shaolinfry
8 years ago
committed by
Adrian Gallagher
13 changed files with 584 additions and 7 deletions
@ -0,0 +1,136 @@
@@ -0,0 +1,136 @@
|
||||
/*
|
||||
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler |
||||
* All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in the |
||||
* documentation and/or other materials provided with the distribution. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||||
* SUCH DAMAGE. |
||||
* |
||||
* This file was originally written by Colin Percival as part of the Tarsnap |
||||
* online backup system. |
||||
*/ |
||||
|
||||
#include "crypto/scrypt.h" |
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
#include <string.h> |
||||
#include <openssl/sha.h> |
||||
|
||||
#include <emmintrin.h> |
||||
|
||||
static inline void xor_salsa8_sse2(__m128i B[4], const __m128i Bx[4]) |
||||
{ |
||||
__m128i X0, X1, X2, X3; |
||||
__m128i T; |
||||
int i; |
||||
|
||||
X0 = B[0] = _mm_xor_si128(B[0], Bx[0]); |
||||
X1 = B[1] = _mm_xor_si128(B[1], Bx[1]); |
||||
X2 = B[2] = _mm_xor_si128(B[2], Bx[2]); |
||||
X3 = B[3] = _mm_xor_si128(B[3], Bx[3]); |
||||
|
||||
for (i = 0; i < 8; i += 2) { |
||||
/* Operate on "columns". */ |
||||
T = _mm_add_epi32(X0, X3); |
||||
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7)); |
||||
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25)); |
||||
T = _mm_add_epi32(X1, X0); |
||||
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); |
||||
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); |
||||
T = _mm_add_epi32(X2, X1); |
||||
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13)); |
||||
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19)); |
||||
T = _mm_add_epi32(X3, X2); |
||||
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); |
||||
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); |
||||
|
||||
/* Rearrange data. */ |
||||
X1 = _mm_shuffle_epi32(X1, 0x93); |
||||
X2 = _mm_shuffle_epi32(X2, 0x4E); |
||||
X3 = _mm_shuffle_epi32(X3, 0x39); |
||||
|
||||
/* Operate on "rows". */ |
||||
T = _mm_add_epi32(X0, X1); |
||||
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7)); |
||||
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25)); |
||||
T = _mm_add_epi32(X3, X0); |
||||
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); |
||||
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); |
||||
T = _mm_add_epi32(X2, X3); |
||||
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13)); |
||||
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19)); |
||||
T = _mm_add_epi32(X1, X2); |
||||
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); |
||||
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); |
||||
|
||||
/* Rearrange data. */ |
||||
X1 = _mm_shuffle_epi32(X1, 0x39); |
||||
X2 = _mm_shuffle_epi32(X2, 0x4E); |
||||
X3 = _mm_shuffle_epi32(X3, 0x93); |
||||
} |
||||
|
||||
B[0] = _mm_add_epi32(B[0], X0); |
||||
B[1] = _mm_add_epi32(B[1], X1); |
||||
B[2] = _mm_add_epi32(B[2], X2); |
||||
B[3] = _mm_add_epi32(B[3], X3); |
||||
} |
||||
|
||||
void scrypt_1024_1_1_256_sp_sse2(const char *input, char *output, char *scratchpad) |
||||
{ |
||||
uint8_t B[128]; |
||||
union { |
||||
__m128i i128[8]; |
||||
uint32_t u32[32]; |
||||
} X; |
||||
__m128i *V; |
||||
uint32_t i, j, k; |
||||
|
||||
V = (__m128i *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
||||
|
||||
PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 1, B, 128); |
||||
|
||||
for (k = 0; k < 2; k++) { |
||||
for (i = 0; i < 16; i++) { |
||||
X.u32[k * 16 + i] = le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); |
||||
} |
||||
} |
||||
|
||||
for (i = 0; i < 1024; i++) { |
||||
for (k = 0; k < 8; k++) |
||||
V[i * 8 + k] = X.i128[k]; |
