Browse Source

Update libsecp256k1

0.13
Pieter Wuille 10 years ago
parent
commit
253e207132
  1. 19
      src/secp256k1/.travis.yml
  2. 30
      src/secp256k1/Makefile.am
  3. 51
      src/secp256k1/build-aux/m4/bitcoin_secp.m4
  4. 11
      src/secp256k1/configure.ac
  5. 32
      src/secp256k1/include/secp256k1.h
  6. 57
      src/secp256k1/nasm_lt.sh
  7. 37
      src/secp256k1/src/bench.h
  8. 45
      src/secp256k1/src/bench_inv.c
  9. 46
      src/secp256k1/src/bench_recover.c
  10. 49
      src/secp256k1/src/bench_sign.c
  11. 59
      src/secp256k1/src/bench_verify.c
  12. 8
      src/secp256k1/src/ecdsa_impl.h
  13. 8
      src/secp256k1/src/eckey_impl.h
  14. 6
      src/secp256k1/src/ecmult_gen_impl.h
  15. 17
      src/secp256k1/src/ecmult_impl.h
  16. 8
      src/secp256k1/src/field.h
  17. 64
      src/secp256k1/src/field_10x26_impl.h
  18. 469
      src/secp256k1/src/field_5x52_asm.asm
  19. 495
      src/secp256k1/src/field_5x52_asm_impl.h
  20. 48
      src/secp256k1/src/field_5x52_impl.h
  21. 4
      src/secp256k1/src/field_5x52_int128_impl.h
  22. 4
      src/secp256k1/src/field_gmp_impl.h
  23. 32
      src/secp256k1/src/field_impl.h
  24. 7
      src/secp256k1/src/group.h
  25. 59
      src/secp256k1/src/group_impl.h
  26. 2
      src/secp256k1/src/scalar_impl.h
  27. 38
      src/secp256k1/src/secp256k1.c
  28. 334
      src/secp256k1/src/tests.c
  29. 6
      src/secp256k1/src/util.h

19
src/secp256k1/.travis.yml

@ -1,12 +1,14 @@
language: cpp language: c
compiler: gcc compiler:
- clang
- gcc
install: install:
- sudo apt-get install -qq libssl-dev - sudo apt-get install -qq libssl-dev
- if [ "$BIGNUM" = "gmp" -o "$BIGNUM" = "auto" -o "$FIELD" = "gmp" ]; then sudo apt-get install -qq libgmp-dev; fi - if [ "$BIGNUM" = "gmp" -o "$BIGNUM" = "auto" -o "$FIELD" = "gmp" ]; then sudo apt-get install --no-install-recommends --no-upgrade -qq libgmp-dev; fi
- if [ "$FIELD" = "64bit_asm" ]; then sudo apt-get install -qq yasm; fi - if [ -n "$EXTRAPACKAGES" ]; then sudo apt-get update && sudo apt-get install --no-install-recommends --no-upgrade $EXTRAPACKAGES; fi
env: env:
global: global:
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no BUILD=check EXTRAFLAGS= - FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no BUILD=check EXTRAFLAGS= HOST= EXTRAPACKAGES=
matrix: matrix:
- SCALAR=32bit - SCALAR=32bit
- SCALAR=64bit - SCALAR=64bit
@ -22,6 +24,11 @@ env:
- BIGNUM=none ENDOMORPHISM=yes - BIGNUM=none ENDOMORPHISM=yes
- BUILD=distcheck - BUILD=distcheck
- EXTRAFLAGS=CFLAGS=-DDETERMINISTIC - EXTRAFLAGS=CFLAGS=-DDETERMINISTIC
- HOST=i686-linux-gnu EXTRAPACKAGES="gcc-multilib"
- HOST=i686-linux-gnu EXTRAPACKAGES="gcc-multilib" ENDOMORPHISM=yes
before_script: ./autogen.sh before_script: ./autogen.sh
script: ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR $EXTRAFLAGS && make -j2 $BUILD script:
- if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
- if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
- ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
os: linux os: linux

30
src/secp256k1/Makefile.am

@ -1,12 +1,6 @@
ACLOCAL_AMFLAGS = -I build-aux/m4 ACLOCAL_AMFLAGS = -I build-aux/m4
lib_LTLIBRARIES = libsecp256k1.la lib_LTLIBRARIES = libsecp256k1.la
if USE_ASM
COMMON_LIB = libsecp256k1_common.la
else
COMMON_LIB =
endif
noinst_LTLIBRARIES = $(COMMON_LIB)
include_HEADERS = include/secp256k1.h include_HEADERS = include/secp256k1.h
noinst_HEADERS = noinst_HEADERS =
noinst_HEADERS += src/scalar.h noinst_HEADERS += src/scalar.h
@ -43,30 +37,30 @@ noinst_HEADERS += src/field_gmp.h
noinst_HEADERS += src/field_gmp_impl.h noinst_HEADERS += src/field_gmp_impl.h
noinst_HEADERS += src/field.h noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
pkgconfigdir = $(libdir)/pkgconfig pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc pkgconfig_DATA = libsecp256k1.pc
if USE_ASM
libsecp256k1_common_la_SOURCES = src/field_5x52_asm.asm
endif
libsecp256k1_la_SOURCES = src/secp256k1.c libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include $(SECP_INCLUDES) libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(COMMON_LIB) $(SECP_LIBS) libsecp256k1_la_LIBADD = $(SECP_LIBS)
noinst_PROGRAMS = noinst_PROGRAMS =
if USE_BENCHMARK if USE_BENCHMARK
noinst_PROGRAMS += bench_verify bench_sign bench_inv noinst_PROGRAMS += bench_verify bench_recover bench_sign bench_inv
bench_verify_SOURCES = src/bench_verify.c bench_verify_SOURCES = src/bench_verify.c
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_verify_LDFLAGS = -static bench_verify_LDFLAGS = -static
bench_recover_SOURCES = src/bench_recover.c
bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_recover_LDFLAGS = -static
bench_sign_SOURCES = src/bench_sign.c bench_sign_SOURCES = src/bench_sign.c
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_sign_LDFLAGS = -static bench_sign_LDFLAGS = -static
bench_inv_SOURCES = src/bench_inv.c bench_inv_SOURCES = src/bench_inv.c
bench_inv_LDADD = $(COMMON_LIB) $(SECP_LIBS) bench_inv_LDADD = $(SECP_LIBS)
bench_inv_LDFLAGS = -static bench_inv_LDFLAGS = -static
bench_inv_CPPFLAGS = $(SECP_INCLUDES) bench_inv_CPPFLAGS = $(SECP_INCLUDES)
endif endif
@ -75,15 +69,9 @@ if USE_TESTS
noinst_PROGRAMS += tests noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c tests_SOURCES = src/tests.c
tests_CPPFLAGS = -DVERIFY $(SECP_INCLUDES) $(SECP_TEST_INCLUDES) tests_CPPFLAGS = -DVERIFY $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(COMMON_LIB) $(SECP_LIBS) $(SECP_TEST_LIBS) tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS)
tests_LDFLAGS = -static tests_LDFLAGS = -static
TESTS = tests TESTS = tests
endif endif
EXTRA_DIST = autogen.sh nasm_lt.sh EXTRA_DIST = autogen.sh
#x86_64 only
if USE_ASM
.asm.lo:
$(LIBTOOL) --mode=compile --tag YASM $(srcdir)/nasm_lt.sh $(YASM) -f $(YASM_BINFMT) $(YAFLAGS) -I$(srcdir) -I. $< -o $@
endif

