Browse Source
Design goals: * Only keep a limited number of addresses around, so that addr.dat does not grow without bound. * Keep the address tables in-memory, and occasionally write the table to addr.dat. * Make sure no (localized) attacker can fill the entire table with his nodes/addresses. See comments in addrman.h for more detailed information.0.8
Pieter Wuille
13 years ago
17 changed files with 1181 additions and 250 deletions
@ -0,0 +1,506 @@
@@ -0,0 +1,506 @@
|
||||
// Copyright (c) 2012 Pieter Wuille
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "addrman.h" |
||||
|
||||
using namespace std; |
||||
|
||||
int CAddrInfo::GetTriedBucket(const std::vector<unsigned char> &nKey) const |
||||
{ |
||||
CDataStream ss1(SER_GETHASH); |
||||
std::vector<unsigned char> vchKey = GetKey(); |
||||
ss1 << nKey << vchKey; |
||||
uint64 hash1 = Hash(ss1.begin(), ss1.end()).Get64(); |
||||
|
||||
CDataStream ss2(SER_GETHASH); |
||||
std::vector<unsigned char> vchGroupKey = GetGroup(); |
||||
ss2 << nKey << vchGroupKey << (hash1 % ADDRMAN_TRIED_BUCKETS_PER_GROUP); |
||||
uint64 hash2 = Hash(ss2.begin(), ss2.end()).Get64(); |
||||
return hash2 % ADDRMAN_TRIED_BUCKET_COUNT; |
||||
} |
||||
|
||||
int CAddrInfo::GetNewBucket(const std::vector<unsigned char> &nKey, const CNetAddr& src) const |
||||
{ |
||||
CDataStream ss1(SER_GETHASH); |
||||
std::vector<unsigned char> vchGroupKey = GetGroup(); |
||||
std::vector<unsigned char> vchSourceGroupKey = src.GetGroup(); |
||||
ss1 << nKey << vchGroupKey << vchSourceGroupKey; |
||||
uint64 hash1 = Hash(ss1.begin(), ss1.end()).Get64(); |
||||
|
||||
CDataStream ss2(SER_GETHASH); |
||||
ss2 << nKey << vchSourceGroupKey << (hash1 % ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP); |
||||
uint64 hash2 = Hash(ss2.begin(), ss2.end()).Get64(); |
||||
return hash2 % ADDRMAN_NEW_BUCKET_COUNT; |
||||
} |
||||
|
||||
bool CAddrInfo::IsTerrible(int64 nNow) const |
||||
{ |
||||
if (nLastTry && nLastTry >= nNow-60) // never remove things tried the last minute
|
||||
return false; |
||||
|
||||
if (nTime > nNow + 10*60) // came in a flying DeLorean
|
||||
return true; |
||||
|
||||
if (nTime==0 || nNow-nTime > ADDRMAN_HORIZON_DAYS*86400) // not seen in over a month
|
||||
return true; |
||||
|
||||
if (nLastSuccess==0 && nAttempts>=ADDRMAN_RETRIES) // tried three times and never a success
|
||||
return true; |
||||
|
||||
if (nNow-nLastSuccess > ADDRMAN_MIN_FAIL_DAYS*86400 && nAttempts>=ADDRMAN_MAX_FAILURES) // 10 successive failures in the last week
|
||||
return true; |
||||
|
||||
return false; |
||||
} |
||||
|
||||
double CAddrInfo::GetChance(int64 nNow) const |
||||
{ |
||||
double fChance = 1.0; |
||||
|
||||
int64 nSinceLastSeen = nNow - nTime; |
||||
int64 nSinceLastTry = nNow - nLastTry; |
||||
|
||||
if (nSinceLastSeen < 0) nSinceLastSeen = 0; |
||||
if (nSinceLastTry < 0) nSinceLastTry = 0; |
||||
|
||||
fChance *= 600.0 / (600.0 + nSinceLastSeen); |
||||
|
||||
// deprioritize very recent attempts away
|
||||
if (nSinceLastTry < 60*10) |
||||
fChance *= 0.01; |
||||
|
||||
// deprioritize 50% after each failed attempt
|
||||
for (int n=0; n<nAttempts; n++) |
||||
fChance /= 1.5; |
||||
|
||||
return fChance; |
||||
} |
||||
|
||||
CAddrInfo* CAddrMan::Find(const CNetAddr& addr, int *pnId) |
||||
{ |
||||
std::map<CNetAddr, int>::iterator it = mapAddr.find(addr); |
||||
if (it == mapAddr.end()) |
||||
return NULL; |
||||
if (pnId) |
||||
*pnId = (*it).second; |
||||
std::map<int, CAddrInfo>::iterator it2 = mapInfo.find((*it).second); |
||||
if (it2 != mapInfo.end()) |
||||
return &(*it2).second; |
||||
return NULL; |
||||
} |
||||
|
||||
CAddrInfo* CAddrMan::Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId) |
||||
{ |
||||
int nId = nIdCount++; |
||||
mapInfo[nId] = CAddrInfo(addr, addrSource); |
||||
mapAddr[addr] = nId; |
||||
mapInfo[nId].nRandomPos = vRandom.size(); |
||||
vRandom.push_back(nId); |
||||
if (pnId) |
||||
*pnId = nId; |
||||
return &mapInfo[nId]; |
||||
} |
||||
|
||||
