Wladimir J. van der Laan
14 years ago
42 changed files with 2268 additions and 682 deletions
File diff suppressed because it is too large
Load Diff
Binary file not shown.
File diff suppressed because it is too large
Load Diff
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 91 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 151 KiB |
@ -0,0 +1,132 @@
@@ -0,0 +1,132 @@
|
||||
// Copyright (c) 2011 The Bitcoin Developers
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include <openssl/aes.h> |
||||
#include <openssl/evp.h> |
||||
#include <vector> |
||||
#include <string> |
||||
#include "headers.h" |
||||
#ifdef __WXMSW__ |
||||
#include <windows.h> |
||||
#endif |
||||
|
||||
#include "crypter.h" |
||||
#include "main.h" |
||||
#include "util.h" |
||||
|
||||
bool CCrypter::SetKeyFromPassphrase(const std::string& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod) |
||||
{ |
||||
if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE) |
||||
return false; |
||||
|
||||
// Try to keep the keydata out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
|
||||
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
|
||||
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
|
||||
mlock(&chKey[0], sizeof chKey); |
||||
mlock(&chIV[0], sizeof chIV); |
||||
|
||||
int i = 0; |
||||
if (nDerivationMethod == 0) |
||||
i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0], |
||||
(unsigned char *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV); |
||||
|
||||
if (i != WALLET_CRYPTO_KEY_SIZE) |
||||
{ |
||||
memset(&chKey, 0, sizeof chKey); |
||||
memset(&chIV, 0, sizeof chIV); |
||||
return false; |
||||
} |
||||
|
||||
fKeySet = true; |
||||
return true; |
||||
} |
||||
|
||||
bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV) |
||||
{ |
||||
if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_KEY_SIZE) |
||||
return false; |
||||
|
||||
// Try to keep the keydata out of swap
|
||||
// Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
|
||||
// Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.
|
||||
mlock(&chKey[0], sizeof chKey); |
||||
mlock(&chIV[0], sizeof chIV); |
||||
|
||||
memcpy(&chKey[0], &chNewKey[0], sizeof chKey); |
||||
memcpy(&chIV[0], &chNewIV[0], sizeof chIV); |
||||
|
||||
fKeySet = true; |
||||
return true; |
||||
} |
||||
|
||||
bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) |
||||
{ |
||||
if (!fKeySet) |
||||
return false; |
||||
|
||||
// max ciphertext len for a n bytes of plaintext is
|
||||
// n + AES_BLOCK_SIZE - 1 bytes
|
||||
int nLen = vchPlaintext.size(); |
||||
int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0; |
||||
vchCiphertext = std::vector<unsigned char> (nCLen); |
||||
|
||||
EVP_CIPHER_CTX ctx; |
||||
|
||||
EVP_CIPHER_CTX_init(&ctx); |
||||
EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV); |
||||
|
||||
EVP_EncryptUpdate(&ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen); |
||||
EVP_EncryptFinal_ex(&ctx, (&vchCiphertext[0])+nCLen, &nFLen); |
||||
|
||||
EVP_CIPHER_CTX_cleanup(&ctx); |
||||
|
||||
vchCiphertext.resize(nCLen + nFLen); |
||||
return true; |
||||
} |
||||
|
||||
bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) |
||||
{ |
||||
if (!fKeySet) |
||||
return false; |
||||
|
||||
// plaintext will always be equal to or lesser than length of ciphertext
|
||||
int nLen = vchCiphertext.size(); |
||||
int nPLen = nLen, nFLen = 0; |
||||
|
||||
vchPlaintext = CKeyingMaterial(nPLen); |
||||
|
||||
EVP_CIPHER_CTX ctx; |
||||
|
||||
EVP_CIPHER_CTX_init(&ctx); |
||||
EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV); |
||||
|
||||
EVP_DecryptUpdate(&ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen); |
||||
EVP_DecryptFinal_ex(&ctx, (&vchPlaintext[0])+nPLen, &nFLen); |
||||
|
||||
EVP_CIPHER_CTX_cleanup(&ctx); |
||||
|
||||
vchPlaintext.resize(nPLen + nFLen); |
||||
return true; |
||||
} |
||||
|
||||
|
||||
bool EncryptSecret(CKeyingMaterial& vMasterKey, const CSecret &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext) |
||||
