Browse Source

Litecoin: Add scrypt N=1024 PoW

0.16
shaolinfry 8 years ago committed by Adrian Gallagher
parent
commit
4b588c670c
No known key found for this signature in database
GPG Key ID: FE3348877809386C
  1. 8
      src/Makefile.am
  2. 1
      src/Makefile.test.include
  3. 5
      src/chain.h
  4. 136
      src/crypto/scrypt-sse2.cpp
  5. 330
      src/crypto/scrypt.cpp
  6. 47
      src/crypto/scrypt.h
  7. 4
      src/init.cpp
  8. 1
      src/miner.cpp
  9. 8
      src/primitives/block.cpp
  10. 2
      src/primitives/block.h
  11. 35
      src/test/scrypt_tests.cpp
  12. 10
      src/txdb.cpp
  13. 4
      src/validation.cpp

8
src/Makefile.am

@ -255,7 +255,7 @@ libbitcoin_wallet_a_SOURCES = \ @@ -255,7 +255,7 @@ libbitcoin_wallet_a_SOURCES = \
$(BITCOIN_CORE_H)
# crypto primitives library
crypto_libbitcoin_crypto_a_CPPFLAGS = $(AM_CPPFLAGS)
crypto_libbitcoin_crypto_a_CPPFLAGS = $(AM_CPPFLAGS) $(SSL_CFLAGS)
crypto_libbitcoin_crypto_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
crypto_libbitcoin_crypto_a_SOURCES = \
crypto/aes.cpp \
@ -269,6 +269,8 @@ crypto_libbitcoin_crypto_a_SOURCES = \ @@ -269,6 +269,8 @@ crypto_libbitcoin_crypto_a_SOURCES = \
crypto/hmac_sha512.h \
crypto/ripemd160.cpp \
crypto/ripemd160.h \
crypto/scrypt.cpp \
crypto/scrypt.h \
crypto/sha1.cpp \
crypto/sha1.h \
crypto/sha256.cpp \
@ -453,8 +455,8 @@ if GLIBC_BACK_COMPAT @@ -453,8 +455,8 @@ if GLIBC_BACK_COMPAT
endif
libbitcoinconsensus_la_LDFLAGS = $(AM_LDFLAGS) -no-undefined $(RELDFLAGS)
libbitcoinconsensus_la_LIBADD = $(LIBSECP256K1)
libbitcoinconsensus_la_CPPFLAGS = $(AM_CPPFLAGS) -I$(builddir)/obj -I$(srcdir)/secp256k1/include -DBUILD_BITCOIN_INTERNAL
libbitcoinconsensus_la_LIBADD = $(LIBSECP256K1) $(CRYPTO_LIBS)
libbitcoinconsensus_la_CPPFLAGS = $(AM_CPPFLAGS) -I$(builddir)/obj -I$(srcdir)/secp256k1/include -DBUILD_BITCOIN_INTERNAL $(SSL_CFLAGS)
libbitcoinconsensus_la_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
endif

1
src/Makefile.test.include

@ -70,6 +70,7 @@ BITCOIN_TESTS =\ @@ -70,6 +70,7 @@ BITCOIN_TESTS =\
test/script_tests.cpp \
test/script_standard_tests.cpp \
test/scriptnum_tests.cpp \
test/scrypt_tests.cpp \
test/serialize_tests.cpp \
test/sighash_tests.cpp \
test/sigopcount_tests.cpp \

5
src/chain.h

@ -294,6 +294,11 @@ public: @@ -294,6 +294,11 @@ public:
return *phashBlock;
}
uint256 GetBlockPoWHash() const
{
return GetBlockHeader().GetPoWHash();
}
int64_t GetBlockTime() const
{
return (int64_t)nTime;