void CAddrMan::SwapRandom(int nRndPos1, int nRndPos2) |
||||
{ |
||||
if (nRndPos1 == nRndPos2) |
||||
return; |
||||
|
||||
int nId1 = vRandom[nRndPos1]; |
||||
int nId2 = vRandom[nRndPos2]; |
||||
|
||||
mapInfo[nId1].nRandomPos = nRndPos2; |
||||
mapInfo[nId2].nRandomPos = nRndPos1; |
||||
|
||||
vRandom[nRndPos1] = nId2; |
||||
vRandom[nRndPos2] = nId1; |
||||
} |
||||
|
||||
int CAddrMan::SelectTried(int nKBucket) |
||||
{ |
||||
std::vector<int> &vTried = vvTried[nKBucket]; |
||||
|
||||
// random shuffle the first few elements (using the entire list)
|
||||
// find the least recently tried among them
|
||||
int64 nOldest = -1; |
||||
for (int i=0; i<ADDRMAN_TRIED_ENTRIES_INSPECT_ON_EVICT && i<vTried.size(); i++) |
||||
{ |
||||
int nPos = GetRandInt(vTried.size() - i) + i; |
||||
int nTemp = vTried[nPos]; |
||||
vTried[nPos] = vTried[i]; |
||||
vTried[i] = nTemp; |
||||
if (nOldest == -1 || mapInfo[nTemp].nLastSuccess < mapInfo[nOldest].nLastSuccess) |
||||
nOldest = nTemp; |
||||
} |
||||
|
||||
return nOldest; |
||||
} |
||||
|
||||
int CAddrMan::ShrinkNew(int nUBucket) |
||||
{ |
||||
std::set<int> &vNew = vvNew[nUBucket]; |
||||
|
||||
// first look for deletable items
|
||||
for (std::set<int>::iterator it = vNew.begin(); it != vNew.end(); it++) |
||||
{ |
||||
CAddrInfo &info = mapInfo[*it]; |
||||
if (info.IsTerrible()) |
||||
{ |
||||
if (--info.nRefCount == 0) |
||||
{ |
||||
SwapRandom(info.nRandomPos, vRandom.size()-1); |
||||
vRandom.pop_back(); |
||||
mapAddr.erase(info); |
||||
mapInfo.erase(*it); |
||||
nNew--; |
||||
} |
||||
vNew.erase(it); |
||||
return 0; |
||||
} |
||||
} |
||||
|
||||
// otherwise, select four randomly, and pick the oldest of those to replace
|
||||
int n[4] = {GetRandInt(vNew.size()), GetRandInt(vNew.size()), GetRandInt(vNew.size()), GetRandInt(vNew.size())}; |
||||
int nI = 0; |
||||
int nOldest = -1; |
||||
for (std::set<int>::iterator it = vNew.begin(); it != vNew.end(); it++) |
||||
{ |
||||
if (nI == n[0] || nI == n[1] || nI == n[2] || nI == n[3]) |
||||
{ |
||||
if (nOldest == -1 || mapInfo[*it].nTime < mapInfo[nOldest].nTime) |
||||
nOldest = *it; |
||||
} |
||||
nI++; |
||||
} |
||||
CAddrInfo &info = mapInfo[nOldest]; |
||||
if (--info.nRefCount == 0) |
||||
{ |
||||
SwapRandom(info.nRandomPos, vRandom.size()-1); |
||||
vRandom.pop_back(); |
||||
mapAddr.erase(info); |
||||
mapInfo.erase(nOldest); |
||||
nNew--; |
||||
} |
||||
vNew.erase(nOldest); |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
void CAddrMan::MakeTried(CAddrInfo& info, int nId, int nOrigin) |
||||
{ |
||||
// remove the entry from all new buckets
|
||||
for (std::vector<std::set<int> >::iterator it = vvNew.begin(); it != vvNew.end(); it++) |
||||
{ |
||||
if ((*it).erase(nId)) |
||||
info.nRefCount--; |
||||
} |
||||
nNew--; |
||||
|
||||
// what tried bucket to move the entry to
|
||||
int nKBucket = info.GetTriedBucket(nKey); |
||||
std::vector<int> &vTried = vvTried[nKBucket]; |
||||
|
||||
// first check whether there is place to just add it
|
||||
if (vTried.size() < ADDRMAN_TRIED_BUCKET_SIZE) |
||||
{ |
||||
vTried.push_back(nId); |
||||
nTried++; |
||||
info.fInTried = true; |
||||
return; |
||||
} |
||||
|
||||
// otherwise, find an item to evict
|
||||
int nPos = SelectTried(nKBucket); |
||||
|
||||
// find which new bucket it belongs to
|
||||
int nUBucket = mapInfo[vTried[nPos]].GetNewBucket(nKey); |
||||
std::set<int> &vNew = vvNew[nUBucket]; |
||||
|
||||
// remove the to-be-replaced tried entry from the tried set
|
||||
CAddrInfo& infoOld = mapInfo[vTried[nPos]]; |
||||
infoOld.fInTried = false; |
||||
infoOld.nRefCount = 1; |
||||
// do not update nTried, as we are going to move something else there immediately
|
||||
|
||||
// check whether there is place in that one,
|
||||
if (vNew.size() < ADDRMAN_NEW_BUCKET_SIZE) |
||||
{ |
||||
// if so, move it back there
|
||||
vNew.insert(vTried[nPos]); |
||||
} else { |
||||
// otherwise, move it to the new bucket nId came from (there is certainly place there)
