This concretizes the numbers and adds a comment to make it clear that
these numbers are fixed by the protocol, and may avoid people forgetting
to claim numbers in the future (e.g. issue #8500).
Also gets rid of a weird unused `MSG_TYPE_MAX` in the middle of the
enumeration (thanks @paveljanik for noticing).
In principle, the checksums of P2P packets are simply 4-byte blobs which
are the first four bytes of SHA256(SHA256(payload)).
Currently they are handled as little-endian 32-bit integers half of the
time, as blobs the other half, sometimes copying the one to the other,
resulting in somewhat confused code.
This PR changes the handling to be consistent both at packet creation
and receiving, making it (I think) easier to understand.
The "feefilter" p2p message is used to inform other nodes of your mempool min fee which is the feerate that any new transaction must meet to be accepted to your mempool. This will allow them to filter invs to you according to this feerate.
- Avoids string typos (by making the compiler check)
- Makes it easier to grep for handling/generation of a certain message type
- Refer directly to documentation by following the symbol in IDE
- Move list of valid message types to protocol.cpp:
protocol.cpp is a more appropriate place for this, and having
the array there makes it easier to keep things consistent.
Lets nodes advertise that they offer bloom filter support explicitly.
The protocol version bump allows SPV nodes to assume that NODE_BLOOM is
set if NODE_NETWORK is set for pre-70011 nodes.
Also adds an option to turn bloom filter support off for nodes which
advertise a version number >= 70011. Nodes attempting to use bloom
filters on such protocol versions are banned, and a later upgade
should drop nodes of an older version which attempt to use bloom
filters.
Much code stolen from Peter Todd.
Implements BIP 111
Thanks to Pieter Wuille for most of the work on this commit.
I did not fixup the overhaul commit, because a rebase conflicted
with "remove fields of ser_streamplaceholder".
I prefer not to risk making a mistake while resolving it.
The implementation of each class' serialization/deserialization is no longer
passed within a macro. The implementation now lies within a template of form:
template <typename T, typename Stream, typename Operation>
inline static size_t SerializationOp(T thisPtr, Stream& s, Operation ser_action, int nType, int nVersion) {
size_t nSerSize = 0;
/* CODE */
return nSerSize;
}
In cases when codepath should depend on whether or not we are just deserializing
(old fGetSize, fWrite, fRead flags) an additional clause can be used:
bool fRead = boost::is_same<Operation, CSerActionUnserialize>();
The IMPLEMENT_SERIALIZE macro will now be a freestanding clause added within
class' body (similiar to Qt's Q_OBJECT) to implement GetSerializeSize,
Serialize and Unserialize. These are now wrappers around
the "SerializationOp" template.
Use misc methods of avoiding unnecesary header includes.
Replace int typedefs with int##_t from stdint.h.
Replace PRI64[xdu] with PRI[xdu]64 from inttypes.h.
Normalize QT_VERSION ifs where possible.
Resolve some indirect dependencies as direct ones.
Remove extern declarations from .cpp files.
The new class is accessed via the Params() method and holds
most things that vary between main, test and regtest networks.
The regtest mode has two purposes, one is to run the
bitcoind/bitcoinj comparison tool which compares two separate
implementations of the Bitcoin protocol looking for divergence.
The other is that when run, you get a local node which can mine
a single block instantly, which is highly convenient for testing
apps during development as there's no need to wait 10 minutes for
a block on the testnet.
Design goals:
* Only keep a limited number of addresses around, so that addr.dat does not grow without bound.
* Keep the address tables in-memory, and occasionally write the table to addr.dat.
* Make sure no (localized) attacker can fill the entire table with his nodes/addresses.
See comments in addrman.h for more detailed information.
This introduces CNetAddr and CService, respectively wrapping an
(IPv6) IP address and an IP+port combination. This functionality used
to be part of CAddress, which also contains network flags and
connection attempt information. These extra fields are however not
always necessary.
These classes, along with logic for creating connections and doing
name lookups, are moved to netbase.{h,cpp}, which does not depend on
headers.h.
Furthermore, CNetAddr is mostly IPv6-ready, though IPv6
functionality is not yet enabled for the application itself.