51
src/secp256k1/build-aux/m4/bitcoin_secp.m4

@ -11,38 +11,16 @@ fi
dnl dnl
AC_DEFUN([SECP_64BIT_ASM_CHECK],[ AC_DEFUN([SECP_64BIT_ASM_CHECK],[
if test x"$host_cpu" == x"x86_64"; then AC_MSG_CHECKING(for x86_64 assembly availability)
AC_CHECK_PROG(YASM, yasm, yasm) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
else #include <stdint.h>]],[[
if test x"$set_field" = x"64bit_asm"; then uint64_t a = 11, tmp;
AC_MSG_ERROR([$set_field field support explicitly requested but is not compatible with this host]) __asm__ __volatile__("movq $0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
fi ]])],[has_64bit_asm=yes],[has_64bit_asm=no])
fi AC_MSG_RESULT([$has_64bit_asm])
if test x$YASM = x; then if test x"$set_field" == x"64bit_asm"; then
if test x"$set_field" = x"64bit_asm"; then if test x"$has_64bit_asm" == x"no"; then
AC_MSG_ERROR([$set_field field support explicitly requested but yasm was not found]) AC_MSG_ERROR([$set_field field support explicitly requested but no x86_64 assembly available])
fi
has_64bit_asm=no
else
case x"$host_os" in
xdarwin*)
YASM_BINFMT=macho64
;;
x*-gnux32)
YASM_BINFMT=elfx32
;;
*)
YASM_BINFMT=elf64
;;
esac
if $YASM -f help | grep -q $YASM_BINFMT; then
has_64bit_asm=yes
else
if test x"$set_field" = x"64bit_asm"; then
AC_MSG_ERROR([$set_field field support explicitly requested but yasm doesn't support $YASM_BINFMT format])
fi
AC_MSG_WARN([yasm too old for $YASM_BINFMT format])
has_64bit_asm=no
fi fi
fi fi
]) ])
@ -52,8 +30,13 @@ AC_DEFUN([SECP_OPENSSL_CHECK],[
if test x"$use_pkgconfig" = x"yes"; then if test x"$use_pkgconfig" = x"yes"; then
: #NOP : #NOP
m4_ifdef([PKG_CHECK_MODULES],[ m4_ifdef([PKG_CHECK_MODULES],[
PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes; AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no]) PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes],[has_libcrypto=no])
: #NOP if test x"$has_libcrypto" = x"yes"; then
TEMP_LIBS="$LIBS"
LIBS="$LIBS $CRYPTO_LIBS"
AC_CHECK_LIB(crypto, main,[AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no])
LIBS="$TEMP_LIBS"
fi
]) ])
else else
AC_CHECK_HEADER(openssl/crypto.h,[AC_CHECK_LIB(crypto, main,[has_libcrypto=yes; CRYPTO_LIBS=-lcrypto; AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])] AC_CHECK_HEADER(openssl/crypto.h,[AC_CHECK_LIB(crypto, main,[has_libcrypto=yes; CRYPTO_LIBS=-lcrypto; AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])]

11
src/secp256k1/configure.ac

@ -18,6 +18,10 @@ AC_PATH_TOOL(AR, ar)
AC_PATH_TOOL(RANLIB, ranlib) AC_PATH_TOOL(RANLIB, ranlib)
AC_PATH_TOOL(STRIP, strip) AC_PATH_TOOL(STRIP, strip)
if test "x$CFLAGS" = "x"; then
CFLAGS="-O3 -g"
fi
AC_PROG_CC_C99 AC_PROG_CC_C99
if test x"$ac_cv_prog_cc_c99" == x"no"; then if test x"$ac_cv_prog_cc_c99" == x"no"; then
AC_MSG_ERROR([c99 compiler support required]) AC_MSG_ERROR([c99 compiler support required])
@ -103,7 +107,11 @@ AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
AC_CHECK_TYPES([__int128]) AC_CHECK_TYPES([__int128])
AC_CHECK_DECL(__builtin_expect,AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]),,) AC_MSG_CHECKING([for __builtin_expect])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$req_field" = x"auto"; then if test x"$req_field" = x"auto"; then
SECP_64BIT_ASM_CHECK SECP_64BIT_ASM_CHECK
@ -283,7 +291,6 @@ AC_SUBST(SECP_INCLUDES)
AC_SUBST(SECP_LIBS) AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS) AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES) AC_SUBST(SECP_TEST_INCLUDES)
AC_SUBST(YASM_BINFMT)
AM_CONDITIONAL([USE_ASM], [test x"$set_field" == x"64bit_asm"]) AM_CONDITIONAL([USE_ASM], [test x"$set_field" == x"64bit_asm"])
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"]) AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" != x"no"]) AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" != x"no"])