|
||||
vvNew[nOrigin].insert(vTried[nPos]); |
||||
} |
||||
nNew++; |
||||
|
||||
vTried[nPos] = nId; |
||||
// we just overwrote an entry in vTried; no need to update nTried
|
||||
info.fInTried = true; |
||||
return; |
||||
} |
||||
|
||||
void CAddrMan::Good_(const CService &addr, int64 nTime) |
||||
{ |
||||
// printf("Good: addr=%s\n", addr.ToString().c_str());
|
||||
|
||||
int nId; |
||||
CAddrInfo *pinfo = Find(addr, &nId); |
||||
|
||||
// if not found, bail out
|
||||
if (!pinfo) |
||||
return; |
||||
|
||||
CAddrInfo &info = *pinfo; |
||||
|
||||
// check whether we are talking about the exact same CService (including same port)
|
||||
if (info != addr) |
||||
return; |
||||
|
||||
// update info
|
||||
info.nLastSuccess = nTime; |
||||
info.nLastTry = nTime; |
||||
info.nTime = nTime; |
||||
info.nAttempts = 0; |
||||
|
||||
// if it is already in the tried set, don't do anything else
|
||||
if (info.fInTried) |
||||
return; |
||||
|
||||
// find a bucket it is in now
|
||||
int nRnd = GetRandInt(vvNew.size()); |
||||
int nUBucket = -1; |
||||
for (int n = 0; n < vvNew.size(); n++) |
||||
{ |
||||
int nB = (n+nRnd) % vvNew.size(); |
||||
std::set<int> &vNew = vvNew[nB]; |
||||
if (vNew.count(nId)) |
||||
{ |
||||
nUBucket = nB; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
// if no bucket is found, something bad happened;
|
||||
// TODO: maybe re-add the node, but for now, just bail out
|
||||
if (nUBucket == -1) return; |
||||
|
||||
printf("Moving %s to tried\n", addr.ToString().c_str()); |
||||
|
||||
// move nId to the tried tables
|
||||
MakeTried(info, nId, nUBucket); |
||||
} |
||||
|
||||
bool CAddrMan::Add_(const CAddress &addr, const CNetAddr& source, int64 nTimePenalty) |
||||
{ |
||||
if (!addr.IsRoutable()) |
||||
return false; |
||||
|
||||
bool fNew = false; |
||||
int nId; |
||||
CAddrInfo *pinfo = Find(addr, &nId); |
||||
|
||||
if (pinfo) |
||||
{ |
||||
// periodically update nTime
|
||||
bool fCurrentlyOnline = (GetAdjustedTime() - addr.nTime < 24 * 60 * 60); |
||||
int64 nUpdateInterval = (fCurrentlyOnline ? 60 * 60 : 24 * 60 * 60); |
||||
if (addr.nTime && (!pinfo->nTime || pinfo->nTime < addr.nTime - nUpdateInterval - nTimePenalty)) |
||||
pinfo->nTime = max((int64)0, addr.nTime - nTimePenalty); |
||||
|
||||
// add services
|
||||
pinfo->nServices |= addr.nServices; |
||||
|
||||
// do not update if no new information is present
|
||||
if (!addr.nTime || pinfo->nTime && addr.nTime <= pinfo->nTime) |
||||
return false; |
||||
|
||||
// do not update if the entry was already in the "tried" table
|
||||
if (pinfo->fInTried) |
||||
return false; |
||||
|
||||
// do not update if the max reference count is reached
|
||||
if (pinfo->nRefCount == ADDRMAN_NEW_BUCKETS_PER_ADDRESS) |
||||
return false; |
||||
|
||||
// stochastic test: previous nRefCount == N: 2^N times harder to increase it
|
||||
int nFactor = 1; |
||||
for (int n=0; n<pinfo->nRefCount; n++) |
||||
nFactor *= 2; |
||||
if (nFactor > 1 && (GetRandInt(nFactor) != 0)) |
||||
return false; |
||||
} else { |
||||
pinfo = Create(addr, source, &nId); |
||||
pinfo->nTime = max((int64)0, (int64)pinfo->nTime - nTimePenalty); |
||||
// printf("Added %s [nTime=%fhr]\n", pinfo->ToString().c_str(), (GetAdjustedTime() - pinfo->nTime) / 3600.0);
|
||||
nNew++; |
||||
fNew = true; |
||||
} |
||||
|
||||
int nUBucket = pinfo->GetNewBucket(nKey, source); |
||||
std::set<int> &vNew = vvNew[nUBucket]; |
||||
if (!vNew.count(nId)) |
||||
{ |
||||
pinfo->nRefCount++; |
||||
if (vNew.size() == ADDRMAN_NEW_BUCKET_SIZE) |
||||
ShrinkNew(nUBucket); |
||||
vvNew[nUBucket].insert(nId); |
||||
} |
||||
return fNew; |
||||
} |
||||
|
||||
void CAddrMan::Attempt_(const CService &addr, int64 nTime) |
||||
{ |
||||
CAddrInfo *pinfo = Find(addr); |
||||
|
||||
// if not found, bail out
|
||||
if (!pinfo) |
||||
return; |
||||
|
||||
CAddrInfo &info = *pinfo; |
||||
|
||||
// check whether we are talking about the exact same CService (including same port)
