diff --git a/cuda_myriadgroestl.cu b/cuda_myriadgroestl.cu index 681b6a0..7598228 100644 --- a/cuda_myriadgroestl.cu +++ b/cuda_myriadgroestl.cu @@ -5,6 +5,11 @@ #include "cuda_helper.h" +#ifdef __INTELLISENSE__ +#define __CUDA_ARCH__ 500 +#define __funnelshift_r(x,y,n) (x >> n) +#endif + #if __CUDA_ARCH__ >= 300 // 64 Registers Variant for Compute 3.0 #include "quark/groestl_functions_quad.h" @@ -21,238 +26,240 @@ __constant__ uint32_t myriadgroestl_gpu_msg[32]; // muss expandiert werden __constant__ uint32_t myr_sha256_gpu_constantTable[64]; __constant__ uint32_t myr_sha256_gpu_constantTable2[64]; -__constant__ uint32_t myr_sha256_gpu_hashTable[8]; - -uint32_t myr_sha256_cpu_hashTable[] = { - 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; -uint32_t myr_sha256_cpu_constantTable[] = { - 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, - 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, - 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, - 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, - 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, - 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, - 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, - 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, + +const uint32_t myr_sha256_cpu_constantTable[] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; -uint32_t myr_sha256_cpu_w2Table[] = { - 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, - 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200, - 0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020, - 0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549, - 0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91, - 0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7, - 0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d, - 0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 }; +const uint32_t myr_sha256_cpu_w2Table[] = { + 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, + 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200, + 0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020, + 0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549, + 0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91, + 0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7, + 0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d, + 0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 +}; -#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) +#define SWAB32(x) cuda_swab32(x) #if __CUDA_ARCH__ < 320 - // Kepler (Compute 3.0) - #define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) + // Kepler (Compute 3.0) + #define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #else - // Kepler (Compute 3.5) - #define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) + // Kepler (Compute 3.5) + #define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) #endif -#define R(x, n) ((x) >> (n)) -#define Ch(x, y, z) ((x & (y ^ z)) ^ z) + +#define R(x, n) ((x) >> (n)) +#define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) -#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22)) -#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25)) -#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) -#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) +#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22)) +#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25)) +#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) +#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) __device__ void myriadgroestl_gpu_sha256(uint32_t *message) { - uint32_t W1[16]; - uint32_t W2[16]; - - // Initialisiere die register a bis h mit der Hash-Tabelle - uint32_t regs[8]; - uint32_t hash[8]; - - // pre -#pragma unroll 8 - for (int k=0; k < 8; k++) - { - regs[k] = myr_sha256_gpu_hashTable[k]; - hash[k] = regs[k]; - } - -#pragma unroll 16 - for(int k=0;k<16;k++) - W1[k] = SWAB32(message[k]); - -// Progress W1 -#pragma unroll 16 - for(int j=0;j<16;j++) - { - uint32_t T1, T2; - T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; - T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); - - #pragma unroll 7 - for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; - regs[0] = T1 + T2; - regs[4] += T1; - } - -// Progress W2...W3 -////// PART 1 -#pragma unroll 2 - for(int j=0;j<2;j++) - W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; -#pragma unroll 5 - for(int j=2;j<7;j++) - W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; - -#pragma unroll 8 - for(int j=7;j<15;j++) - W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; - - W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; - - // Rundenfunktion -#pragma unroll 16 - for(int j=0;j<16;j++) - { - uint32_t T1, T2; - T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j]; - T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); - - #pragma unroll 7 - for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; - regs[0] = T1 + T2; - regs[4] += T1; - } - -////// PART 2 -#pragma unroll 2 - for(int j=0;j<2;j++) - W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j]; -#pragma unroll 5 - for(int