32
src/secp256k1/include/secp256k1.h

@ -62,8 +62,7 @@ void secp256k1_stop(void);
* 0: incorrect signature * 0: incorrect signature
* -1: invalid public key * -1: invalid public key
* -2: invalid signature * -2: invalid signature
* In: msg: the message being verified (cannot be NULL) * In: msg32: the 32-byte message hash being verified (cannot be NULL)
* msglen: the length of the message (at most 32)
* sig: the signature being verified (cannot be NULL) * sig: the signature being verified (cannot be NULL)
* siglen: the length of the signature * siglen: the length of the signature
* pubkey: the public key to verify with (cannot be NULL) * pubkey: the public key to verify with (cannot be NULL)
@ -71,19 +70,17 @@ void secp256k1_stop(void);
* Requires starting using SECP256K1_START_VERIFY. * Requires starting using SECP256K1_START_VERIFY.
*/ */
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify( SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const unsigned char *msg, const unsigned char *msg32,
int msglen,
const unsigned char *sig, const unsigned char *sig,
int siglen, int siglen,
const unsigned char *pubkey, const unsigned char *pubkey,
int pubkeylen int pubkeylen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5); ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Create an ECDSA signature. /** Create an ECDSA signature.
* Returns: 1: signature created * Returns: 1: signature created
* 0: nonce invalid, try another one * 0: nonce invalid, try another one
* In: msg: the message being signed (cannot be NULL) * In: msg32: the 32-byte message hash being signed (cannot be NULL)
* msglen: the length of the message being signed (at most 32)
* seckey: pointer to a 32-byte secret key (cannot be NULL, assumed to be valid) * seckey: pointer to a 32-byte secret key (cannot be NULL, assumed to be valid)
* nonce: pointer to a 32-byte nonce (cannot be NULL, generated with a cryptographic PRNG) * nonce: pointer to a 32-byte nonce (cannot be NULL, generated with a cryptographic PRNG)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL) * Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
@ -92,19 +89,17 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
* Requires starting using SECP256K1_START_SIGN. * Requires starting using SECP256K1_START_SIGN.
*/ */
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_sign( SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_sign(
const unsigned char *msg, const unsigned char *msg32,
int msglen,
unsigned char *sig, unsigned char *sig,
int *siglen, int *siglen,
const unsigned char *seckey, const unsigned char *seckey,
const unsigned char *nonce const unsigned char *nonce
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6); ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Create a compact ECDSA signature (64 byte + recovery id). /** Create a compact ECDSA signature (64 byte + recovery id).
* Returns: 1: signature created * Returns: 1: signature created
* 0: nonce invalid, try another one * 0: nonce invalid, try another one
* In: msg: the message being signed (cannot be NULL) * In: msg32: the 32-byte message hash being signed (cannot be NULL)
* msglen: the length of the message being signed (at most 32)
* seckey: pointer to a 32-byte secret key (cannot be NULL, assumed to be valid) * seckey: pointer to a 32-byte secret key (cannot be NULL, assumed to be valid)
* nonce: pointer to a 32-byte nonce (cannot be NULL, generated with a cryptographic PRNG) * nonce: pointer to a 32-byte nonce (cannot be NULL, generated with a cryptographic PRNG)
* Out: sig: pointer to a 64-byte array where the signature will be placed (cannot be NULL) * Out: sig: pointer to a 64-byte array where the signature will be placed (cannot be NULL)
@ -112,19 +107,17 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_sign(
* Requires starting using SECP256K1_START_SIGN. * Requires starting using SECP256K1_START_SIGN.
*/ */
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_sign_compact( SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_sign_compact(
const unsigned char *msg, const unsigned char *msg32,
int msglen,
unsigned char *sig64, unsigned char *sig64,
const unsigned char *seckey, const unsigned char *seckey,
const unsigned char *nonce, const unsigned char *nonce,
int *recid int *recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a compact signature. /** Recover an ECDSA public key from a compact signature.
* Returns: 1: public key successfully recovered (which guarantees a correct signature). * Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise. * 0: otherwise.
* In: msg: the message assumed to be signed (cannot be NULL) * In: msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
* msglen: the length of the message (at most 32)
* sig64: signature as 64 byte array (cannot be NULL) * sig64: signature as 64 byte array (cannot be NULL)
* compressed: whether to recover a compressed or uncompressed pubkey * compressed: whether to recover a compressed or uncompressed pubkey
* recid: the recovery id (0-3, as returned by ecdsa_sign_compact) * recid: the recovery id (0-3, as returned by ecdsa_sign_compact)
@ -133,14 +126,13 @@ SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_sign_compact(
* Requires starting using SECP256K1_START_VERIFY. * Requires starting using SECP256K1_START_VERIFY.
*/ */
SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover_compact( SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover_compact(
const unsigned char *msg, const unsigned char *msg32,
int msglen,
const unsigned char *sig64, const unsigned char *sig64,
unsigned char *pubkey, unsigned char *pubkey,
int *pubkeylen, int *pubkeylen,
int compressed, int compressed,
int recid int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5); ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA secret key. /** Verify an ECDSA secret key.
* Returns: 1: secret key is valid * Returns: 1: secret key is valid

57
src/secp256k1/nasm_lt.sh

@ -1,57 +0,0 @@
#! /bin/sh
command=""
infile=""
o_opt=no
pic=no
while [ $# -gt 0 ]; do
case "$1" in
-DPIC|-fPIC|-fpic|-Kpic|-KPIC)
if [ "$pic" != "yes" ] ; then
command="$command -DPIC"
pic=yes
fi
;;
-f|-fbin|-faout|-faoutb|-fcoff|-felf|-felf64|-fas86| \
-fobj|-fwin32|-fwin64|-frdf|-fieee|-fmacho|-fmacho64)
# it's a file format specifier for nasm.
command="$command $1"
;;
-f*)
# maybe a code-generation flag for gcc.
;;
-[Ii]*)
incdir=`echo "$1" | sed 's/^-[Ii]//'`
if [ "x$incdir" = x -a "x$2" != x ] ; then
case "$2" in
-*) ;;
*) incdir="$2"; shift;;
esac
fi
if [ "x$incdir" != x ] ; then
# In the case of NASM, the trailing slash is necessary.
incdir=`echo "$incdir" | sed 's%/*$%/%'`
command="$command -I$incdir"
fi
;;
-o*)
o_opt=yes
command="$command $1"
;;
*.asm)
infile=$1
command="$command $1"
;;
*)
command="$command $1"
;;
esac
shift
done
if [ "$o_opt" != yes ] ; then
# By default, NASM creates an output file
# in the same directory as the input file.
outfile="-o `echo $infile | sed -e 's%^.*/%%' -e 's%\.[^.]*$%%'`.o"
command="$command $outfile"
fi
echo $command
exec $command

37
src/secp256k1/src/bench.h

@ -0,0 +1,37 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_BENCH_H_
#define _SECP256K1_BENCH_H_
#include <stdio.h>
#include <math.h>
#include "sys/time.h"
static double gettimedouble(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec * 0.000001 + tv.tv_sec;
}
void run_benchmark(void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) {
double min = HUGE_VAL;
double sum = 0.0;
double max = 0.0;
for (int i = 0; i < count; i++) {
if (setup) setup(data);
double begin = gettimedouble();
benchmark(data);
double total = gettimedouble() - begin;
if (teardown) teardown(data);
if (total < min) min = total;
if (total > max) max = total;
sum += total;
}
printf("min %.3fus / avg %.3fus / max %.3fus\n", min * 1000000.0 / iter, (sum / count) * 1000000.0 / iter, max * 1000000.0 / iter);
}
#endif

45
src/secp256k1/src/bench_inv.c

@ -12,30 +12,41 @@
#include "field_impl.h" #include "field_impl.h"
#include "group_impl.h" #include "group_impl.h"
#include "scalar_impl.h" #include "scalar_impl.h"
#include "bench.h"
typedef struct {
secp256k1_scalar_t base, x;
} bench_inv_t;
void bench_inv_setup(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
int main(void) {
static const unsigned char init[32] = { static const unsigned char init[32] = {
0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13, 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35, 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59, 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
}; };
static const unsigned char fini[32] = {
0xba, 0x28, 0x58, 0xd8, 0xaa, 0x11, 0xd6, 0xf2, secp256k1_scalar_set_b32(&data->base, init, NULL);
0xfa, 0xce, 0x50, 0xb1, 0x67, 0x19, 0xb1, 0xa6, secp256k1_scalar_set_b32(&data->x, init, NULL);
0xe0, 0xaa, 0x84, 0x53, 0xf6, 0x80, 0xfc, 0x23, }
0x88, 0x3c, 0xd6, 0x74, 0x9f, 0x27, 0x09, 0x03
}; void bench_inv(void* arg) {
secp256k1_ge_start(); bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_scalar_t base, x;
secp256k1_scalar_set_b32(&base, init, NULL); for (int i=0; i<20000; i++) {
secp256k1_scalar_set_b32(&x, init, NULL); secp256k1_scalar_inverse(&data->x, &data->x);
for (int i=0; i<1000000; i++) { secp256k1_scalar_add(&data->x, &data->x, &data->base);
secp256k1_scalar_inverse(&x, &x);
secp256k1_scalar_add(&x, &x, &base);
} }
unsigned char res[32]; }
secp256k1_scalar_get_b32(res, &x);
CHECK(memcmp(res, fini, 32) == 0); int main(void) {
secp256k1_ge_start();
bench_inv_t data;
run_benchmark(bench_inv, bench_inv_setup, NULL, &data, 10, 20000);
secp256k1_ge_stop();
return 0; return 0;
} }

