Mruset setInventoryKnown was reduced to a remarkably small 1000
entries as a side effect of sendbuffer size reductions in 2012.
This removes setInventoryKnown filtering from merkleBlock responses
because false positives there are especially unattractive and
also because I'm not sure if there aren't race conditions around
the relay pool that would cause some transactions there to
be suppressed. (Also, ProcessGetData was accessing
setInventoryKnown without taking the required lock.)
This replaces using inv messages to announce new blocks, when a peer requests
(via the new "sendheaders" message) that blocks be announced with headers
instead of inv's.
Since headers-first was introduced, peers send getheaders messages in response
to an inv, which requires generating a block locator that is large compared to
the size of the header being requested, and requires an extra round-trip before
a reorg can be relayed. Save time by tracking headers that a peer is likely to
know about, and send a headers chain that would connect to a peer's known
headers, unless the chain would be too big, in which case we revert to sending
an inv instead.
Based off of @sipa's commit to announce all blocks in a reorg via inv,
which has been squashed into this commit.
Rebased-by: Pieter Wuille
The setAskFor duplicate elimination was too eager and removed entries
when we still had no getdata response, allowing the peer to keep
INVing and not responding.
mapAlreadyAskedFor does not keep track of which peer has a request queued for a
particular tx. As a result, a peer can blind a node to a tx indefinitely by
sending many invs for the same tx, and then never replying to getdatas for it.
Each inv received will be placed 2 minutes farther back in mapAlreadyAskedFor,
so a short message containing 10 invs would render that tx unavailable for 20
minutes.
This is fixed by disallowing a peer from having more than one entry for a
particular inv in mapAlreadyAskedFor at a time.
- Force AUTHCOOKIE size to be 32 bytes: This provides protection against
an attack where a process pretends to be Tor and uses the cookie
authentication method to nab arbitrary files such as the
wallet
- torcontrol logging
- fix cookie auth
- add HASHEDPASSWORD auth, fix fd leak when fwrite() fails
- better error reporting when cookie file is not ok
- better init/shutdown flow
- stop advertizing service when disconnected from tor control port
- COOKIE->SAFECOOKIE auth
* -maxuploadtarget can be set in MiB
* if <limit> - ( time-left-in-24h-cycle / 600 * MAX_BLOCK_SIZE ) has reach, stop serve blocks older than one week and filtered blocks
* no action if limit has reached, no guarantee that the target will not be surpassed
* add outbound limit informations to rpc getnettotals
This sets aside a number of connection slots for whitelisted peers,
useful for ensuring your local users and miners can always get in,
even if your limit on inbound connections has already been reached.
Use a probabilistic bloom filter to keep track of which addresses
we think we have given our peers, instead of a list.
This uses much less memory, at the cost of sometimes failing to
relay an address to a peer-- worst case if the bloom filter happens
to be as full as it gets, 1-in-1,000.
Measured memory usage of a full mruset setAddrKnown: 650Kbytes
Constant memory usage of CRollingBloomFilter addrKnown: 37Kbytes.
This will also help heap fragmentation, because the 37K of storage
is allocated when a CNode is created (when a connection to a peer
is established) and then there is no per-item-remembered memory
allocation.
I plan on testing by restarting a full node with an empty peers.dat,
running a while with -debug=addrman and -debug=net, and making sure
that the 'addr' message traffic out is reasonable.
(suggestions for better tests welcome)
This is a simplified re-do of closed pull #3088.
This patch eliminates the privacy and reliability problematic use
of centralized web services for discovering the node's addresses
for advertisement.
The Bitcoin protocol already allows your peers to tell you what
IP they think you have, but this data isn't trustworthy since
they could lie. So the challenge is using it without creating a
DOS vector.
To accomplish this we adopt an approach similar to the one used
by P2Pool: If we're announcing and don't have a better address
discovered (e.g. via UPNP) or configured we just announce to
each peer the address that peer told us. Since peers could
already replace, forge, or drop our address messages this cannot
create a new vulnerability... but if even one of our peers is
giving us a good address we'll eventually make a useful
advertisement.
We also may randomly use the peer-provided address for the
daily rebroadcast even if we otherwise have a seemingly routable
address, just in case we've been misconfigured (e.g. by UPNP).
To avoid privacy problems, we only do these things if discovery
is enabled.
Many changes:
* Do not use 'getblocks', but 'getheaders', and use it to build a headers tree.
* Blocks are fetched in parallel from all available outbound peers, using a
limited moving window. When one peer stalls the movement of the window, it is
disconnected.
* No more orphan blocks. At all. We only ever request a block for which we have
verified the headers, and store it to disk immediately. This means that a
disk-fill attack would require PoW.
* Require protocol version 31800 for every peer (released in december 2010).
* No more syncnode (we sync from everyone we can, though limited to 1 during
initial *headers* sync).
* Introduce some extra named constants, comments and asserts.
- ensures a consistent usage in header files
- also add a blank line after the copyright header where missing
- also remove orphan new-lines at the end of some files
Split up util.cpp/h into:
- string utilities (hex, base32, base64): no internal dependencies, no dependency on boost (apart from foreach)
- money utilities (parsesmoney, formatmoney)
- time utilities (gettime*, sleep, format date):
- and the rest (logging, argument parsing, config file parsing)
The latter is basically the environment and OS handling,
and is stripped of all utility functions, so we may want to
rename it to something else than util.cpp/h for clarity (Matt suggested
osinterface).
Breaks dependency of sha256.cpp on all the things pulled in by util.