||||
xor_salsa8_sse2(&X.i128[0], &X.i128[4]); |
||||
xor_salsa8_sse2(&X.i128[4], &X.i128[0]); |
||||
} |
||||
for (i = 0; i < 1024; i++) { |
||||
j = 8 * (X.u32[16] & 1023); |
||||
for (k = 0; k < 8; k++) |
||||
X.i128[k] = _mm_xor_si128(X.i128[k], V[j + k]); |
||||
xor_salsa8_sse2(&X.i128[0], &X.i128[4]); |
||||
xor_salsa8_sse2(&X.i128[4], &X.i128[0]); |
||||
} |
||||
|
||||
for (k = 0; k < 2; k++) { |
||||
for (i = 0; i < 16; i++) { |
||||
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], X.u32[k * 16 + i]); |
||||
} |
||||
} |
||||
|
||||
PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t *)output, 32); |
||||
} |
@ -0,0 +1,330 @@
@@ -0,0 +1,330 @@
|
||||
/*
|
||||
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler |
||||
* All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in the |
||||
* documentation and/or other materials provided with the distribution. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||||
* SUCH DAMAGE. |
||||
* |
||||
* This file was originally written by Colin Percival as part of the Tarsnap |
||||
* online backup system. |
||||
*/ |
||||
|
||||
#include "crypto/scrypt.h" |
||||
//#include "util.h"
|
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
#include <string.h> |
||||
#include <openssl/sha.h> |
||||
|
||||
#if defined(USE_SSE2) && !defined(USE_SSE2_ALWAYS) |
||||
#ifdef _MSC_VER |
||||
// MSVC 64bit is unable to use inline asm
|
||||
#include <intrin.h> |
||||
#else |
||||
// GCC Linux or i686-w64-mingw32
|
||||
#include <cpuid.h> |
||||
#endif |
||||
#endif |
||||
#ifndef __FreeBSD__ |
||||
static inline uint32_t be32dec(const void *pp) |
||||
{ |
||||
const uint8_t *p = (uint8_t const *)pp; |
||||
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + |
||||
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); |
||||
} |
||||
|
||||
static inline void be32enc(void *pp, uint32_t x) |
||||
{ |
||||
uint8_t *p = (uint8_t *)pp; |
||||
p[3] = x & 0xff; |
||||
p[2] = (x >> 8) & 0xff; |
||||
p[1] = (x >> 16) & 0xff; |
||||
p[0] = (x >> 24) & 0xff; |
||||
} |
||||
|
||||
#endif |
||||
typedef struct HMAC_SHA256Context { |
||||
SHA256_CTX ictx; |
||||
SHA256_CTX octx; |
||||
} HMAC_SHA256_CTX; |
||||
|
||||
/* Initialize an HMAC-SHA256 operation with the given key. */ |
||||
static void |
||||
HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen) |
||||
{ |
||||
unsigned char pad[64]; |
||||
unsigned char khash[32]; |
||||
const unsigned char *K = (const unsigned char *)_K; |
||||
size_t i; |
||||
|
||||
/* If Klen > 64, the key is really SHA256(K). */ |
||||
if (Klen > 64) { |
||||
SHA256_Init(&ctx->ictx); |
||||
SHA256_Update(&ctx->ictx, K, Klen); |
||||
SHA256_Final(khash, &ctx->ictx); |
||||
K = khash; |
||||
Klen = 32; |
||||
} |
||||
|
||||
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ |
||||
SHA256_Init(&ctx->ictx); |
||||
memset(pad, 0x36, 64); |
||||
for (i = 0; i < Klen; i++) |
||||
pad[i] ^= K[i]; |
||||
SHA256_Update(&ctx->ictx, pad, 64); |
||||
|
||||
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ |
||||
SHA256_Init(&ctx->octx); |
||||
memset(pad, 0x5c, 64); |
||||
for (i = 0; i < Klen; i++) |
||||
pad[i] ^= K[i]; |
||||
SHA256_Update(&ctx->octx, pad, 64); |
||||
|
||||
/* Clean the stack. */ |
||||
memset(khash, 0, 32); |
||||
} |
||||
|
||||
/* Add bytes to the HMAC-SHA256 operation. */ |
||||
static void |
||||
HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len) |
||||
{ |
||||
/* Feed data to the inner SHA256 operation. */ |
||||
SHA256_Update(&ctx->ictx, in, len); |
||||
} |
||||
|
||||
/* Finish an HMAC-SHA256 operation. */ |
||||
static void |
||||
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx) |
||||
{ |
||||
unsigned char ihash[32]; |