|
||||
if (info != addr) |
||||
return; |
||||
|
||||
// update info
|
||||
info.nLastTry = nTime; |
||||
info.nAttempts++; |
||||
} |
||||
|
||||
CAddress CAddrMan::Select_(int nUnkBias) |
||||
{ |
||||
if (size() == 0) |
||||
return CAddress(); |
||||
|
||||
double nCorTried = sqrt(nTried) * (100.0 - nUnkBias); |
||||
double nCorNew = sqrt(nNew) * nUnkBias; |
||||
if ((nCorTried + nCorNew)*GetRandInt(1<<30)/(1<<30) < nCorTried) |
||||
{ |
||||
// use a tried node
|
||||
double fChanceFactor = 1.0; |
||||
while(1) |
||||
{ |
||||
int nKBucket = GetRandInt(vvTried.size()); |
||||
std::vector<int> &vTried = vvTried[nKBucket]; |
||||
if (vTried.size() == 0) continue; |
||||
int nPos = GetRandInt(vTried.size()); |
||||
CAddrInfo &info = mapInfo[vTried[nPos]]; |
||||
if (GetRandInt(1<<30) < fChanceFactor*info.GetChance()*(1<<30)) |
||||
return info; |
||||
fChanceFactor *= 1.2; |
||||
} |
||||
} else { |
||||
// use an new node
|
||||
double fChanceFactor = 1.0; |
||||
while(1) |
||||
{ |
||||
int nUBucket = GetRandInt(vvNew.size()); |
||||
std::set<int> &vNew = vvNew[nUBucket]; |
||||
if (vNew.size() == 0) continue; |
||||
int nPos = GetRandInt(vNew.size()); |
||||
std::set<int>::iterator it = vNew.begin(); |
||||
while (nPos--) |
||||
it++; |
||||
CAddrInfo &info = mapInfo[*it]; |
||||
if (GetRandInt(1<<30) < fChanceFactor*info.GetChance()*(1<<30)) |
||||
return info; |
||||
fChanceFactor *= 1.2; |
||||
} |
||||
} |
||||
} |
||||
|
||||
#ifdef DEBUG_ADDRMAN |
||||
int CAddrMan::Check_() |
||||
{ |
||||
std::set<int> setTried; |
||||
std::map<int, int> mapNew; |
||||
|
||||
if (vRandom.size() != nTried + nNew) return -7; |
||||
|
||||
for (std::map<int, CAddrInfo>::iterator it = mapInfo.begin(); it != mapInfo.end(); it++) |
||||
{ |
||||
int n = (*it).first; |
||||
CAddrInfo &info = (*it).second; |
||||
if (info.fInTried) |
||||
{ |
||||
|
||||
if (!info.nLastSuccess) return -1; |
||||
if (info.nRefCount) return -2; |
||||
setTried.insert(n); |
||||
} else { |
||||
if (info.nRefCount < 0 || info.nRefCount > ADDRMAN_NEW_BUCKETS_PER_ADDRESS) return -3; |
||||
if (!info.nRefCount) return -4; |
||||
mapNew[n] = info.nRefCount; |
||||
} |
||||
if (mapAddr[info] != n) return -5; |
||||
if (info.nRandomPos<0 || info.nRandomPos>=vRandom.size() || vRandom[info.nRandomPos] != n) return -14; |
||||
if (info.nLastTry < 0) return -6; |
||||
if (info.nLastSuccess < 0) return -8; |
||||
} |
||||
|
||||
if (setTried.size() != nTried) return -9; |
||||
if (mapNew.size() != nNew) return -10; |
||||
|
||||
for (int n=0; n<vvTried.size(); n++) |
||||
{ |
||||
std::vector<int> &vTried = vvTried[n]; |
||||
for (std::vector<int>::iterator it = vTried.begin(); it != vTried.end(); it++) |
||||
{ |
||||
if (!setTried.count(*it)) return -11; |
||||
setTried.erase(*it); |
||||
} |
||||
} |
||||
|
||||
for (int n=0; n<vvNew.size(); n++) |
||||
{ |
||||
std::set<int> &vNew = vvNew[n]; |
||||
for (std::set<int>::iterator it = vNew.begin(); it != vNew.end(); it++) |
||||
{ |
||||
if (!mapNew.count(*it)) return -12; |
||||
if (--mapNew[*it] == 0) |
||||
mapNew.erase(*it); |
||||
} |
||||
} |
||||
|
||||
if (setTried.size()) return -13; |
||||
if (mapNew.size()) return -15; |
||||
|
||||
return 0; |
||||
} |
||||
#endif |
||||
|
||||
void CAddrMan::GetAddr_(std::vector<CAddress> &vAddr) |
||||
{ |
||||
int nNodes = ADDRMAN_GETADDR_MAX_PCT*vRandom.size()/100; |
||||
if (nNodes > ADDRMAN_GETADDR_MAX) |
||||
nNodes = ADDRMAN_GETADDR_MAX; |
||||
|
||||
// perform a random shuffle over the first nNodes elements of vRandom (selecting from all)
|
||||
for (int n = 0; n<nNodes; n++) |
||||
{ |
||||
int nRndPos = GetRandInt(vRandom.size() - n) + n; |
||||
SwapRandom(n, nRndPos); |
||||
vAddr.push_back(mapInfo[vRandom[n]]); |
||||
} |
||||
} |
||||
|
||||
void CAddrMan::Connected_(const CService &addr, int64 nTime) |
||||
{ |
||||
CAddrInfo *pinfo = Find(addr); |
||||
|
||||
// if not found, bail out
|
||||
if (!pinfo) |
||||
return; |
||||
|
||||
CAddrInfo &info = *pinfo; |
||||