{ |
||||
CCrypter cKeyCrypter; |
||||
std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE); |
||||
memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE); |
||||
if(!cKeyCrypter.SetKey(vMasterKey, chIV)) |
||||
return false; |
||||
return cKeyCrypter.Encrypt((CKeyingMaterial)vchPlaintext, vchCiphertext); |
||||
} |
||||
|
||||
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CSecret& vchPlaintext) |
||||
{ |
||||
CCrypter cKeyCrypter; |
||||
std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE); |
||||
memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE); |
||||
if(!cKeyCrypter.SetKey(vMasterKey, chIV)) |
||||
return false; |
||||
return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext)); |
||||
} |
@ -0,0 +1,96 @@
@@ -0,0 +1,96 @@
|
||||
// Copyright (c) 2011 The Bitcoin Developers
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
#ifndef __CRYPTER_H__ |
||||
#define __CRYPTER_H__ |
||||
|
||||
#include "key.h" |
||||
|
||||
const unsigned int WALLET_CRYPTO_KEY_SIZE = 32; |
||||
const unsigned int WALLET_CRYPTO_SALT_SIZE = 8; |
||||
|
||||
/*
|
||||
Private key encryption is done based on a CMasterKey, |
||||
which holds a salt and random encryption key. |
||||
|
||||
CMasterKeys is encrypted using AES-256-CBC using a key |
||||
derived using derivation method nDerivationMethod |
||||
(0 == EVP_sha512()) and derivation iterations nDeriveIterations. |
||||
vchOtherDerivationParameters is provided for alternative algorithms |
||||
which may require more parameters (such as scrypt). |
||||
|
||||
Wallet Private Keys are then encrypted using AES-256-CBC |
||||
with the double-sha256 of the private key as the IV, and the |
||||
master key's key as the encryption key. |
||||
*/ |
||||
|
||||
class CMasterKey |
||||
{ |
||||
public: |
||||
std::vector<unsigned char> vchCryptedKey; |
||||
std::vector<unsigned char> vchSalt; |
||||
// 0 = EVP_sha512()
|
||||
// 1 = scrypt()
|
||||
unsigned int nDerivationMethod; |
||||
unsigned int nDeriveIterations; |
||||
// Use this for more parameters to key derivation,
|
||||
// such as the various parameters to scrypt
|
||||
std::vector<unsigned char> vchOtherDerivationParameters; |
||||
|
||||
IMPLEMENT_SERIALIZE |
||||
( |
||||
READWRITE(vchCryptedKey); |
||||
READWRITE(vchSalt); |
||||
READWRITE(nDerivationMethod); |
||||
READWRITE(nDeriveIterations); |
||||
READWRITE(vchOtherDerivationParameters); |
||||
) |
||||
CMasterKey() |
||||
{ |
||||
// 25000 rounds is just under 0.1 seconds on a 1.86 GHz Pentium M
|
||||
// ie slightly lower than the lowest hardware we need bother supporting
|
||||
nDeriveIterations = 25000; |
||||
nDerivationMethod = 0; |
||||
vchOtherDerivationParameters = std::vector<unsigned char>(0); |
||||
} |
||||
}; |
||||
|
||||
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CKeyingMaterial; |
||||
|
||||
class CCrypter |
||||
{ |
||||
private: |
||||
unsigned char chKey[WALLET_CRYPTO_KEY_SIZE]; |
||||
unsigned char chIV[WALLET_CRYPTO_KEY_SIZE]; |
||||
bool fKeySet; |
||||
|
||||
public: |
||||
bool SetKeyFromPassphrase(const std::string &strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod); |
||||
bool Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext); |
||||
bool Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext); |
||||
bool SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV); |
||||
|
||||
void CleanKey() |
||||
{ |
||||
memset(&chKey, 0, sizeof chKey); |
||||
memset(&chIV, 0, sizeof chIV); |
||||
munlock(&chKey, sizeof chKey); |
||||
munlock(&chIV, sizeof chIV); |
||||
fKeySet = false; |
||||
} |
||||
|
||||
CCrypter() |
||||
{ |
||||
fKeySet = false; |
||||
} |
||||
|
||||
~CCrypter() |
||||
{ |
||||
CleanKey(); |
||||
} |
||||
}; |
||||
|
||||
bool EncryptSecret(CKeyingMaterial& vMasterKey, const CSecret &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext); |
||||
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char> &vchCiphertext, const uint256& nIV, CSecret &vchPlaintext); |
||||
|
||||
#endif |
Loading…
Reference in new issue