136
src/crypto/scrypt-sse2.cpp

@ -0,0 +1,136 @@ @@ -0,0 +1,136 @@
/*
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "crypto/scrypt.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <openssl/sha.h>
#include <emmintrin.h>
static inline void xor_salsa8_sse2(__m128i B[4], const __m128i Bx[4])
{
__m128i X0, X1, X2, X3;
__m128i T;
int i;
X0 = B[0] = _mm_xor_si128(B[0], Bx[0]);
X1 = B[1] = _mm_xor_si128(B[1], Bx[1]);
X2 = B[2] = _mm_xor_si128(B[2], Bx[2]);
X3 = B[3] = _mm_xor_si128(B[3], Bx[3]);
for (i = 0; i < 8; i += 2) {
/* Operate on "columns". */
T = _mm_add_epi32(X0, X3);
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
T = _mm_add_epi32(X1, X0);
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
T = _mm_add_epi32(X2, X1);
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
T = _mm_add_epi32(X3, X2);
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
/* Rearrange data. */
X1 = _mm_shuffle_epi32(X1, 0x93);
X2 = _mm_shuffle_epi32(X2, 0x4E);
X3 = _mm_shuffle_epi32(X3, 0x39);
/* Operate on "rows". */
T = _mm_add_epi32(X0, X1);
X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
T = _mm_add_epi32(X3, X0);
X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
T = _mm_add_epi32(X2, X3);
X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
T = _mm_add_epi32(X1, X2);
X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
/* Rearrange data. */
X1 = _mm_shuffle_epi32(X1, 0x39);
X2 = _mm_shuffle_epi32(X2, 0x4E);
X3 = _mm_shuffle_epi32(X3, 0x93);
}
B[0] = _mm_add_epi32(B[0], X0);
B[1] = _mm_add_epi32(B[1], X1);
B[2] = _mm_add_epi32(B[2], X2);
B[3] = _mm_add_epi32(B[3], X3);
}
void scrypt_1024_1_1_256_sp_sse2(const char *input, char *output, char *scratchpad)
{
uint8_t B[128];
union {
__m128i i128[8];
uint32_t u32[32];
} X;
__m128i *V;
uint32_t i, j, k;
V = (__m128i *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 1, B, 128);
for (k = 0; k < 2; k++) {
for (i = 0; i < 16; i++) {
X.u32[k * 16 + i] = le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
}
}
for (i = 0; i < 1024; i++) {
for (k = 0; k < 8; k++)
V[i * 8 + k] = X.i128[k];
xor_salsa8_sse2(&X.i128[0], &X.i128[4]);
xor_salsa8_sse2(&X.i128[4], &X.i128[0]);
}
for (i = 0; i < 1024; i++) {
j = 8 * (X.u32[16] & 1023);
for (k = 0; k < 8; k++)
X.i128[k] = _mm_xor_si128(X.i128[k], V[j + k]);
xor_salsa8_sse2(&X.i128[0], &X.i128[4]);
xor_salsa8_sse2(&X.i128[4], &X.i128[0]);
}
for (k = 0; k < 2; k++) {
for (i = 0; i < 16; i++) {
le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], X.u32[k * 16 + i]);
}
}
PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t *)output, 32);
}

330
src/crypto/scrypt.cpp

@ -0,0 +1,330 @@ @@ -0,0 +1,330 @@
/*
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "crypto/scrypt.h"
//#include "util.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <openssl/sha.h>
#if defined(USE_SSE2) && !defined(USE_SSE2_ALWAYS)
#ifdef _MSC_VER
// MSVC 64bit is unable to use inline asm
#include <intrin.h>
#else
// GCC Linux or i686-w64-mingw32
#include <cpuid.h>
#endif
#endif
#ifndef __FreeBSD__
static inline uint32_t be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void be32enc(void *pp, uint32_t x)
{
uint8_t *p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
#endif
typedef struct HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/* Initialize an HMAC-SHA256 operation with the given key. */
static void
HMAC_SHA256_Init(HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char *K = (const unsigned char *)_K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
static void
HMAC_SHA256_Update(HMAC_SHA256_CTX *ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
static void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX *ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
int i;
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
/* Operate on columns. */
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
/* Operate on rows. */
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad)
{
uint8_t B[128];
uint32_t X[32];
uint32_t *V;
uint32_t i, j, k;
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 1, B, 128);
for (k = 0; k < 32; k++)
X[k] = le32dec(&B[4 * k]);
for (i = 0; i < 1024; i++) {
memcpy(&V[i * 32], X, 128);
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (i = 0; i < 1024; i++) {
j = 32 * (X[16] & 1023);
for (k = 0; k < 32; k++)
X[k] ^= V[j + k];
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (k = 0; k < 32; k++)
le32enc(&B[4 * k], X[k]);
PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t *)output, 32);
}
#if defined(USE_SSE2)
// By default, set to generic scrypt function. This will prevent crash in case when scrypt_detect_sse2() wasn't called
void (*scrypt_1024_1_1_256_sp_detected)(const char *input, char *output, char *scratchpad) = &scrypt_1024_1_1_256_sp_generic;
void scrypt_detect_sse2()
{
#if defined(USE_SSE2_ALWAYS)
printf("scrypt: using scrypt-sse2 as built.\n");
#else // USE_SSE2_ALWAYS
// 32bit x86 Linux or Windows, detect cpuid features
unsigned int cpuid_edx=0;
#if defined(_MSC_VER)
// MSVC
int x86cpuid[4];
__cpuid(x86cpuid, 1);
cpuid_edx = (unsigned int)buffer[3];
#else // _MSC_VER
// Linux or i686-w64-mingw32 (gcc-4.6.3)
unsigned int eax, ebx, ecx;
__get_cpuid(1, &eax, &ebx, &ecx, &cpuid_edx);
#endif // _MSC_VER
if (cpuid_edx & 1<<26)
{
scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_sse2;
printf("scrypt: using scrypt-sse2 as detected.\n");
}
else
{
scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_generic;
printf("scrypt: using scrypt-generic, SSE2 unavailable.\n");
}
#endif // USE_SSE2_ALWAYS
}
#endif
void scrypt_1024_1_1_256(const char *input, char *output)
{
char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
scrypt_1024_1_1_256_sp(input, output, scratchpad);
}

