cudaMemcpyToSymbol( myriadgroestl_gpu_msg, cudaMemcpyToSymbol(pTarget, pTargetIn, 32);
msgBlock,
128);
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
cudaMemcpyToSymbol( pTarget,
pTargetIn,
sizeof(uint32_t) * 8 );
} }
__host__ __host__
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce) void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *resNounce)
{ {
uint32_t threadsperblock = 256; uint32_t threadsperblock = 256;
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const int factor=4;
// Größe des dynamischen Shared Memory Bereichs // Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
size_t shared_size = 0; // mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const int factor = 4;
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
// berechne wie viele Thread Blocks wir brauchen // berechne wie viele Thread Blocks wir brauchen
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock); dim3 block(threadsperblock);
if (device_sm[device_map[thr_id]] < 300) { if (device_sm[device_map[thr_id]] < 300) {
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
return; return;
} }
myriadgroestl_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_outputHashes[thr_id]); myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
dim3 grid2((threads + threadsperblock-1)/threadsperblock); dim3 grid2((threads + threadsperblock-1)/threadsperblock);
myriadgroestl_gpu_hash_quad2<<<grid2, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]); myriadgroestl_gpu_hash_quad2 <<< grid2, block >>> (threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
// Strategisches Sleep Kommando zur Senkung der CPU Last // Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, 0, thr_id); MyStreamSynchronize(NULL, 0, thr_id);
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); cudaMemcpy(resNounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
} }

17
myriadgroestl.cpp

@ -10,7 +10,7 @@
void myriadgroestl_cpu_init(int thr_id, uint32_t threads); void myriadgroestl_cpu_init(int thr_id, uint32_t threads);
void myriadgroestl_cpu_free(int thr_id); void myriadgroestl_cpu_free(int thr_id);
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn); void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn);
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce); void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *nounce);
void myriadhash(void *state, const void *input) void myriadhash(void *state, const void *input)
{ {
@ -37,18 +37,18 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
uint32_t *pdata = work->data; uint32_t *pdata = work->data;
uint32_t *ptarget = work->target; uint32_t *ptarget = work->target;
uint32_t start_nonce = pdata[19]; uint32_t start_nonce = pdata[19];
uint32_t throughput = cuda_default_throughput(thr_id, 1U << 17); int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] >= 600) ? 20 : 18;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce); if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce);
uint32_t *outputHash = (uint32_t*)malloc(throughput * 64);
if (opt_benchmark) if (opt_benchmark)
ptarget[7] = 0x0000ff; ptarget[7] = 0x0000ff;
// init // init
if(!init[thr_id]) if(!init[thr_id])
{ {
cudaSetDevice(device_map[thr_id]); cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) { if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset(); cudaDeviceReset();
// reduce cpu usage // reduce cpu usage
@ -62,14 +62,13 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
for (int k=0; k < 20; k++) for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[k], pdata[k]);
// Context mit dem Endian gedrehten Blockheader vorbereiten (Nonce wird später ersetzt)
myriadgroestl_cpu_setBlock(thr_id, endiandata, (void*)ptarget); myriadgroestl_cpu_setBlock(thr_id, endiandata, (void*)ptarget);
do { do {
// GPU // GPU
uint32_t foundNounce = UINT32_MAX; uint32_t foundNounce = UINT32_MAX;
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce); myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], &foundNounce);
*hashes_done = pdata[19] - start_nonce + throughput; *hashes_done = pdata[19] - start_nonce + throughput;
@ -81,9 +80,8 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
work_set_target_ratio(work, vhash); work_set_target_ratio(work, vhash);
pdata[19] = foundNounce; pdata[19] = foundNounce;
free(outputHash);
return 1; return 1;
} else { } else if (vhash[7] > ptarget[7]) {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce); gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce);
} }
} }
@ -98,7 +96,6 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
*hashes_done = max_nonce - start_nonce; *hashes_done = max_nonce - start_nonce;
free(outputHash);
return 0; return 0;
} }

Loading…
Cancel
Save