@ -7,6 +7,7 @@
# include "addrman.h"
# include "addrman.h"
# include "alert.h"
# include "alert.h"
# include "bloom.h"
# include "chainparams.h"
# include "chainparams.h"
# include "checkpoints.h"
# include "checkpoints.h"
# include "checkqueue.h"
# include "checkqueue.h"
@ -122,6 +123,10 @@ namespace {
map < uint256 , pair < NodeId , list < uint256 > : : iterator > > mapBlocksToDownload ;
map < uint256 , pair < NodeId , list < uint256 > : : iterator > > mapBlocksToDownload ;
}
}
// Forward reference functions defined here:
static const unsigned int MAX_DOUBLESPEND_BLOOM = 1000 ;
static void RelayDoubleSpend ( const COutPoint & outPoint , const CTransaction & doubleSpend , bool fInBlock , CBloomFilter & filter ) ;
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//
//
// dispatching functions
// dispatching functions
@ -143,9 +148,24 @@ struct CMainSignals {
boost : : signals2 : : signal < void ( const uint256 & ) > Inventory ;
boost : : signals2 : : signal < void ( const uint256 & ) > Inventory ;
// Tells listeners to broadcast their data.
// Tells listeners to broadcast their data.
boost : : signals2 : : signal < void ( ) > Broadcast ;
boost : : signals2 : : signal < void ( ) > Broadcast ;
// Notifies listeners of detection of a double-spent transaction. Arguments are outpoint that is
// double-spent, first transaction seen, double-spend transaction, and whether the second double-spend
// transaction was first seen in a block.
// Note: only notifies if the previous transaction is in the memory pool; if previous transction was in a block,
// then the double-spend simply fails when we try to lookup the inputs in the current UTXO set.
boost : : signals2 : : signal < void ( const COutPoint & , const CTransaction & , bool ) > DetectedDoubleSpend ;
} g_signals ;
} g_signals ;
}
}
void RegisterInternalSignals ( ) {
static CBloomFilter doubleSpendFilter ;
seed_insecure_rand ( ) ;
doubleSpendFilter = CBloomFilter ( MAX_DOUBLESPEND_BLOOM , 0.01 , insecure_rand ( ) , BLOOM_UPDATE_NONE ) ;
g_signals . DetectedDoubleSpend . connect ( boost : : bind ( RelayDoubleSpend , _1 , _2 , _3 , doubleSpendFilter ) ) ;
}
void RegisterWallet ( CWalletInterface * pwalletIn ) {
void RegisterWallet ( CWalletInterface * pwalletIn ) {
g_signals . SyncTransaction . connect ( boost : : bind ( & CWalletInterface : : SyncTransaction , pwalletIn , _1 , _2 ) ) ;
g_signals . SyncTransaction . connect ( boost : : bind ( & CWalletInterface : : SyncTransaction , pwalletIn , _1 , _2 ) ) ;
g_signals . EraseTransaction . connect ( boost : : bind ( & CWalletInterface : : EraseFromWallet , pwalletIn , _1 ) ) ;
g_signals . EraseTransaction . connect ( boost : : bind ( & CWalletInterface : : EraseFromWallet , pwalletIn , _1 ) ) ;
@ -824,6 +844,22 @@ int64_t GetMinFee(const CTransaction& tx, unsigned int nBytes, bool fAllowFree,
return nMinFee ;
return nMinFee ;
}
}
// Exponentially limit the rate of nSize flow to nLimit. nLimit unit is thousands-per-minute.
bool RateLimitExceeded ( double & dCount , int64_t & nLastTime , int64_t nLimit , unsigned int nSize )
{
static CCriticalSection csLimiter ;
int64_t nNow = GetTime ( ) ;
LOCK ( csLimiter ) ;
// Use an exponentially decaying ~10-minute window:
dCount * = pow ( 1.0 - 1.0 / 600.0 , ( double ) ( nNow - nLastTime ) ) ;
nLastTime = nNow ;
if ( dCount > = nLimit * 10 * 1000 )
return true ;
dCount + = nSize ;
return false ;
}
bool AcceptToMemoryPool ( CTxMemPool & pool , CValidationState & state , const CTransaction & tx , bool fLimitFree ,
bool AcceptToMemoryPool ( CTxMemPool & pool , CValidationState & state , const CTransaction & tx , bool fLimitFree ,
bool * pfMissingInputs , bool fRejectInsaneFee )
bool * pfMissingInputs , bool fRejectInsaneFee )
@ -858,9 +894,10 @@ bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransa
for ( unsigned int i = 0 ; i < tx . vin . size ( ) ; i + + )
for ( unsigned int i = 0 ; i < tx . vin . size ( ) ; i + + )
{
{
COutPoint outpoint = tx . vin [ i ] . prevout ;
COutPoint outpoint = tx . vin [ i ] . prevout ;
if ( pool . mapNextTx . count ( outpoint ) )
// Does tx conflict with a member of the pool, and is it not equivalent to that member?
if ( pool . mapNextTx . count ( outpoint ) & & ! tx . IsEquivalentTo ( * pool . mapNextTx [ outpoint ] . ptx ) )
{
{
// Disable replacement feature for now
g_signals . DetectedDoubleSpend ( outpoint , tx , false ) ;
return false ;
return false ;
}
}
}
}
@ -932,23 +969,15 @@ bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransa
// be annoying or make others' transactions take longer to confirm.