47
src/crypto/scrypt.h

@ -0,0 +1,47 @@ @@ -0,0 +1,47 @@
#ifndef SCRYPT_H
#define SCRYPT_H
#include <stdlib.h>
#include <stdint.h>
static const int SCRYPT_SCRATCHPAD_SIZE = 131072 + 63;
void scrypt_1024_1_1_256(const char *input, char *output);
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad);
#if defined(USE_SSE2)
#if defined(_M_X64) || defined(__x86_64__) || defined(_M_AMD64) || (defined(MAC_OSX) && defined(__i386__))
#define USE_SSE2_ALWAYS 1
#define scrypt_1024_1_1_256_sp(input, output, scratchpad) scrypt_1024_1_1_256_sp_sse2((input), (output), (scratchpad))
#else
#define scrypt_1024_1_1_256_sp(input, output, scratchpad) scrypt_1024_1_1_256_sp_detected((input), (output), (scratchpad))
#endif
void scrypt_detect_sse2();
void scrypt_1024_1_1_256_sp_sse2(const char *input, char *output, char *scratchpad);
extern void (*scrypt_1024_1_1_256_sp_detected)(const char *input, char *output, char *scratchpad);
#else
#define scrypt_1024_1_1_256_sp(input, output, scratchpad) scrypt_1024_1_1_256_sp_generic((input), (output), (scratchpad))
#endif
void
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen);
#ifndef __FreeBSD__
static inline uint32_t le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static inline void le32enc(void *pp, uint32_t x)
{
uint8_t *p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
#endif
#endif

4
src/init.cpp

@ -1273,6 +1273,10 @@ bool AppInitMain() @@ -1273,6 +1273,10 @@ bool AppInitMain()
int64_t nStart;
#if defined(USE_SSE2)
scrypt_detect_sse2();
#endif
// ********************************************************* Step 5: verify wallet database integrity
#ifdef ENABLE_WALLET
if (!VerifyWallets())

1
src/miner.cpp

@ -14,6 +14,7 @@ @@ -14,6 +14,7 @@
#include <consensus/merkle.h>
#include <consensus/validation.h>
#include <hash.h>
#include <crypto/scrypt.h>
#include <validation.h>
#include <net.h>
#include <policy/feerate.h>

8
src/primitives/block.cpp

@ -9,12 +9,20 @@ @@ -9,12 +9,20 @@
#include <tinyformat.h>
#include <utilstrencodings.h>
#include <crypto/common.h>
#include <crypto/scrypt.h>
uint256 CBlockHeader::GetHash() const
{
return SerializeHash(*this);
}
uint256 CBlockHeader::GetPoWHash() const
{
uint256 thash;
scrypt_1024_1_1_256(BEGIN(nVersion), BEGIN(thash));
return thash;
}
std::string CBlock::ToString() const
{
std::stringstream s;

2
src/primitives/block.h

@ -62,6 +62,8 @@ public: @@ -62,6 +62,8 @@ public:
uint256 GetHash() const;
uint256 GetPoWHash() const;
int64_t GetBlockTime() const
{
return (int64_t)nTime;