|
||||
// check whether we are talking about the exact same CService (including same port)
|
||||
if (info != addr) |
||||
return; |
||||
|
||||
// update info
|
||||
int64 nUpdateInterval = 20 * 60; |
||||
if (nTime - info.nTime > nUpdateInterval) |
||||
info.nTime = nTime; |
||||
} |
@ -0,0 +1,499 @@
@@ -0,0 +1,499 @@
|
||||
// Copyright (c) 2012 Pieter Wuille
|
||||
// Distributed under the MIT/X11 software license, see the accompanying
|
||||
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
|
||||
#ifndef _BITCOIN_ADDRMAN |
||||
#define _BITCOIN_ADDRMAN 1 |
||||
|
||||
#include "netbase.h" |
||||
#include "protocol.h" |
||||
#include "util.h" |
||||
|
||||
|
||||
#include <map> |
||||
#include <vector> |
||||
|
||||
#include <openssl/rand.h> |
||||
|
||||
|
||||
// Extended statistics about a CAddress
|
||||
class CAddrInfo : public CAddress |
||||
{ |
||||
private: |
||||
// where knowledge about this address first came from
|
||||
CNetAddr source; |
||||
|
||||
// last succesfull connection by us
|
||||
int64 nLastSuccess; |
||||
|
||||
// last try whatsoever by us:
|
||||
// int64 CAddress::nLastTry
|
||||
|
||||
// connection attempts since last succesful attempt
|
||||
int nAttempts; |
||||
|
||||
// reference count in new sets (memory only)
|
||||
int nRefCount; |
||||
|
||||
// in tried set? (memory only)
|
||||
bool fInTried; |
||||
|
||||
// position in vRandom
|
||||
int nRandomPos; |
||||
|
||||
friend class CAddrMan; |
||||
|
||||
public: |
||||
|
||||
IMPLEMENT_SERIALIZE( |
||||
CAddress* pthis = (CAddress*)(this); |
||||
READWRITE(*pthis); |
||||
READWRITE(source); |
||||
READWRITE(nLastSuccess); |
||||
READWRITE(nAttempts); |
||||
) |
||||
|
||||
void Init() |
||||
{ |
||||
nLastSuccess = 0; |
||||
nLastTry = 0; |
||||
nAttempts = 0; |
||||
nRefCount = 0; |
||||
fInTried = false; |
||||
nRandomPos = -1; |
||||
} |
||||
|
||||
CAddrInfo(const CAddress &addrIn, const CNetAddr &addrSource) : CAddress(addrIn) |
||||
{ |
||||
Init(); |
||||
} |
||||
|
||||
CAddrInfo() : CAddress(), source() |
||||
{ |
||||
Init(); |
||||
} |
||||
|
||||
// Calculate in which "tried" bucket this entry belongs
|
||||
int GetTriedBucket(const std::vector<unsigned char> &nKey) const; |
||||
|
||||
// Calculate in which "new" bucket this entry belongs, given a certain source
|
||||
int GetNewBucket(const std::vector<unsigned char> &nKey, const CNetAddr& src) const; |
||||
|
||||
// Calculate in which "new" bucket this entry belongs, using its default source
|
||||
int GetNewBucket(const std::vector<unsigned char> &nKey) const |
||||
{ |
||||
return GetNewBucket(nKey, source); |
||||
} |
||||
|
||||
// Determine whether the statistics about this entry are bad enough so that it can just be deleted
|
||||
bool IsTerrible(int64 nNow = GetAdjustedTime()) const; |
||||
|
||||
// Calculate the relative chance this entry should be given when selecting nodes to connect to
|
||||
double GetChance(int64 nNow = GetAdjustedTime()) const; |
||||
|
||||
}; |
||||
|
||||
// Stochastic address manager
|
||||
//
|
||||
// Design goals:
|
||||
// * Only keep a limited number of addresses around, so that addr.dat and memory requirements do not grow without bound.
|
||||
// * Keep the address tables in-memory, and asynchronously dump the entire to able in addr.dat.
|
||||
// * Make sure no (localized) attacker can fill the entire table with his nodes/addresses.
|
||||
//
|
||||
// To that end:
|
||||
// * Addresses are organized into buckets.
|
||||
// * Address that have not yet been tried go into 256 "new" buckets.
|
||||
// * Based on the address range (/16 for IPv4) of source of the information, 32 buckets are selected at random
|
||||
// * The actual bucket is chosen from one of these, based on the range the address itself is located.
|
||||
// * One single address can occur in up to 4 different buckets, to increase selection chances for addresses that
|
||||
// are seen frequently. The chance for increasing this multiplicity decreases exponentially.