j=2;j<7;j++) - W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j]; - -#pragma unroll 8 - for(int j=7;j<15;j++) - W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j]; - - W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; - - // Rundenfunktion -#pragma unroll 16 - for(int j=0;j<16;j++) - { - uint32_t T1, T2; - T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j]; - T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); - - #pragma unroll 7 - for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; - regs[0] = T1 + T2; - regs[4] += T1; - } - -////// PART 3 -#pragma unroll 2 - for(int j=0;j<2;j++) - W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; -#pragma unroll 5 - for(int j=2;j<7;j++) - W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; - -#pragma unroll 8 - for(int j=7;j<15;j++) - W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; - - W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; - - // Rundenfunktion -#pragma unroll 16 - for(int j=0;j<16;j++) - { - uint32_t T1, T2; - T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j]; - T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); - - #pragma unroll 7 - for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; - regs[0] = T1 + T2; - regs[4] += T1; - } - -#pragma unroll 8 - for(int k=0;k<8;k++) - hash[k] += regs[k]; - - ///// - ///// Zweite Runde (wegen Msg-Padding) - ///// -#pragma unroll 8 - for(int k=0;k<8;k++) - regs[k] = hash[k]; - -// Progress W1 -#pragma unroll 64 - for(int j=0;j<64;j++) - { - uint32_t T1, T2; - T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j]; - T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); - - #pragma unroll 7 - for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; - regs[0] = T1 + T2; - regs[4] += T1; - } - -#pragma unroll 8 - for(int k=0;k<8;k++) - hash[k] += regs[k]; - - //// FERTIG - -#pragma unroll 8 - for(int k=0;k<8;k++) - message[k] = SWAB32(hash[k]); + uint32_t regs[8], hash[8]; + const uint32_t myr_sha256_gpu_hashTable[8] = { + 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 + }; + + // pre + #pragma unroll 8 + for (int k=0; k < 8; k++) + { + regs[k] = myr_sha256_gpu_hashTable[k]; + hash[k] = regs[k]; + } + + uint32_t W1[16]; + #pragma unroll 16 + for(int k=0; k<16; k++) + W1[k] = SWAB32(message[k]); + + // Progress W1 + #pragma unroll 16 + for(int j=0; j<16; j++) + { + uint32_t T1, T2; + T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; + T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); + + #pragma unroll 7 + for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; + regs[0] = T1 + T2; + regs[4] += T1; + } + + // Progress W2...W3 + uint32_t W2[16]; + + ////// PART 1 + #pragma unroll 2 + for(int j=0; j<2; j++) + W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; + + #pragma unroll 5 + for(int j=2;j<7;j++) + W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; + + #pragma unroll 8 + for(int j=7; j<15; j++) + W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; + + W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; + + // Round function + #pragma unroll 16 + for(int j=0; j<16; j++) + { + uint32_t T1, T2; + T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j]; + T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); + + #pragma unroll 7 + for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; + regs[0] = T1 + T2; + regs[4] += T1; + } + + ////// PART 2 + #pragma unroll 2 + for(int j=0; j<2; j++) + W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j]; + #pragma unroll 5 + for(int j=2; j<7; j++) + W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j]; + + #pragma unroll 8 + for(int j=7; j<15; j++) + W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j]; + + W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; + + // Round function + #pragma unroll 16 + for(int j=0; j<16; j++) + { + uint32_t T1, T2; + T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j]; + T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); + + #pragma unroll 7 + for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; + regs[0] = T1 + T2; + regs[4] += T1; + } + + ////// PART 3 + #pragma unroll 2 + for(int j=0; j<2; j++) + W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; + #pragma unroll 5 + for(int j=2; j<7; j++) + W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; + + #pragma unroll 8 + for(int j=7; j<15; j++) + W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; + + W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; + + // Round function + #pragma unroll 16 + for(int j=0; j<16; j++) + { + uint32_t T1, T2; + T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j]; + T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); + + #pragma unroll 7 + for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; + regs[0] = T1 + T2; + regs[4] += T1; + } + + #pragma unroll 8 + for(int k=0; k<8; k++) + hash[k] += regs[k]; + + ///// + ///// 2nd Round (wegen Msg-Padding) + ///// + #pragma unroll 8 + for(int k=0; k<8; k++) + regs[k] = hash[k]; + + // Progress W1 + #pragma unroll 64 + for(int j=0; j<64; j++) + { + uint32_t