35
src/test/scrypt_tests.cpp

@ -0,0 +1,35 @@ @@ -0,0 +1,35 @@
#include <boost/test/unit_test.hpp>
#include "uint256.h"
#include "util.h"
#include "utilstrencodings.h"
#include "crypto/scrypt.h"
BOOST_AUTO_TEST_SUITE(scrypt_tests)
BOOST_AUTO_TEST_CASE(scrypt_hashtest)
{
// Test Scrypt hash with known inputs against expected outputs
#define HASHCOUNT 5
const char* inputhex[HASHCOUNT] = { "020000004c1271c211717198227392b029a64a7971931d351b387bb80db027f270411e398a07046f7d4a08dd815412a8712f874a7ebf0507e3878bd24e20a3b73fd750a667d2f451eac7471b00de6659", "0200000011503ee6a855e900c00cfdd98f5f55fffeaee9b6bf55bea9b852d9de2ce35828e204eef76acfd36949ae56d1fbe81c1ac9c0209e6331ad56414f9072506a77f8c6faf551eac7471b00389d01", "02000000a72c8a177f523946f42f22c3e86b8023221b4105e8007e59e81f6beb013e29aaf635295cb9ac966213fb56e046dc71df5b3f7f67ceaeab24038e743f883aff1aaafaf551eac7471b0166249b", "010000007824bc3a8a1b4628485eee3024abd8626721f7f870f8ad4d2f33a27155167f6a4009d1285049603888fe85a84b6c803a53305a8d497965a5e896e1a00568359589faf551eac7471b0065434e", "0200000050bfd4e4a307a8cb6ef4aef69abc5c0f2d579648bd80d7733e1ccc3fbc90ed664a7f74006cb11bde87785f229ecd366c2d4e44432832580e0608c579e4cb76f383f7f551eac7471b00c36982" };
const char* expected[HASHCOUNT] = { "00000000002bef4107f882f6115e0b01f348d21195dacd3582aa2dabd7985806" , "00000000003a0d11bdd5eb634e08b7feddcfbbf228ed35d250daf19f1c88fc94", "00000000000b40f895f288e13244728a6c2d9d59d8aff29c65f8dd5114a8ca81", "00000000003007005891cd4923031e99d8e8d72f6e8e7edc6a86181897e105fe", "000000000018f0b426a4afc7130ccb47fa02af730d345b4fe7c7724d3800ec8c" };
#if defined(USE_SSE2)
scrypt_detect_sse2();
#endif
uint256 scrypthash;
std::vector<unsigned char> inputbytes;
char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
for (int i = 0; i < HASHCOUNT; i++) {
inputbytes = ParseHex(inputhex[i]);
#if defined(USE_SSE2)
// Test SSE2 scrypt
scrypt_1024_1_1_256_sp_sse2((const char*)&inputbytes[0], BEGIN(scrypthash), scratchpad);
BOOST_CHECK_EQUAL(scrypthash.ToString().c_str(), expected[i]);
#endif
// Test generic scrypt
scrypt_1024_1_1_256_sp_generic((const char*)&inputbytes[0], BEGIN(scrypthash), scratchpad);
BOOST_CHECK_EQUAL(scrypthash.ToString().c_str(), expected[i]);
}
}
BOOST_AUTO_TEST_SUITE_END()

10
src/txdb.cpp

@ -287,8 +287,14 @@ bool CBlockTreeDB::LoadBlockIndexGuts(const Consensus::Params& consensusParams, @@ -287,8 +287,14 @@ bool CBlockTreeDB::LoadBlockIndexGuts(const Consensus::Params& consensusParams,
pindexNew->nStatus = diskindex.nStatus;
pindexNew->nTx = diskindex.nTx;
if (!CheckProofOfWork(pindexNew->GetBlockHash(), pindexNew->nBits, consensusParams))
return error("%s: CheckProofOfWork failed: %s", __func__, pindexNew->ToString());
// Litecoin: Disable PoW Sanity check while loading block index from disk.
// We use the sha256 hash for the block index for performance reasons, which is recorded for later use.
// CheckProofOfWork() uses the scrypt hash which is discarded after a block is accepted.
// While it is technically feasible to verify the PoW, doing so takes several minutes as it
// requires recomputing every PoW hash during every Litecoin startup.
// We opt instead to simply trust the data that is on your local disk.
//if (!CheckProofOfWork(pindexNew->GetBlockHash(), pindexNew->nBits, consensusParams))
// return error("%s: CheckProofOfWork failed: %s", __func__, pindexNew->ToString());
pcursor->Next();
} else {

4
src/validation.cpp

@ -1107,7 +1107,7 @@ bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos, const Consensus: @@ -1107,7 +1107,7 @@ bool ReadBlockFromDisk(CBlock& block, const CDiskBlockPos& pos, const Consensus:
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
if (!CheckProofOfWork(block.GetPoWHash(), block.nBits, consensusParams))
return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString());
return true;
@ -2948,7 +2948,7 @@ static bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, @@ -2948,7 +2948,7 @@ static bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos,
static bool CheckBlockHeader(const CBlockHeader& block, CValidationState& state, const Consensus::Params& consensusParams, bool fCheckPOW = true)
{
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
if (fCheckPOW && !CheckProofOfWork(block.GetPoWHash(), block.nBits, consensusParams))
return state.DoS(50, false, REJECT_INVALID, "high-hash", false, "proof of work failed");
return true;

Loading…
Cancel
Save