|
||||
// * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen
|
||||
// ones) is removed from it first.
|
||||
// * Addresses of nodes that are known to be accessible go into 64 "tried" buckets.
|
||||
// * Each address range selects at random 4 of these buckets.
|
||||
// * The actual bucket is chosen from one of these, based on the full address.
|
||||
// * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently
|
||||
// tried ones) is evicted from it, back to the "new" buckets.
|
||||
// * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not
|
||||
// be observable by adversaries.
|
||||
// * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive)
|
||||
// consistency checks for the entire datastructure.
|
||||
|
||||
// total number of buckets for tried addresses
|
||||
#define ADDRMAN_TRIED_BUCKET_COUNT 64 |
||||
|
||||
// maximum allowed number of entries in buckets for tried addresses
|
||||
#define ADDRMAN_TRIED_BUCKET_SIZE 64 |
||||
|
||||
// total number of buckets for new addresses
|
||||
#define ADDRMAN_NEW_BUCKET_COUNT 256 |
||||
|
||||
// maximum allowed number of entries in buckets for new addresses
|
||||
#define ADDRMAN_NEW_BUCKET_SIZE 64 |
||||
|
||||
// over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread
|
||||
#define ADDRMAN_TRIED_BUCKETS_PER_GROUP 4 |
||||
|
||||
// over how many buckets entries with new addresses originating from a single group are spread
|
||||
#define ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP 32 |
||||
|
||||
// in how many buckets for entries with new addresses a single address may occur
|
||||
#define ADDRMAN_NEW_BUCKETS_PER_ADDRESS 4 |
||||
|
||||
// how many entries in a bucket with tried addresses are inspected, when selecting one to replace
|
||||
#define ADDRMAN_TRIED_ENTRIES_INSPECT_ON_EVICT 4 |
||||
|
||||
// how old addresses can maximally be
|
||||
#define ADDRMAN_HORIZON_DAYS 30 |
||||
|
||||
// after how many failed attempts we give up on a new node
|
||||
#define ADDRMAN_RETRIES 3 |
||||
|
||||
// how many successive failures are allowed ...
|
||||
#define ADDRMAN_MAX_FAILURES 10 |
||||
|
||||
// ... in at least this many days
|
||||
#define ADDRMAN_MIN_FAIL_DAYS 7 |
||||
|
||||
// the maximum percentage of nodes to return in a getaddr call
|
||||
#define ADDRMAN_GETADDR_MAX_PCT 23 |
||||
|
||||
// the maximum number of nodes to return in a getaddr call
|
||||
#define ADDRMAN_GETADDR_MAX 2500 |
||||
|
||||
class CAddrMan |
||||
{ |
||||
private: |
||||
// critical section to protect the inner data structures
|
||||
mutable CCriticalSection cs; |
||||
|
||||
// secret key to randomize bucket select with
|
||||
std::vector<unsigned char> nKey; |
||||
|
||||
// last used nId
|
||||
int nIdCount; |
||||
|
||||
// table with information about all nId's
|
||||
std::map<int, CAddrInfo> mapInfo; |
||||
|
||||
// find an nId based on its network address
|
||||
std::map<CNetAddr, int> mapAddr; |
||||
|
||||
// randomly-ordered vector of all nId's
|
||||
std::vector<int> vRandom; |
||||
|
||||
// number of "tried" entries
|
||||
int nTried; |
||||
|
||||
// list of "tried" buckets
|
||||
std::vector<std::vector<int> > vvTried; |
||||
|
||||
// number of (unique) "new" entries
|
||||
int nNew; |
||||
|
||||
// list of "new" buckets
|
||||
std::vector<std::set<int> > vvNew; |
||||
|
||||
protected: |
||||
|
||||
// Find an entry.
|
||||
CAddrInfo* Find(const CNetAddr& addr, int *pnId = NULL); |
||||
|
||||
// find an entry, creating it if necessary.
|
||||
// nTime and nServices of found node is updated, if necessary.
|
||||
CAddrInfo* Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = NULL); |
||||
|
||||
// Swap two elements in vRandom.
|
||||
void SwapRandom(int nRandomPos1, int nRandomPos2); |
||||
|
||||
// Return position in given bucket to replace.
|
||||
int SelectTried(int nKBucket); |
||||
|
||||
// Remove an element from a "new" bucket.
|
||||
// This is the only place where actual deletes occur.
|
||||
// They are never deleted while in the "tried" table, only possibly evicted back to the "new" table.
|
||||
int ShrinkNew(int nUBucket); |
||||
|
||||
// Move an entry from the "new" table(s) to the "tried" table
|
||||
// @pre vvUnkown[nOrigin].count(nId) != 0
|
||||
void MakeTried(CAddrInfo& info, int nId, int nOrigin); |
||||
|
||||
// Mark an entry "good", possibly moving it from "new" to "tried".
|
||||
void Good_(const CService &addr, int64 nTime); |
||||
|
||||
// Add an entry to the "new" table.
|
||||
bool Add_(const CAddress &addr, const CNetAddr& source, int64 nTimePenalty); |
||||
|
||||
// Mark an entry as attempted to connect.
|
||||
void Attempt_(const CService &addr, int64 nTime); |
||||
|
||||
// Select an address to connect to.