// be annoying or make others' transactions take longer to confirm.
if ( fLimitFree & & nFees < CTransaction : : minRelayTxFee . GetFee ( nSize ) )
if ( fLimitFree & & nFees < CTransaction : : minRelayTxFee . GetFee ( nSize ) )
{
{
static CCriticalSection csFreeLimiter ;
static double dFreeCount ;
static double dFreeCount ;
static int64_t nLastTime ;
static int64_t nLastFreeTime ;
int64_t nNow = GetTime ( ) ;
static int64_t nFreeLimit = GetArg ( " -limitfreerelay " , 15 ) ;
LOCK ( csFreeLimiter ) ;
// Use an exponentially decaying ~10-minute window:
if ( RateLimitExceeded ( dFreeCount , nLastFreeTime , nFreeLimit , nSize ) )
dFreeCount * = pow ( 1.0 - 1.0 / 600.0 , ( double ) ( nNow - nLastTime ) ) ;
nLastTime = nNow ;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if ( dFreeCount > = GetArg ( " -limitfreerelay " , 15 ) * 10 * 1000 )
return state . DoS ( 0 , error ( " AcceptToMemoryPool : free transaction rejected by rate limiter " ) ,
return state . DoS ( 0 , error ( " AcceptToMemoryPool : free transaction rejected by rate limiter " ) ,
REJECT_INSUFFICIENTFEE , " insufficient priority " ) ;
REJECT_INSUFFICIENTFEE , " insufficient priority " ) ;
LogPrint ( " mempool " , " Rate limit dFreeCount: %g => %g \n " , dFreeCount , dFreeCount + nSize ) ;
LogPrint ( " mempool " , " Rate limit dFreeCount: %g => %g \n " , dFreeCount , dFreeCount + nSize ) ;
dFreeCount + = nSize ;
}
}
if ( fRejectInsaneFee & & nFees > CTransaction : : minRelayTxFee . GetFee ( nSize ) * 10000 )
if ( fRejectInsaneFee & & nFees > CTransaction : : minRelayTxFee . GetFee ( nSize ) * 10000 )
@ -971,6 +1000,49 @@ bool AcceptToMemoryPool(CTxMemPool& pool, CValidationState &state, const CTransa
return true ;
return true ;
}
}
static void
RelayDoubleSpend ( const COutPoint & outPoint , const CTransaction & doubleSpend , bool fInBlock , CBloomFilter & filter )
{
// Relaying double-spend attempts to our peers lets them detect when
// somebody might be trying to cheat them. However, blindly relaying
// every double-spend across the entire network gives attackers
// a denial-of-service attack: just generate a stream of double-spends
// re-spending the same (limited) set of outpoints owned by the attacker.
// So, we use a bloom filter and only relay (at most) the first double
// spend for each outpoint. False-positives ("we have already relayed")
// are OK, because if the peer doesn't hear about the double-spend
// from us they are very likely to hear about it from another peer, since
// each peer uses a different, randomized bloom filter.
if ( fInBlock | | filter . contains ( outPoint ) ) return ;
// Apply an independent rate limit to double-spend relays
static double dRespendCount ;
static int64_t nLastRespendTime ;
static int64_t nRespendLimit = GetArg ( " -limitrespendrelay " , 100 ) ;
unsigned int nSize = : : GetSerializeSize ( doubleSpend , SER_NETWORK , PROTOCOL_VERSION ) ;
if ( RateLimitExceeded ( dRespendCount , nLastRespendTime , nRespendLimit , nSize ) )
{
LogPrint ( " mempool " , " Double-spend relay rejected by rate limiter \n " ) ;
return ;
}
LogPrint ( " mempool " , " Rate limit dRespendCount: %g => %g \n " , dRespendCount , dRespendCount + nSize ) ;
// Clear the filter on average every MAX_DOUBLE_SPEND_BLOOM
// insertions
if ( insecure_rand ( ) % MAX_DOUBLESPEND_BLOOM = = 0 )
filter . clear ( ) ;
filter . insert ( outPoint ) ;
RelayTransaction ( doubleSpend ) ;
// Share conflict with wallet
g_signals . SyncTransaction ( doubleSpend , NULL ) ;
}
int CMerkleTx : : GetDepthInMainChainINTERNAL ( CBlockIndex * & pindexRet ) const
int CMerkleTx : : GetDepthInMainChainINTERNAL ( CBlockIndex * & pindexRet ) const
{
{