||||
|
||||
/* Finish the inner SHA256 operation. */ |
||||
SHA256_Final(ihash, &ctx->ictx); |
||||
|
||||
/* Feed the inner hash to the outer SHA256 operation. */ |
||||
SHA256_Update(&ctx->octx, ihash, 32); |
||||
|
||||
/* Finish the outer SHA256 operation. */ |
||||
SHA256_Final(digest, &ctx->octx); |
||||
|
||||
/* Clean the stack. */ |
||||
memset(ihash, 0, 32); |
||||
} |
||||
|
||||
/**
|
||||
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): |
||||
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and |
||||
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). |
||||
*/ |
||||
void |
||||
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt, |
||||
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen) |
||||
{ |
||||
HMAC_SHA256_CTX PShctx, hctx; |
||||
size_t i; |
||||
uint8_t ivec[4]; |
||||
uint8_t U[32]; |
||||
uint8_t T[32]; |
||||
uint64_t j; |
||||
int k; |
||||
size_t clen; |
||||
|
||||
/* Compute HMAC state after processing P and S. */ |
||||
HMAC_SHA256_Init(&PShctx, passwd, passwdlen); |
||||
HMAC_SHA256_Update(&PShctx, salt, saltlen); |
||||
|
||||
/* Iterate through the blocks. */ |
||||
for (i = 0; i * 32 < dkLen; i++) { |
||||
/* Generate INT(i + 1). */ |
||||
be32enc(ivec, (uint32_t)(i + 1)); |
||||
|
||||
/* Compute U_1 = PRF(P, S || INT(i)). */ |
||||
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); |
||||
HMAC_SHA256_Update(&hctx, ivec, 4); |
||||
HMAC_SHA256_Final(U, &hctx); |
||||
|
||||
/* T_i = U_1 ... */ |
||||
memcpy(T, U, 32); |
||||
|
||||
for (j = 2; j <= c; j++) { |
||||
/* Compute U_j. */ |
||||
HMAC_SHA256_Init(&hctx, passwd, passwdlen); |
||||
HMAC_SHA256_Update(&hctx, U, 32); |
||||
HMAC_SHA256_Final(U, &hctx); |
||||
|
||||
/* ... xor U_j ... */ |
||||
for (k = 0; k < 32; k++) |
||||
T[k] ^= U[k]; |
||||
} |
||||
|
||||
/* Copy as many bytes as necessary into buf. */ |
||||
clen = dkLen - i * 32; |
||||
if (clen > 32) |
||||
clen = 32; |
||||
memcpy(&buf[i * 32], T, clen); |
||||
} |
||||
|
||||
/* Clean PShctx, since we never called _Final on it. */ |
||||
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); |
||||
} |
||||
|
||||
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
||||
|
||||
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) |
||||
{ |
||||
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; |
||||
int i; |
||||
|
||||
x00 = (B[ 0] ^= Bx[ 0]); |
||||
x01 = (B[ 1] ^= Bx[ 1]); |
||||
x02 = (B[ 2] ^= Bx[ 2]); |
||||
x03 = (B[ 3] ^= Bx[ 3]); |
||||
x04 = (B[ 4] ^= Bx[ 4]); |
||||
x05 = (B[ 5] ^= Bx[ 5]); |
||||
x06 = (B[ 6] ^= Bx[ 6]); |
||||
x07 = (B[ 7] ^= Bx[ 7]); |
||||
x08 = (B[ 8] ^= Bx[ 8]); |
||||
x09 = (B[ 9] ^= Bx[ 9]); |
||||
x10 = (B[10] ^= Bx[10]); |
||||
x11 = (B[11] ^= Bx[11]); |
||||
x12 = (B[12] ^= Bx[12]); |
||||
x13 = (B[13] ^= Bx[13]); |
||||
x14 = (B[14] ^= Bx[14]); |
||||
x15 = (B[15] ^= Bx[15]); |
||||
for (i = 0; i < 8; i += 2) { |
||||
/* Operate on columns. */ |
||||
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7); |
||||
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7); |
||||
|
||||
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9); |
||||
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9); |
||||
|
||||
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13); |
||||
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13); |
||||
|
||||
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18); |
||||
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18); |
||||
|
||||
/* Operate on rows. */ |
||||
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7); |
||||
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7); |
||||
|
||||
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9); |