T1, T2; + T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j]; + T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); + + #pragma unroll 7 + for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; + regs[0] = T1 + T2; + regs[4] += T1; + } + + #pragma unroll 8 + for(int k=0; k<8; k++) + hash[k] += regs[k]; + + //// Close + + #pragma unroll 8 + for(int k=0; k<8; k++) + message[k] = SWAB32(hash[k]); } __global__ void __launch_bounds__(256, 4) myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer) { #if __CUDA_ARCH__ >= 300 - // durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen - uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4; - if (thread < threads) - { - // GROESTL - uint32_t paddedInput[8]; -#pragma unroll 8 - for(int k=0;k<8;k++) paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4]; - - uint32_t nounce = startNounce + thread; - if ((threadIdx.x % 4) == 3) - paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19 - - uint32_t msgBitsliced[8]; - to_bitslice_quad(paddedInput, msgBitsliced); - - uint32_t state[8]; - - groestl512_progressMessage_quad(state, msgBitsliced); - - uint32_t out_state[16]; - from_bitslice_quad(state, out_state); - - if ((threadIdx.x & 0x03) == 0) - { - uint32_t *outpHash = &hashBuffer[16 * thread]; -#pragma unroll 16 - for(int k=0;k<16;k++) outpHash[k] = out_state[k]; - } - } + // durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen + uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4; + if (thread < threads) + { + // GROESTL + uint32_t paddedInput[8]; + #pragma unroll 8 + for(int k=0; k<8; k++) + paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4]; + + uint32_t nounce = startNounce + thread; + if ((threadIdx.x % 4) == 3) + paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19 + + uint32_t msgBitsliced[8]; + to_bitslice_quad(paddedInput, msgBitsliced); + + uint32_t state[8]; + + groestl512_progressMessage_quad(state, msgBitsliced); + + uint32_t out_state[16]; + from_bitslice_quad(state, out_state); + + if ((threadIdx.x & 0x03) == 0) + { + uint32_t *outpHash = &hashBuffer[16 * thread]; + #pragma unroll 16 + for(int k=0; k<16; k++) outpHash[k] = out_state[k]; + } + } #endif } @@ -260,42 +267,42 @@ __global__ void myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer) { #if __CUDA_ARCH__ >= 300 - uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); - if (thread < threads) - { - uint32_t nounce = startNounce + thread; - - uint32_t out_state[16]; - uint32_t *inpHash = &hashBuffer[16 * thread]; -#pragma unroll 16 - for (int i=0; i < 16; i++) - out_state[i] = inpHash[i]; - - myriadgroestl_gpu_sha256(out_state); - - int i, position = -1; - bool rc = true; - -#pragma unroll 8 - for (i = 7; i >= 0; i--) { - if (out_state[i] > pTarget[i]) { - if(position < i) { - position = i; - rc = false; - } - } - if (out_state[i] < pTarget[i]) { - if(position < i) { - position = i; - rc = true; - } - } - } - - if(rc == true) - if(resNounce[0] > nounce) - resNounce[0] = nounce; - } + uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); + if (thread < threads) + { + uint32_t nounce = startNounce + thread; + + uint32_t out_state[16]; + uint32_t *inpHash = &hashBuffer[16 * thread]; + + #pragma unroll 16 + for (int i=0; i < 16; i++) + out_state[i] = inpHash[i]; + + myriadgroestl_gpu_sha256(out_state); + + int i, position = -1; + bool rc = true; + + #pragma unroll 8 + for (i = 7; i >= 0; i--) { + if (out_state[i] > pTarget[i]) { + if(position < i) { + position = i; + rc = false; + } + } + if (out_state[i] < pTarget[i]) { + if(position < i) { + position = i; + rc = true; + } + } + } + + if(rc && resNounce[0] > nounce) + resNounce[0] = nounce; + } #endif } @@ -303,93 +310,76 @@ __global__ void __host__ void myriadgroestl_cpu_init(int thr_id, uint32_t threads) { - cudaMemcpyToSymbol( myr_sha256_gpu_hashTable, - myr_sha256_cpu_hashTable, - sizeof(uint32_t) * 8 ); + uint32_t temp[64]; + for(int i=0; i<64; i++) + temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i]; - cudaMemcpyToSymbol( myr_sha256_gpu_constantTable, - myr_sha256_cpu_constantTable, - sizeof(uint32_t) * 64 ); + cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, + temp, + sizeof(uint32_t) * 64 ); - // zweite CPU-Tabelle bauen und auf die GPU laden - uint32_t temp[64]; - for(int i=0;i<64;i++) - temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i]; + cudaMemcpyToSymbol( myr_sha256_gpu_constantTable, + myr_sha256_cpu_constantTable, + sizeof(uint32_t) * 64 ); - cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, - temp, - sizeof(uint32_t) * 64 ); - - // Speicher für Gewinner-Nonce belegen - cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); - - // Speicher für temporäreHashes - cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads); + cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads); + cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); } __host__ void myriadgroestl_cpu_free(int thr_id) { - cudaFree(d_resultNonce[thr_id]); - cudaFree(d_outputHashes[thr_id]); + cudaFree(d_outputHashes[thr_id]); + cudaFree(d_resultNonce[thr_id]); } __host__ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn) { - // Nachricht expandieren