|
|
|
@ -263,28 +263,10 @@ BOOST_AUTO_TEST_CASE(util_IsHex)
@@ -263,28 +263,10 @@ BOOST_AUTO_TEST_CASE(util_IsHex)
|
|
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(util_seed_insecure_rand) |
|
|
|
|
{ |
|
|
|
|
// Expected results for the determinstic seed.
|
|
|
|
|
const uint32_t exp_vals[11] = { 91632771U,1889679809U,3842137544U,3256031132U, |
|
|
|
|
1761911779U, 489223532U,2692793790U,2737472863U, |
|
|
|
|
2796262275U,1309899767U,840571781U}; |
|
|
|
|
// Expected 0s in rand()%(idx+2) for the determinstic seed.
|
|
|
|
|
const int exp_count[9] = {5013,3346,2415,1972,1644,1386,1176,1096,1009}; |
|
|
|
|
int i; |
|
|
|
|
int count=0; |
|
|
|
|
|
|
|
|
|
seed_insecure_rand(); |
|
|
|
|
|
|
|
|
|
//Does the non-determistic rand give us results that look too like the determinstic one?
|
|
|
|
|
for (i=0;i<10;i++) |
|
|
|
|
{ |
|
|
|
|
int match = 0; |
|
|
|
|
uint32_t rval = insecure_rand(); |
|
|
|
|
for (int j=0;j<11;j++)match |= rval==exp_vals[j]; |
|
|
|
|
count += match; |
|
|
|
|
} |
|
|
|
|
// sum(binomial(10,i)*(11/(2^32))^i*(1-(11/(2^32)))^(10-i),i,0,4) ~= 1-1/2^134.73
|
|
|
|
|
// So _very_ unlikely to throw a false failure here.
|
|
|
|
|
BOOST_CHECK(count<=4); |
|
|
|
|
seed_insecure_rand(true); |
|
|
|
|
|
|
|
|
|
for (int mod=2;mod<11;mod++) |
|
|
|
|
{ |
|
|
|
@ -307,20 +289,6 @@ BOOST_AUTO_TEST_CASE(util_seed_insecure_rand)
@@ -307,20 +289,6 @@ BOOST_AUTO_TEST_CASE(util_seed_insecure_rand)
|
|
|
|
|
BOOST_CHECK(count<=10000/mod+err); |
|
|
|
|
BOOST_CHECK(count>=10000/mod-err); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
seed_insecure_rand(true); |
|
|
|
|
|
|
|
|
|
for (i=0;i<11;i++) |
|
|
|
|
{ |
|
|
|
|
BOOST_CHECK_EQUAL(insecure_rand(),exp_vals[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int mod=2;mod<11;mod++) |
|
|
|
|
{ |
|
|
|
|
count = 0; |
|
|
|
|
for (i=0;i<10000;i++) count += insecure_rand()%mod==0; |
|
|
|
|
BOOST_CHECK_EQUAL(count,exp_count[mod-2]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
BOOST_AUTO_TEST_CASE(util_TimingResistantEqual) |
|
|
|
|