46
src/secp256k1/src/bench_recover.c

@ -0,0 +1,46 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
#include "util.h"
#include "bench.h"
typedef struct {
unsigned char msg[32];
unsigned char sig[64];
} bench_recover_t;
void bench_recover(void* arg) {
bench_recover_t *data = (bench_recover_t*)arg;
unsigned char pubkey[33];
for (int i=0; i<20000; i++) {
int pubkeylen = 33;
CHECK(secp256k1_ecdsa_recover_compact(data->msg, data->sig, pubkey, &pubkeylen, 1, i % 2));
for (int j = 0; j < 32; j++) {
data->sig[j + 32] = data->msg[j]; /* Move former message to S. */
data->msg[j] = data->sig[j]; /* Move former R to message. */
data->sig[j] = pubkey[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */
}
}
}
void bench_recover_setup(void* arg) {
bench_recover_t *data = (bench_recover_t*)arg;
for (int i = 0; i < 32; i++) data->msg[i] = 1 + i;
for (int i = 0; i < 64; i++) data->sig[i] = 65 + i;
}
int main(void) {
secp256k1_start(SECP256K1_START_VERIFY);
bench_recover_t data;
run_benchmark(bench_recover, bench_recover_setup, NULL, &data, 10, 20000);
secp256k1_stop();
return 0;
}

49
src/secp256k1/src/bench_sign.c

@ -3,46 +3,45 @@
* Distributed under the MIT software license, see the accompanying * * Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.* * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/ **********************************************************************/
#include <stdio.h>
#include <string.h>
#include "include/secp256k1.h" #include "include/secp256k1.h"
#include "util.h" #include "util.h"
#include "bench.h"
int main(void) { typedef struct {
secp256k1_start(SECP256K1_START_SIGN);
unsigned char msg[32]; unsigned char msg[32];
unsigned char nonce[32]; unsigned char nonce[32];
unsigned char key[32]; unsigned char key[32];
} bench_sign_t;
for (int i = 0; i < 32; i++) msg[i] = i + 1; static void bench_sign_setup(void* arg) {
for (int i = 0; i < 32; i++) nonce[i] = i + 33; bench_sign_t *data = (bench_sign_t*)arg;
for (int i = 0; i < 32; i++) key[i] = i + 65;
unsigned char sig[64]; for (int i = 0; i < 32; i++) data->msg[i] = i + 1;
for (int i = 0; i < 32; i++) data->nonce[i] = i + 33;
for (int i = 0; i < 32; i++) data->key[i] = i + 65;
}
static void bench_sign(void* arg) {
bench_sign_t *data = (bench_sign_t*)arg;
for (int i=0; i<1000000; i++) { unsigned char sig[64];
for (int i=0; i<20000; i++) {
int recid = 0; int recid = 0;
CHECK(secp256k1_ecdsa_sign_compact(msg, 32, sig, key, nonce, &recid)); CHECK(secp256k1_ecdsa_sign_compact(data->msg, sig, data->key, data->nonce, &recid));
for (int j = 0; j < 32; j++) { for (int j = 0; j < 32; j++) {
nonce[j] = key[j]; /* Move former key to nonce */ data->nonce[j] = data->key[j]; /* Move former key to nonce */
msg[j] = sig[j]; /* Move former R to message. */ data->msg[j] = sig[j]; /* Move former R to message. */
key[j] = sig[j + 32]; /* Move former S to key. */ data->key[j] = sig[j + 32]; /* Move former S to key. */
} }
} }
}
int main(void) {
secp256k1_start(SECP256K1_START_SIGN);
static const unsigned char fini[64] = { bench_sign_t data;
0x92, 0x03, 0xef, 0xf1, 0x58, 0x0b, 0x49, 0x8d, run_benchmark(bench_sign, bench_sign_setup, NULL, &data, 10, 20000);
0x22, 0x3d, 0x49, 0x0e, 0xbf, 0x26, 0x50, 0x0e,
0x2d, 0x62, 0x90, 0xd7, 0x82, 0xbd, 0x3d, 0x5c,
0xa9, 0x10, 0xa5, 0x49, 0xb1, 0xd8, 0x8c, 0xc0,
0x5b, 0x5e, 0x9e, 0x68, 0x51, 0x3d, 0xe8, 0xec,
0x82, 0x30, 0x82, 0x88, 0x8c, 0xfd, 0xe7, 0x71,
0x15, 0x92, 0xfc, 0x14, 0x59, 0x78, 0x31, 0xb3,
0xf6, 0x07, 0x91, 0x18, 0x00, 0x8d, 0x4c, 0xb2
};
CHECK(memcmp(sig, fini, 64) == 0);
secp256k1_stop(); secp256k1_stop();
return 0; return 0;

59
src/secp256k1/src/bench_verify.c

@ -9,35 +9,46 @@
#include "include/secp256k1.h" #include "include/secp256k1.h"
#include "util.h" #include "util.h"
#include "bench.h"
int main(void) { typedef struct {
secp256k1_start(SECP256K1_START_VERIFY);
unsigned char msg[32]; unsigned char msg[32];
unsigned char sig[64]; unsigned char key[32];
unsigned char nonce[32];
for (int i = 0; i < 32; i++) msg[i] = 1 + i; unsigned char sig[72];
for (int i = 0; i < 64; i++) sig[i] = 65 + i; int siglen;
unsigned char pubkey[33]; unsigned char pubkey[33];
for (int i=0; i<1000000; i++) { int pubkeylen;
int pubkeylen = 33; } benchmark_verify_t;
CHECK(secp256k1_ecdsa_recover_compact(msg, 32, sig, pubkey, &pubkeylen, 1, i % 2));
for (int j = 0; j < 32; j++) { static void benchmark_verify(void* arg) {
sig[j + 32] = msg[j]; /* Move former message to S. */ benchmark_verify_t* data = (benchmark_verify_t*)arg;
msg[j] = sig[j]; /* Move former R to message. */
sig[j] = pubkey[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */ for (int i=0; i<20000; i++) {
} data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
CHECK(secp256k1_ecdsa_verify(data->msg, data->sig, data->siglen, data->pubkey, data->pubkeylen) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
} }
}
int main(void) {
secp256k1_start(SECP256K1_START_VERIFY | SECP256K1_START_SIGN);
benchmark_verify_t data;
for (int i = 0; i < 32; i++) data.msg[i] = 1 + i;
for (int i = 0; i < 32; i++) data.key[i] = 33 + i;
for (int i = 0; i < 32; i++) data.nonce[i] = 65 + i;
data.siglen = 72;
CHECK(secp256k1_ecdsa_sign(data.msg, data.sig, &data.siglen, data.key, data.nonce));
data.pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_create(data.pubkey, &data.pubkeylen, data.key, 1));
static const unsigned char fini[33] = { run_benchmark(benchmark_verify, NULL, NULL, &data, 10, 20000);
0x02,
0x52, 0x63, 0xae, 0x9a, 0x9d, 0x47, 0x1f, 0x1a,
0xb2, 0x36, 0x65, 0x89, 0x11, 0xe7, 0xcc, 0x86,
0xa3, 0xab, 0x97, 0xb6, 0xf1, 0xaf, 0xfd, 0x8f,
0x9b, 0x38, 0xb6, 0x18, 0x55, 0xe5, 0xc2, 0x43
};
CHECK(memcmp(fini, pubkey, 33) == 0);
secp256k1_stop(); secp256k1_stop();
return 0; return 0;