|
||||
// nUnkBias determines how much to favor new addresses over tried ones (min=0, max=100)
|
||||
CAddress Select_(int nUnkBias); |
||||
|
||||
#ifdef DEBUG_ADDRMAN |
||||
// Perform consistency check. Returns an error code or zero.
|
||||
int Check_(); |
||||
#endif |
||||
|
||||
// Select several addresses at once.
|
||||
void GetAddr_(std::vector<CAddress> &vAddr); |
||||
|
||||
// Mark an entry as currently-connected-to.
|
||||
void Connected_(const CService &addr, int64 nTime); |
||||
|
||||
public: |
||||
|
||||
IMPLEMENT_SERIALIZE |
||||
(({ |
||||
// serialized format:
|
||||
// * version byte (currently 0)
|
||||
// * nKey
|
||||
// * nNew
|
||||
// * nTried
|
||||
// * number of "new" buckets
|
||||
// * all nNew addrinfo's in vvNew
|
||||
// * all nTried addrinfo's in vvTried
|
||||
// * for each bucket:
|
||||
// * number of elements
|
||||
// * for each element: index
|
||||
//
|
||||
// Notice that vvTried, mapAddr and vVector are never encoded explicitly;
|
||||
// they are instead reconstructed from the other information.
|
||||
//
|
||||
// vvNew is serialized, but only used if ADDRMAN_UNKOWN_BUCKET_COUNT didn't change,
|
||||
// otherwise it is reconstructed as well.
|
||||
//
|
||||
// This format is more complex, but significantly smaller (at most 1.5 MiB), and supports
|
||||
// changes to the ADDRMAN_ parameters without breaking the on-disk structure.
|
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
unsigned char nVersion = 0; |
||||
READWRITE(nVersion); |
||||
READWRITE(nKey); |
||||
READWRITE(nNew); |
||||
READWRITE(nTried); |
||||
|
||||
CAddrMan *am = const_cast<CAddrMan*>(this); |
||||
if (fWrite) |
||||
{ |
||||
int nUBuckets = ADDRMAN_NEW_BUCKET_COUNT; |
||||
READWRITE(nUBuckets); |
||||
std::map<int, int> mapUnkIds; |
||||
int nIds = 0; |
||||
for (std::map<int, CAddrInfo>::iterator it = am->mapInfo.begin(); it != am->mapInfo.end(); it++) |
||||
{ |
||||
if (nIds == nNew) break; // this means nNew was wrong, oh ow
|
||||
mapUnkIds[(*it).first] = nIds; |
||||
CAddrInfo &info = (*it).second; |
||||
if (info.nRefCount) |
||||
{ |
||||
READWRITE(info); |
||||
nIds++; |
||||
} |
||||
} |
||||
nIds = 0; |
||||
for (std::map<int, CAddrInfo>::iterator it = am->mapInfo.begin(); it != am->mapInfo.end(); it++) |
||||
{ |
||||
if (nIds == nTried) break; // this means nTried was wrong, oh ow
|
||||
CAddrInfo &info = (*it).second; |
||||
if (info.fInTried) |
||||
{ |
||||
READWRITE(info); |
||||
nIds++; |
||||
} |
||||
} |
||||
for (std::vector<std::set<int> >::iterator it = am->vvNew.begin(); it != am->vvNew.end(); it++) |
||||
{ |
||||
const std::set<int> &vNew = (*it); |
||||
int nSize = vNew.size(); |
||||
READWRITE(nSize); |
||||
for (std::set<int>::iterator it2 = vNew.begin(); it2 != vNew.end(); it2++) |
||||
{ |
||||
int nIndex = mapUnkIds[*it2]; |
||||
READWRITE(nIndex); |
||||
} |
||||
} |
||||
} else { |
||||
int nUBuckets = 0; |
||||
READWRITE(nUBuckets); |
||||
am->nIdCount = 0; |
||||
am->mapInfo.clear(); |
||||
am->mapAddr.clear(); |
||||
am->vRandom.clear(); |
||||
am->vvTried = std::vector<std::vector<int> >(ADDRMAN_TRIED_BUCKET_COUNT, std::vector<int>(0)); |
||||
am->vvNew = std::vector<std::set<int> >(ADDRMAN_NEW_BUCKET_COUNT, std::set<int>()); |
||||
for (int n = 0; n < am->nNew; n++) |
||||
{ |
||||
CAddrInfo &info = am->mapInfo[n]; |
||||
READWRITE(info); |
||||
am->mapAddr[info] = n; |
||||
info.nRandomPos = vRandom.size(); |
||||
am->vRandom.push_back(n); |
||||
if (nUBuckets != ADDRMAN_NEW_BUCKET_COUNT) |
||||
{ |
||||
am->vvNew[info.GetNewBucket(am->nKey)].insert(n); |
||||
info.nRefCount++; |
||||
} |
||||
} |
||||
am->nIdCount = am->nNew; |
||||
int nLost = 0; |
||||
for (int n = 0; n < am->nTried; n++) |
||||
{ |
||||
CAddrInfo info; |
||||
READWRITE(info); |
||||
std::vector<int> &vTried = am->vvTried[info.GetTriedBucket(am->nKey)]; |
||||
if (vTried.size() < ADDRMAN_TRIED_BUCKET_SIZE) |
||||
{ |
||||
info.nRandomPos = vRandom.size(); |
||||
info.fInTried = true; |
||||
