|
|
@ -85,10 +85,16 @@ ReadStatus PartiallyDownloadedBlock::InitData(const CBlockHeaderAndShortTxIDs& c |
|
|
|
while (txn_available[i + index_offset]) |
|
|
|
while (txn_available[i + index_offset]) |
|
|
|
index_offset++; |
|
|
|
index_offset++; |
|
|
|
shorttxids[cmpctblock.shorttxids[i]] = i + index_offset; |
|
|
|
shorttxids[cmpctblock.shorttxids[i]] = i + index_offset; |
|
|
|
// Bucket selection is a simple Binomial distribution. If we assume blocks of
|
|
|
|
// To determine the chance that the number of entries in a bucket exceeds N,
|
|
|
|
// 10,000 transactions, allowing up to 12 elements per bucket should only fail
|
|
|
|
// we use the fact that the number of elements in a single bucket is
|
|
|
|
// once every ~1.3 million blocks and once every 74,000 blocks in a worst-case
|
|
|
|
// binomially distributed (with n = the number of shorttxids S, and p =
|
|
|
|
// 16,000-transaction block.
|
|
|
|
// 1 / the number of buckets), that in the worst case the number of buckets is
|
|
|
|
|
|
|
|
// equal to S (due to std::unordered_map having a default load factor of 1.0),
|
|
|
|
|
|
|
|
// and that the chance for any bucket to exceed N elements is at most
|
|
|
|
|
|
|
|
// buckets * (the chance that any given bucket is above N elements).
|
|
|
|
|
|
|
|
// Thus: P(max_elements_per_bucket > N) <= S * (1 - cdf(binomial(n=S,p=1/S), N)).
|
|
|
|
|
|
|
|
// If we assume blocks of up to 16000, allowing 12 elements per bucket should
|
|
|
|
|
|
|
|
// only fail once per ~1 million block transfers (per peer and connection).
|
|
|
|
if (shorttxids.bucket_size(shorttxids.bucket(cmpctblock.shorttxids[i])) > 12) |
|
|
|
if (shorttxids.bucket_size(shorttxids.bucket(cmpctblock.shorttxids[i])) > 12) |
|
|
|
return READ_STATUS_FAILED; |
|
|
|
return READ_STATUS_FAILED; |
|
|
|
} |
|
|
|
} |
|
|
|