8
src/secp256k1/src/ecdsa_impl.h

@ -27,7 +27,7 @@ static void secp256k1_ecdsa_start(void) {
return; return;
/* Allocate. */ /* Allocate. */
secp256k1_ecdsa_consts_t *ret = (secp256k1_ecdsa_consts_t*)malloc(sizeof(secp256k1_ecdsa_consts_t)); secp256k1_ecdsa_consts_t *ret = (secp256k1_ecdsa_consts_t*)checked_malloc(sizeof(secp256k1_ecdsa_consts_t));
static const unsigned char order[] = { static const unsigned char order[] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
@ -38,7 +38,7 @@ static void secp256k1_ecdsa_start(void) {
secp256k1_fe_set_b32(&ret->order_as_fe, order); secp256k1_fe_set_b32(&ret->order_as_fe, order);
secp256k1_fe_negate(&ret->p_minus_order, &ret->order_as_fe, 1); secp256k1_fe_negate(&ret->p_minus_order, &ret->order_as_fe, 1);
secp256k1_fe_normalize(&ret->p_minus_order); secp256k1_fe_normalize_var(&ret->p_minus_order);
/* Set the global pointer. */ /* Set the global pointer. */
secp256k1_ecdsa_consts = ret; secp256k1_ecdsa_consts = ret;
@ -122,7 +122,7 @@ static int secp256k1_ecdsa_sig_recompute(secp256k1_scalar_t *r2, const secp256k1
secp256k1_gej_t pr; secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1); secp256k1_gej_t pr; secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
if (!secp256k1_gej_is_infinity(&pr)) { if (!secp256k1_gej_is_infinity(&pr)) {
secp256k1_fe_t xr; secp256k1_gej_get_x_var(&xr, &pr); secp256k1_fe_t xr; secp256k1_gej_get_x_var(&xr, &pr);
secp256k1_fe_normalize(&xr); secp256k1_fe_normalize_var(&xr);
unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr); unsigned char xrb[32]; secp256k1_fe_get_b32(xrb, &xr);
secp256k1_scalar_set_b32(r2, xrb, NULL); secp256k1_scalar_set_b32(r2, xrb, NULL);
ret = 1; ret = 1;
@ -144,7 +144,7 @@ static int secp256k1_ecdsa_sig_recover(const secp256k1_ecdsa_sig_t *sig, secp256
secp256k1_fe_add(&fx, &secp256k1_ecdsa_consts->order_as_fe); secp256k1_fe_add(&fx, &secp256k1_ecdsa_consts->order_as_fe);
} }
secp256k1_ge_t x; secp256k1_ge_t x;
if (!secp256k1_ge_set_xo(&x, &fx, recid & 1)) if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1))
return 0; return 0;
secp256k1_gej_t xj; secp256k1_gej_t xj;
secp256k1_gej_set_ge(&xj, &x); secp256k1_gej_set_ge(&xj, &x);

8
src/secp256k1/src/eckey_impl.h

@ -17,7 +17,7 @@
static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size) { static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned char *pub, int size) {
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) { if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
secp256k1_fe_t x; secp256k1_fe_t x;
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo(elem, &x, pub[0] == 0x03); return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == 0x03);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) { } else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
secp256k1_fe_t x, y; secp256k1_fe_t x, y;
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) { if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
@ -26,7 +26,7 @@ static int secp256k1_eckey_pubkey_parse(secp256k1_ge_t *elem, const unsigned cha
secp256k1_ge_set_xy(elem, &x, &y); secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07)) if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07))
return 0; return 0;
return secp256k1_ge_is_valid(elem); return secp256k1_ge_is_valid_var(elem);
} else { } else {
return 0; return 0;
} }
@ -36,8 +36,8 @@ static int secp256k1_eckey_pubkey_serialize(secp256k1_ge_t *elem, unsigned char
if (secp256k1_ge_is_infinity(elem)) { if (secp256k1_ge_is_infinity(elem)) {
return 0; return 0;
} }
secp256k1_fe_normalize(&elem->x); secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize(&elem->y); secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x); secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) { if (compressed) {
*size = 33; *size = 33;

6
src/secp256k1/src/ecmult_gen_impl.h

@ -34,7 +34,7 @@ static void secp256k1_ecmult_gen_start(void) {
return; return;
/* Allocate the precomputation table. */ /* Allocate the precomputation table. */
secp256k1_ecmult_gen_consts_t *ret = (secp256k1_ecmult_gen_consts_t*)malloc(sizeof(secp256k1_ecmult_gen_consts_t)); secp256k1_ecmult_gen_consts_t *ret = (secp256k1_ecmult_gen_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_gen_consts_t));
/* get the generator */ /* get the generator */
const secp256k1_ge_t *g = &secp256k1_ge_consts->g; const secp256k1_ge_t *g = &secp256k1_ge_consts->g;
@ -47,7 +47,7 @@ static void secp256k1_ecmult_gen_start(void) {
secp256k1_fe_t nums_x; secp256k1_fe_t nums_x;
VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32)); VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
secp256k1_ge_t nums_ge; secp256k1_ge_t nums_ge;
VERIFY_CHECK(secp256k1_ge_set_xo(&nums_ge, &nums_x, 0)); VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
secp256k1_gej_set_ge(&nums_gej, &nums_ge); secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */ /* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, g); secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, g);
@ -73,7 +73,7 @@ static void secp256k1_ecmult_gen_start(void) {
secp256k1_gej_double_var(&numsbase, &numsbase); secp256k1_gej_double_var(&numsbase, &numsbase);
if (j == 62) { if (j == 62) {
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
secp256k1_gej_neg(&numsbase, &numsbase); secp256k1_gej_neg_var(&numsbase, &numsbase);
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej); secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej);
} }
} }