und setzen - uint32_t msgBlock[32]; + // Nachricht expandieren und setzen + uint32_t msgBlock[32] = { 0 }; + memcpy(&msgBlock[0], data, 80); - memset(msgBlock, 0, sizeof(uint32_t) * 32); - memcpy(&msgBlock[0], data, 80); + // Erweitere die Nachricht auf den Nachrichtenblock (padding) + // Unsere Nachricht hat 80 Byte + msgBlock[20] = 0x80; + msgBlock[31] = 0x01000000; - // Erweitere die Nachricht auf den Nachrichtenblock (padding) - // Unsere Nachricht hat 80 Byte - msgBlock[20] = 0x80; - msgBlock[31] = 0x01000000; + // groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird + // auf der GPU ausgeführt) - // groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird - // auf der GPU ausgeführt) + // Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) + cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128); - // Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) - cudaMemcpyToSymbol( myriadgroestl_gpu_msg, - msgBlock, - 128); - - cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); - cudaMemcpyToSymbol( pTarget, - pTargetIn, - sizeof(uint32_t) * 8 ); + cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); + cudaMemcpyToSymbol(pTarget, pTargetIn, 32); } __host__ -void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce) +void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *resNounce) { - uint32_t threadsperblock = 256; - - // Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle - // mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl - const int factor=4; + uint32_t threadsperblock = 256; - // Größe des dynamischen Shared Memory Bereichs - size_t shared_size = 0; + // Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle + // mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl + const int factor = 4; - cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); - // berechne wie viele Thread Blocks wir brauchen - dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); - dim3 block(threadsperblock); + cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); + // berechne wie viele Thread Blocks wir brauchen + dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); + dim3 block(threadsperblock); - if (device_sm[device_map[thr_id]] < 300) { - printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); - return; - } + if (device_sm[device_map[thr_id]] < 300) { + printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); + return; + } - myriadgroestl_gpu_hash_quad<<>>(threads, startNounce, d_outputHashes[thr_id]); - dim3 grid2((threads + threadsperblock-1)/threadsperblock); - myriadgroestl_gpu_hash_quad2<<>>(threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]); + myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]); + dim3 grid2((threads + threadsperblock-1)/threadsperblock); + myriadgroestl_gpu_hash_quad2 <<< grid2, block >>> (threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]); - // Strategisches Sleep Kommando zur Senkung der CPU Last - MyStreamSynchronize(NULL, 0, thr_id); + // Strategisches Sleep Kommando zur Senkung der CPU Last + MyStreamSynchronize(NULL, 0, thr_id); - cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); + cudaMemcpy(resNounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); } diff --git a/myriadgroestl.cpp b/myriadgroestl.cpp index b4ce83e..8db25c5 100644 --- a/myriadgroestl.cpp +++ b/myriadgroestl.cpp @@ -10,7 +10,7 @@ void myriadgroestl_cpu_init(int thr_id, uint32_t threads); void myriadgroestl_cpu_free(int thr_id); void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn); -void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce); +void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *nounce); void myriadhash(void *state, const void *input) { @@ -37,18 +37,18 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t start_nonce = pdata[19]; - uint32_t throughput = cuda_default_throughput(thr_id, 1U << 17); + int dev_id = device_map[thr_id]; + int intensity = (device_sm[dev_id] >= 600) ? 20 : 18; + uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce); - uint32_t *outputHash = (uint32_t*)malloc(throughput * 64); - if (opt_benchmark) ptarget[7] = 0x0000ff; // init if(!init[thr_id]) { - cudaSetDevice(device_map[thr_id]); + cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage @@ -62,14 +62,13 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); - // Context mit dem Endian gedrehten Blockheader vorbereiten (Nonce wird später ersetzt) myriadgroestl_cpu_setBlock(thr_id, endiandata, (void*)ptarget); do { // GPU uint32_t foundNounce = UINT32_MAX; - myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce); + myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], &foundNounce); *hashes_done = pdata[19] - start_nonce + throughput; @@ -81,9 +80,8 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work_set_target_ratio(work, vhash); pdata[19] = foundNounce; - free(outputHash); return 1; - } else { + } else if (vhash[7] > ptarget[7]) { gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce); } } @@ -98,7 +96,6 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned *hashes_done = max_nonce - start_nonce; - free(outputHash); return 0; }