||||
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9); |
||||
|
||||
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13); |
||||
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13); |
||||
|
||||
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18); |
||||
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18); |
||||
} |
||||
B[ 0] += x00; |
||||
B[ 1] += x01; |
||||
B[ 2] += x02; |
||||
B[ 3] += x03; |
||||
B[ 4] += x04; |
||||
B[ 5] += x05; |
||||
B[ 6] += x06; |
||||
B[ 7] += x07; |
||||
B[ 8] += x08; |
||||
B[ 9] += x09; |
||||
B[10] += x10; |
||||
B[11] += x11; |
||||
B[12] += x12; |
||||
B[13] += x13; |
||||
B[14] += x14; |
||||
B[15] += x15; |
||||
} |
||||
|
||||
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad) |
||||
{ |
||||
uint8_t B[128]; |
||||
uint32_t X[32]; |
||||
uint32_t *V; |
||||
uint32_t i, j, k; |
||||
|
||||
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); |
||||
|
||||
PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 1, B, 128); |
||||
|
||||
for (k = 0; k < 32; k++) |
||||
X[k] = le32dec(&B[4 * k]); |
||||
|
||||
for (i = 0; i < 1024; i++) { |
||||
memcpy(&V[i * 32], X, 128); |
||||
xor_salsa8(&X[0], &X[16]); |
||||
xor_salsa8(&X[16], &X[0]); |
||||
} |
||||
for (i = 0; i < 1024; i++) { |
||||
j = 32 * (X[16] & 1023); |
||||
for (k = 0; k < 32; k++) |
||||
X[k] ^= V[j + k]; |
||||
xor_salsa8(&X[0], &X[16]); |
||||
xor_salsa8(&X[16], &X[0]); |
||||
} |
||||
|
||||
for (k = 0; k < 32; k++) |
||||
le32enc(&B[4 * k], X[k]); |
||||
|
||||
PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t *)output, 32); |
||||
} |
||||
|
||||
#if defined(USE_SSE2) |
||||
// By default, set to generic scrypt function. This will prevent crash in case when scrypt_detect_sse2() wasn't called
|
||||
void (*scrypt_1024_1_1_256_sp_detected)(const char *input, char *output, char *scratchpad) = &scrypt_1024_1_1_256_sp_generic; |
||||
|
||||
void scrypt_detect_sse2() |
||||
{ |
||||
#if defined(USE_SSE2_ALWAYS) |
||||
printf("scrypt: using scrypt-sse2 as built.\n"); |
||||
#else // USE_SSE2_ALWAYS
|
||||
// 32bit x86 Linux or Windows, detect cpuid features
|
||||
unsigned int cpuid_edx=0; |
||||
#if defined(_MSC_VER) |
||||
// MSVC
|
||||
int x86cpuid[4]; |
||||
__cpuid(x86cpuid, 1); |
||||
cpuid_edx = (unsigned int)buffer[3]; |
||||
#else // _MSC_VER
|
||||
// Linux or i686-w64-mingw32 (gcc-4.6.3)
|
||||
unsigned int eax, ebx, ecx; |
||||
__get_cpuid(1, &eax, &ebx, &ecx, &cpuid_edx); |
||||
#endif // _MSC_VER
|
||||
|
||||
if (cpuid_edx & 1<<26) |
||||
{ |
||||
scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_sse2; |
||||
printf("scrypt: using scrypt-sse2 as detected.\n"); |
||||
} |
||||
else |
||||
{ |
||||
scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_generic; |
||||
printf("scrypt: using scrypt-generic, SSE2 unavailable.\n"); |
||||
} |
||||
#endif // USE_SSE2_ALWAYS
|
||||
} |
||||
#endif |
||||
|
||||
void scrypt_1024_1_1_256(const char *input, char *output) |
||||
{ |
||||
char scratchpad[SCRYPT_SCRATCHPAD_SIZE]; |
||||
scrypt_1024_1_1_256_sp(input, output, scratchpad); |
||||
} |
@ -0,0 +1,47 @@
@@ -0,0 +1,47 @@
|
||||
#ifndef SCRYPT_H |
||||
#define SCRYPT_H |
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
|
||||
static const int SCRYPT_SCRATCHPAD_SIZE = 131072 + 63; |
||||
|
||||
void scrypt_1024_1_1_256(const char *input, char *output); |
||||
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad); |
||||
|
||||
#if defined(USE_SSE2) |
||||
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__)) |
||||
#define USE_SSE2_ALWAYS 1 |
||||
#define scrypt_1024_1_1_256_sp(input, output, scratchpad) scrypt_1024_1_1_256_sp_sse2((input), (output), (scratchpad)) |