17
src/secp256k1/src/ecmult_impl.h

@ -15,11 +15,13 @@
#define WINDOW_A 5 #define WINDOW_A 5
/** larger numbers may result in slightly better performance, at the cost of /** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. WINDOW_G == 14 results in 640 KiB. */ exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM #ifdef USE_ENDOMORPHISM
#define WINDOW_G 14 /** Two tables for window size 15: 1.375 MiB. */
#else
#define WINDOW_G 15 #define WINDOW_G 15
#else
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif #endif
/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table. /** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table.
@ -43,13 +45,14 @@ static void secp256k1_ecmult_table_precomp_gej_var(secp256k1_gej_t *pre, const s
static void secp256k1_ecmult_table_precomp_ge_var(secp256k1_ge_t *pre, const secp256k1_gej_t *a, int w) { static void secp256k1_ecmult_table_precomp_ge_var(secp256k1_ge_t *pre, const secp256k1_gej_t *a, int w) {
const int table_size = 1 << (w-2); const int table_size = 1 << (w-2);
secp256k1_gej_t prej[table_size]; secp256k1_gej_t *prej = checked_malloc(sizeof(secp256k1_gej_t) * table_size);
prej[0] = *a; prej[0] = *a;
secp256k1_gej_t d; secp256k1_gej_double_var(&d, a); secp256k1_gej_t d; secp256k1_gej_double_var(&d, a);
for (int i=1; i<table_size; i++) { for (int i=1; i<table_size; i++) {
secp256k1_gej_add_var(&prej[i], &d, &prej[i-1]); secp256k1_gej_add_var(&prej[i], &d, &prej[i-1]);
} }
secp256k1_ge_set_all_gej_var(table_size, pre, prej); secp256k1_ge_set_all_gej_var(table_size, pre, prej);
free(prej);
} }
/** The number of entries a table with precomputed multiples needs to have. */ /** The number of entries a table with precomputed multiples needs to have. */
@ -67,8 +70,8 @@ static void secp256k1_ecmult_table_precomp_ge_var(secp256k1_ge_t *pre, const sec
(neg)((r), &(pre)[(-(n)-1)/2]); \ (neg)((r), &(pre)[(-(n)-1)/2]); \
} while(0) } while(0)
#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg) #define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg_var)
#define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg) #define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg_var)
typedef struct { typedef struct {
/* For accelerating the computation of a*P + b*G: */ /* For accelerating the computation of a*P + b*G: */
@ -85,7 +88,7 @@ static void secp256k1_ecmult_start(void) {
return; return;
/* Allocate the precomputation table. */ /* Allocate the precomputation table. */
secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)malloc(sizeof(secp256k1_ecmult_consts_t)); secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_consts_t));
/* get the generator */ /* get the generator */
const secp256k1_ge_t *g = &secp256k1_ge_consts->g; const secp256k1_ge_t *g = &secp256k1_ge_consts->g;

8
src/secp256k1/src/field.h

@ -50,6 +50,9 @@ static void secp256k1_fe_stop(void);
/** Normalize a field element. */ /** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe_t *r); static void secp256k1_fe_normalize(secp256k1_fe_t *r);
/** Normalize a field element, without constant-time guarantee. */
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */ /** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a); static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a);
@ -93,7 +96,7 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the /** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be * input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
* normalized). Return value indicates whether a square root was found. */ * normalized). Return value indicates whether a square root was found. */
static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a); static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be /** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */ * at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
@ -105,9 +108,6 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be /** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and * at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */ * outputs must not overlap in memory. */
static void secp256k1_fe_inv_all(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]);
/** Potentially faster version of secp256k1_fe_inv_all, without constant-time guarantee. */
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]); static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]);
/** Convert a field element to a hexadecimal string. */ /** Convert a field element to a hexadecimal string. */

64
src/secp256k1/src/field_10x26_impl.h

@ -103,6 +103,62 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
#endif #endif
} }
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];
/* Reduce t9 at the start so there will be at most a single carry from the first pass */
uint32_t x = t9 >> 22; t9 &= 0x03FFFFFUL;
uint32_t m;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x3D1UL; t1 += (x << 6);
t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL;
t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL;
t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL; m = t2;
t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL; m &= t3;
t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL; m &= t4;
t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL; m &= t5;
t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL; m &= t6;
t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL; m &= t7;
t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL; m &= t8;
/* ... except for a possible carry at bit 22 of t9 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t9 >> 23 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t9 >> 22) | ((t9 == 0x03FFFFFUL) & (m == 0x3FFFFFFUL)
& ((t1 + 0x40UL + ((t0 + 0x3D1UL) >> 26)) > 0x3FFFFFFUL));
if (x) {
t0 += 0x3D1UL; t1 += (x << 6);
t1 += (t0 >> 26); t0 &= 0x3FFFFFFUL;
t2 += (t1 >> 26); t1 &= 0x3FFFFFFUL;
t3 += (t2 >> 26); t2 &= 0x3FFFFFFUL;
t4 += (t3 >> 26); t3 &= 0x3FFFFFFUL;
t5 += (t4 >> 26); t4 &= 0x3FFFFFFUL;
t6 += (t5 >> 26); t5 &= 0x3FFFFFFUL;
t7 += (t6 >> 26); t6 &= 0x3FFFFFFUL;
t8 += (t7 >> 26); t7 &= 0x3FFFFFFUL;
t9 += (t8 >> 26); t8 &= 0x3FFFFFFUL;
/* If t9 didn't carry to bit 22 already, then it should have after any final reduction */
VERIFY_CHECK(t9 >> 22 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t9 &= 0x03FFFFFUL;
}
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
r->n[5] = t5; r->n[6] = t6; r->n[7] = t7; r->n[8] = t8; r->n[9] = t9;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
r->n[0] = a; r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0; r->n[1] = r->n[2] = r->n[3] = r->n[4] = r->n[5] = r->n[6] = r->n[7] = r->n[8] = r->n[9] = 0;
@ -271,7 +327,7 @@ SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1
#define VERIFY_BITS(x, n) do { } while(0) #define VERIFY_BITS(x, n) do { } while(0)
#endif #endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b, uint32_t *r) { SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint32_t *r, const uint32_t *a, const uint32_t * SECP256K1_RESTRICT b) {
VERIFY_BITS(a[0], 30); VERIFY_BITS(a[0], 30);
VERIFY_BITS(a[1], 30); VERIFY_BITS(a[1], 30);
VERIFY_BITS(a[2], 30); VERIFY_BITS(a[2], 30);
@ -598,7 +654,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(const uint32_t *a, const uin
/* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */ /* [r9 r8 r7 r6 r5 r4 r3 r2 r1 r0] = [p18 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0] */
} }
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(const uint32_t *a, uint32_t *r) { SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint32_t *r, const uint32_t *a) {
VERIFY_BITS(a[0], 30); VERIFY_BITS(a[0], 30);
VERIFY_BITS(a[1], 30); VERIFY_BITS(a[1], 30);
VERIFY_BITS(a[2], 30); VERIFY_BITS(a[2], 30);
@ -879,7 +935,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s
secp256k1_fe_verify(b); secp256k1_fe_verify(b);
VERIFY_CHECK(r != b); VERIFY_CHECK(r != b);
#endif #endif
secp256k1_fe_mul_inner(a->n, b->n, r->n); secp256k1_fe_mul_inner(r->n, a->n, b->n);
#ifdef VERIFY #ifdef VERIFY
r->magnitude = 1; r->magnitude = 1;
r->normalized = 0; r->normalized = 0;
@ -892,7 +948,7 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
VERIFY_CHECK(a->magnitude <= 8); VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_verify(a); secp256k1_fe_verify(a);
#endif #endif
secp256k1_fe_sqr_inner(a->n, r->n); secp256k1_fe_sqr_inner(r->n, a->n);
#ifdef VERIFY #ifdef VERIFY
r->magnitude = 1; r->magnitude = 1;
r->normalized = 0; r->normalized = 0;