am->vRandom.push_back(am->nIdCount); |
||||
am->mapInfo[am->nIdCount] = info; |
||||
am->mapAddr[info] = am->nIdCount; |
||||
vTried.push_back(am->nIdCount); |
||||
am->nIdCount++; |
||||
} else { |
||||
nLost++; |
||||
} |
||||
} |
||||
am->nTried -= nLost; |
||||
for (int b = 0; b < nUBuckets; b++) |
||||
{ |
||||
std::set<int> &vNew = am->vvNew[b]; |
||||
int nSize = 0; |
||||
READWRITE(nSize); |
||||
for (int n = 0; n < nSize; n++) |
||||
{ |
||||
int nIndex = 0; |
||||
READWRITE(nIndex); |
||||
CAddrInfo &info = am->mapInfo[nIndex]; |
||||
if (nUBuckets == ADDRMAN_NEW_BUCKET_COUNT && info.nRefCount < ADDRMAN_NEW_BUCKETS_PER_ADDRESS) |
||||
{ |
||||
info.nRefCount++; |
||||
vNew.insert(nIndex); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
});) |
||||
|
||||
CAddrMan() : vRandom(0), vvTried(ADDRMAN_TRIED_BUCKET_COUNT, std::vector<int>(0)), vvNew(ADDRMAN_NEW_BUCKET_COUNT, std::set<int>()) |
||||
{ |
||||
nKey.resize(32); |
||||
RAND_bytes(&nKey[0], 32); |
||||
|
||||
nIdCount = 0; |
||||
nTried = 0; |
||||
nNew = 0; |
||||
} |
||||
|
||||
// Return the number of (unique) addresses in all tables.
|
||||
int size() |
||||
{ |
||||
return vRandom.size(); |
||||
} |
||||
|
||||
// Consistency check
|
||||
void Check() |
||||
{ |
||||
#ifdef DEBUG_ADDRMAN |
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
int err; |
||||
if ((err=Check_())) |
||||
printf("ADDRMAN CONSISTENCY CHECK FAILED!!! err=%i\n", err); |
||||
} |
||||
#endif |
||||
} |
||||
|
||||
// Add a single address.
|
||||
bool Add(const CAddress &addr, const CNetAddr& source, int64 nTimePenalty = 0) |
||||
{ |
||||
bool fRet = false; |
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
Check(); |
||||
fRet |= Add_(addr, source, nTimePenalty); |
||||
Check(); |
||||
} |
||||
if (fRet) |
||||
printf("Added %s from %s: %i tried, %i new\n", addr.ToStringIPPort().c_str(), source.ToString().c_str(), nTried, nNew); |
||||
return fRet; |
||||
} |
||||
|
||||
// Add multiple addresses.
|
||||
bool Add(const std::vector<CAddress> &vAddr, const CNetAddr& source, int64 nTimePenalty = 0) |
||||
{ |
||||
int nAdd = 0; |
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
Check(); |
||||
for (std::vector<CAddress>::const_iterator it = vAddr.begin(); it != vAddr.end(); it++) |
||||
nAdd += Add_(*it, source, nTimePenalty) ? 1 : 0; |
||||
Check(); |
||||
} |
||||
if (nAdd) |
||||
printf("Added %i addresses from %s: %i tried, %i new\n", nAdd, source.ToString().c_str(), nTried, nNew); |
||||
return nAdd > 0; |
||||
} |
||||
|
||||
// Mark an entry as accessible.
|
||||
void Good(const CService &addr, int64 nTime = GetAdjustedTime()) |
||||
{ |
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
Check(); |
||||
Good_(addr, nTime); |
||||
Check(); |
||||
} |
||||
} |
||||
|
||||
// Mark an entry as connection attempted to.
|
||||
void Attempt(const CService &addr, int64 nTime = GetAdjustedTime()) |
||||
{ |
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
Check(); |
||||
Attempt_(addr, nTime); |
||||
Check(); |
||||
} |
||||
} |
||||
|
||||
// Choose an address to connect to.
|
||||
// nUnkBias determines how much "new" entries are favored over "tried" ones (0-100).
|
||||
CAddress Select(int nUnkBias = 50) |
||||
{ |
||||
CAddress addrRet; |
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
Check(); |
||||
addrRet = Select_(nUnkBias); |
||||
Check(); |
||||
} |
||||
return addrRet; |
||||
} |
||||
|
||||
// Return a bunch of addresses, selected at random.
|
||||
std::vector<CAddress> GetAddr() |
||||
{ |
||||
Check(); |
||||
std::vector<CAddress> vAddr; |
||||
CRITICAL_BLOCK(cs) |
||||
GetAddr_(vAddr); |
||||
Check(); |
||||
return vAddr; |
||||
} |
||||
|
||||
// Mark an entry as currently-connected-to.
|
||||
void Connected(const CService &addr, int64 nTime = GetAdjustedTime()) |
||||
{ |
||||
CRITICAL_BLOCK(cs) |
||||
{ |
||||
Check(); |
||||
Connected_(addr, nTime); |
||||
Check(); |
||||
} |
||||
} |
||||
}; |
||||
|
||||
#endif |
Loading…
Reference in new issue