||||
#else |
||||
#define scrypt_1024_1_1_256_sp(input, output, scratchpad) scrypt_1024_1_1_256_sp_detected((input), (output), (scratchpad)) |
||||
#endif |
||||
|
||||
void scrypt_detect_sse2(); |
||||
void scrypt_1024_1_1_256_sp_sse2(const char *input, char *output, char *scratchpad); |
||||
extern void (*scrypt_1024_1_1_256_sp_detected)(const char *input, char *output, char *scratchpad); |
||||
#else |
||||
#define scrypt_1024_1_1_256_sp(input, output, scratchpad) scrypt_1024_1_1_256_sp_generic((input), (output), (scratchpad)) |
||||
#endif |
||||
|
||||
void |
||||
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt, |
||||
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen); |
||||
|
||||
#ifndef __FreeBSD__ |
||||
static inline uint32_t le32dec(const void *pp) |
||||
{ |
||||
const uint8_t *p = (uint8_t const *)pp; |
||||
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + |
||||
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); |
||||
} |
||||
|
||||
static inline void le32enc(void *pp, uint32_t x) |
||||
{ |
||||
uint8_t *p = (uint8_t *)pp; |
||||
p[0] = x & 0xff; |
||||
p[1] = (x >> 8) & 0xff; |
||||
p[2] = (x >> 16) & 0xff; |
||||
p[3] = (x >> 24) & 0xff; |
||||
} |
||||
#endif |
||||
#endif |
@ -0,0 +1,35 @@
@@ -0,0 +1,35 @@
|
||||
#include <boost/test/unit_test.hpp> |
||||
|
||||
#include "uint256.h" |
||||
#include "util.h" |
||||
#include "utilstrencodings.h" |
||||
#include "crypto/scrypt.h" |
||||
|
||||
BOOST_AUTO_TEST_SUITE(scrypt_tests) |
||||
|
||||
BOOST_AUTO_TEST_CASE(scrypt_hashtest) |
||||
{ |
||||
// Test Scrypt hash with known inputs against expected outputs
|
||||
#define HASHCOUNT 5 |
||||
const char* inputhex[HASHCOUNT] = { "020000004c1271c211717198227392b029a64a7971931d351b387bb80db027f270411e398a07046f7d4a08dd815412a8712f874a7ebf0507e3878bd24e20a3b73fd750a667d2f451eac7471b00de6659", "0200000011503ee6a855e900c00cfdd98f5f55fffeaee9b6bf55bea9b852d9de2ce35828e204eef76acfd36949ae56d1fbe81c1ac9c0209e6331ad56414f9072506a77f8c6faf551eac7471b00389d01", "02000000a72c8a177f523946f42f22c3e86b8023221b4105e8007e59e81f6beb013e29aaf635295cb9ac966213fb56e046dc71df5b3f7f67ceaeab24038e743f883aff1aaafaf551eac7471b0166249b", "010000007824bc3a8a1b4628485eee3024abd8626721f7f870f8ad4d2f33a27155167f6a4009d1285049603888fe85a84b6c803a53305a8d497965a5e896e1a00568359589faf551eac7471b0065434e", "0200000050bfd4e4a307a8cb6ef4aef69abc5c0f2d579648bd80d7733e1ccc3fbc90ed664a7f74006cb11bde87785f229ecd366c2d4e44432832580e0608c579e4cb76f383f7f551eac7471b00c36982" }; |
||||
const char* expected[HASHCOUNT] = { "00000000002bef4107f882f6115e0b01f348d21195dacd3582aa2dabd7985806" , "00000000003a0d11bdd5eb634e08b7feddcfbbf228ed35d250daf19f1c88fc94", "00000000000b40f895f288e13244728a6c2d9d59d8aff29c65f8dd5114a8ca81", "00000000003007005891cd4923031e99d8e8d72f6e8e7edc6a86181897e105fe", "000000000018f0b426a4afc7130ccb47fa02af730d345b4fe7c7724d3800ec8c" }; |
||||
#if defined(USE_SSE2) |
||||
scrypt_detect_sse2(); |
||||
#endif |
||||
uint256 scrypthash; |
||||
std::vector<unsigned char> inputbytes; |
||||
char scratchpad[SCRYPT_SCRATCHPAD_SIZE]; |
||||
for (int i = 0; i < HASHCOUNT; i++) { |
||||
inputbytes = ParseHex(inputhex[i]); |
||||
#if defined(USE_SSE2) |
||||
// Test SSE2 scrypt
|
||||
scrypt_1024_1_1_256_sp_sse2((const char*)&inputbytes[0], BEGIN(scrypthash), scratchpad); |
||||
BOOST_CHECK_EQUAL(scrypthash.ToString().c_str(), expected[i]); |
||||
#endif |
||||
// Test generic scrypt
|
||||
scrypt_1024_1_1_256_sp_generic((const char*)&inputbytes[0], BEGIN(scrypthash), scratchpad); |
||||
BOOST_CHECK_EQUAL(scrypthash.ToString().c_str(), expected[i]); |
||||
} |
||||
} |
||||
|
||||
BOOST_AUTO_TEST_SUITE_END() |
Loading…
Reference in new issue