469
src/secp256k1/src/field_5x52_asm.asm

@ -1,469 +0,0 @@
;; Added by Diederik Huys, March 2013
;;
;; Provided public procedures:
;; secp256k1_fe_mul_inner
;; secp256k1_fe_sqr_inner
;;
;; Needed tools: YASM (http://yasm.tortall.net)
;;
;;
BITS 64
%ifidn __OUTPUT_FORMAT__,macho64
%define SYM(x) _ %+ x
%else
%define SYM(x) x
%endif
;; Procedure ExSetMult
;; Register Layout:
;; INPUT: rdi = a->n
;; rsi = b->n
;; rdx = r->a
;;
;; INTERNAL: rdx:rax = multiplication accumulator
;; r9:r8 = c
;; r10-r13 = t0-t3
;; r14 = b.n[0] / t4
;; r15 = b.n[1] / t5
;; rbx = b.n[2] / t6
;; rcx = b.n[3] / t7
;; rbp = Constant 0FFFFFFFFFFFFFh / t8
;; rsi = b.n / b.n[4] / t9
GLOBAL SYM(secp256k1_fe_mul_inner)
ALIGN 32
SYM(secp256k1_fe_mul_inner):
push rbp
push rbx
push r12
push r13
push r14
push r15
push rdx
mov r14,[rsi+8*0] ; preload b.n[0]. This will be the case until
; b.n[0] is no longer needed, then we reassign
; r14 to t4
;; c=a.n[0] * b.n[0]
mov rax,[rdi+0*8] ; load a.n[0]
mov rbp,0FFFFFFFFFFFFFh
mul r14 ; rdx:rax=a.n[0]*b.n[0]
mov r15,[rsi+1*8]
mov r10,rbp ; load modulus into target register for t0
mov r8,rax
and r10,rax ; only need lower qword of c
shrd r8,rdx,52
xor r9,r9 ; c < 2^64, so we ditch the HO part
;; c+=a.n[0] * b.n[1] + a.n[1] * b.n[0]
mov rax,[rdi+0*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul r14
mov r11,rbp
mov rbx,[rsi+2*8]
add r8,rax
adc r9,rdx
and r11,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[0 1 2] * b.n[2 1 0]
mov rax,[rdi+0*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul r14
mov r12,rbp
mov rcx,[rsi+3*8]
add r8,rax
adc r9,rdx
and r12,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[0 1 2 3] * b.n[3 2 1 0]
mov rax,[rdi+0*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul r14
mov r13,rbp
mov rsi,[rsi+4*8] ; load b.n[4] and destroy pointer
add r8,rax
adc r9,rdx
and r13,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[0 1 2 3 4] * b.n[4 3 2 1 0]
mov rax,[rdi+0*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+1*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul r15
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul r14
mov r14,rbp ; load modulus into t4 and destroy a.n[0]
add r8,rax
adc r9,rdx
and r14,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[1 2 3 4] * b.n[4 3 2 1]
mov rax,[rdi+1*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+2*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul rbx
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul r15
mov r15,rbp
add r8,rax
adc r9,rdx
and r15,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[2 3 4] * b.n[4 3 2]
mov rax,[rdi+2*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+3*8]
mul rcx
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul rbx
mov rbx,rbp
add r8,rax
adc r9,rdx
and rbx,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[3 4] * b.n[4 3]
mov rax,[rdi+3*8]
mul rsi
add r8,rax
adc r9,rdx
mov rax,[rdi+4*8]
mul rcx
mov rcx,rbp
add r8,rax
adc r9,rdx
and rcx,r8
shrd r8,r9,52
xor r9,r9
;; c+=a.n[4] * b.n[4]
mov rax,[rdi+4*8]
mul rsi
;; mov rbp,rbp ; modulus already there!
add r8,rax
adc r9,rdx
and rbp,r8
shrd r8,r9,52
xor r9,r9
mov rsi,r8 ; load c into t9 and destroy b.n[4]
;; *******************************************************
common_exit_norm:
mov rdi,01000003D10h ; load constant
mov rax,r15 ; get t5
mul rdi
add rax,r10 ; +t0
adc rdx,0
mov r10,0FFFFFFFFFFFFFh ; modulus. Sadly, we ran out of registers!
mov r8,rax ; +c
and r10,rax
shrd r8,rdx,52
xor r9,r9
mov rax,rbx ; get t6
mul rdi
add rax,r11 ; +t1
adc rdx,0
mov r11,0FFFFFFFFFFFFFh ; modulus
add r8,rax ; +c
adc r9,rdx
and r11,r8
shrd r8,r9,52
xor r9,r9
mov rax,rcx ; get t7
mul rdi
add rax,r12 ; +t2
adc rdx,0
pop rbx ; retrieve pointer to this.n
mov r12,0FFFFFFFFFFFFFh ; modulus
add r8,rax ; +c
adc r9,rdx
and r12,r8
mov [rbx+2*8],r12 ; mov into this.n[2]
shrd r8,r9,52
xor r9,r9
mov rax,rbp ; get t8
mul rdi
add rax,r13 ; +t3
adc rdx,0
mov r13,0FFFFFFFFFFFFFh ; modulus
add r8,rax ; +c
adc r9,rdx
and r13,r8
mov [rbx+3*8],r13 ; -> this.n[3]
shrd r8,r9,52
xor r9,r9
mov rax,rsi ; get t9
mul rdi
add rax,r14 ; +t4
adc rdx,0
mov r14,0FFFFFFFFFFFFh ; !!!
add r8,rax ; +c
adc r9,rdx
and r14,r8
mov [rbx+4*8],r14 ; -> this.n[4]
shrd r8,r9,48 ; !!!
xor r9,r9
mov rax,01000003D1h
mul r8
add rax,r10
adc rdx,0
mov r10,0FFFFFFFFFFFFFh ; modulus
mov r8,rax
and rax,r10
shrd r8,rdx,52
mov [rbx+0*8],rax ; -> this.n[0]
add r8,r11
mov [rbx+1*8],r8 ; -> this.n[1]
pop r15
pop r14
pop r13
pop r12
pop rbx
pop rbp
ret
;; PROC ExSetSquare
;; Register Layout:
;; INPUT: rdi = a.n
;; rsi = this.a
;; INTERNAL: rdx:rax = multiplication accumulator
;; r9:r8 = c
;; r10-r13 = t0-t3
;; r14 = a.n[0] / t4
;; r15 = a.n[1] / t5
;; rbx = a.n[2] / t6
;; rcx = a.n[3] / t7
;; rbp = 0FFFFFFFFFFFFFh / t8
;; rsi = a.n[4] / t9
GLOBAL SYM(secp256k1_fe_sqr_inner)
ALIGN 32
SYM(secp256k1_fe_sqr_inner):
push rbp
push rbx
push r12
push r13
push r14
push r15
push rsi
mov rbp,0FFFFFFFFFFFFFh
;; c=a.n[0] * a.n[0]
mov r14,[rdi+0*8] ; r14=a.n[0]
mov r10,rbp ; modulus
mov rax,r14
mul rax
mov r15,[rdi+1*8] ; a.n[1]
add r14,r14 ; r14=2*a.n[0]
mov r8,rax
and r10,rax ; only need lower qword
shrd r8,rdx,52
xor r9,r9
;; c+=2*a.n[0] * a.n[1]
mov rax,r14 ; r14=2*a.n[0]
mul r15
mov rbx,[rdi+2*8] ; rbx=a.n[2]
mov r11,rbp ; modulus
add r8,rax
adc r9,rdx
and r11,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[0]*a.n[2]+a.n[1]*a.n[1]
mov rax,r14
mul rbx
add r8,rax
adc r9,rdx
mov rax,r15
mov r12,rbp ; modulus
mul rax
mov rcx,[rdi+3*8] ; rcx=a.n[3]
add r15,r15 ; r15=a.n[1]*2
add r8,rax
adc r9,rdx
and r12,r8 ; only need lower dword
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[0]*a.n[3]+2*a.n[1]*a.n[2]
mov rax,r14
mul rcx
add r8,rax
adc r9,rdx
mov rax,r15 ; rax=2*a.n[1]
mov r13,rbp ; modulus
mul rbx
mov rsi,[rdi+4*8] ; rsi=a.n[4]
add r8,rax
adc r9,rdx
and r13,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[0]*a.n[4]+2*a.n[1]*a.n[3]+a.n[2]*a.n[2]
mov rax,r14 ; last time we need 2*a.n[0]
mul rsi
add r8,rax
adc r9,rdx
mov rax,r15
mul rcx
mov r14,rbp ; modulus
add r8,rax
adc r9,rdx
mov rax,rbx
mul rax
add rbx,rbx ; rcx=2*a.n[2]
add r8,rax
adc r9,rdx
and r14,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[1]*a.n[4]+2*a.n[2]*a.n[3]
mov rax,r15 ; last time we need 2*a.n[1]
mul rsi
add r8,rax
adc r9,rdx
mov rax,rbx
mul rcx
mov r15,rbp ; modulus
add r8,rax
adc r9,rdx
and r15,r8
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[2]*a.n[4]+a.n[3]*a.n[3]
mov rax,rbx ; last time we need 2*a.n[2]
mul rsi
add r8,rax
adc r9,rdx
mov rax,rcx ; a.n[3]
mul rax
mov rbx,rbp ; modulus
add r8,rax
adc r9,rdx
and rbx,r8 ; only need lower dword
lea rax,[2*rcx]
shrd r8,r9,52
xor r9,r9
;; c+=2*a.n[3]*a.n[4]
mul rsi
mov rcx,rbp ; modulus
add r8,rax
adc r9,rdx
and rcx,r8 ; only need lower dword
shrd r8,r9,52
xor r9,r9
;; c+=a.n[4]*a.n[4]
mov rax,rsi
mul rax
;; mov rbp,rbp ; modulus is already there!
add r8,rax
adc r9,rdx
and rbp,r8
shrd r8,r9,52
xor r9,r9
mov rsi,r8
;; *******************************************************
jmp common_exit_norm
end

495
src/secp256k1/src/field_5x52_asm_impl.h

@ -1,13 +1,502 @@
/********************************************************************** /**********************************************************************
* Copyright (c) 2013 Pieter Wuille * * Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille *
* Distributed under the MIT software license, see the accompanying * * Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.* * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/ **********************************************************************/
/**
* Changelog:
* - March 2013, Diederik Huys: original version
* - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm
* - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly
*/
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_ #ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_ #define _SECP256K1_FIELD_INNER5X52_IMPL_H_
void __attribute__ ((sysv_abi)) secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t *b, uint64_t *r); SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
void __attribute__ ((sysv_abi)) secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r); /**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* r15:rcx = d
* r10-r14 = a0-a4
* rbx = b
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
/* d += a3 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rcx\n"
"movq %%rdx,%%r15\n"
/* d += a2 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d = a0 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c = a4 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* d += a4 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a0 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* t4 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a4 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* u0 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a1 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a4 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a2 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a1 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b2 (last use of %%r10 = a0) */
"movq 16(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* d += a4 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rcx only) */
"shrdq $52,%%r15,%%rcx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rcx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "b"(b), "D"(r)
: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* rcx:rbx = d
* r10-r14 = a0-a4
* r15 = M (0xfffffffffffff)
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
"movq $0xfffffffffffff,%%r15\n"
/* d = (a0*2) * a3 */
"leaq (%%r10,%%r10,1),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rbx\n"
"movq %%rdx,%%rcx\n"
/* d += (a1*2) * a2 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c = a4 * a4 */
"movq %%r14,%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* a4 *= 2 */
"addq %%r14,%%r14\n"
/* d += a0 * a4 */
"movq %%r10,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d+= (a1*2) * a3 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a2 * a2 */
"movq %%r12,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* t4 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * a0 */
"movq %%r10,%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a1 * a4 */
"movq %%r11,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += (a2*2) * a3 */
"leaq (%%r12,%%r12,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* u0 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* a0 *= 2 */
"addq %%r10,%%r10\n"
/* c += a0 * a1 */
"movq %%r10,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a2 * a4 */
"movq %%r12,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a3 * a3 */
"movq %%r13,%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a0 * a2 (last use of %%r10) */
"movq %%r10,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* c += a1 * a1 */
"movq %%r11,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a3 * a4 */
"movq %%r13,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rbx only) */
"shrdq $52,%%rcx,%%rbx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rbx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "D"(r)
: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
#endif #endif

48
src/secp256k1/src/field_5x52_impl.h

@ -102,6 +102,50 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
#endif #endif
} }
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
uint64_t m;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
if (x) {
t0 += 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
}
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
r->n[0] = a; r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
@ -255,7 +299,7 @@ static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const s
secp256k1_fe_verify(b); secp256k1_fe_verify(b);
VERIFY_CHECK(r != b); VERIFY_CHECK(r != b);
#endif #endif
secp256k1_fe_mul_inner(a->n, b->n, r->n); secp256k1_fe_mul_inner(r->n, a->n, b->n);
#ifdef VERIFY #ifdef VERIFY
r->magnitude = 1; r->magnitude = 1;
r->normalized = 0; r->normalized = 0;
@ -268,7 +312,7 @@ static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
VERIFY_CHECK(a->magnitude <= 8); VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_verify(a); secp256k1_fe_verify(a);
#endif #endif
secp256k1_fe_sqr_inner(a->n, r->n); secp256k1_fe_sqr_inner(r->n, a->n);
#ifdef VERIFY #ifdef VERIFY
r->magnitude = 1; r->magnitude = 1;
r->normalized = 0; r->normalized = 0;

4
src/secp256k1/src/field_5x52_int128_impl.h

@ -15,7 +15,7 @@
#define VERIFY_BITS(x, n) do { } while(0) #define VERIFY_BITS(x, n) do { } while(0)
#endif #endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b, uint64_t *r) { SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
VERIFY_BITS(a[0], 56); VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56); VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56); VERIFY_BITS(a[2], 56);
@ -152,7 +152,7 @@ SECP256K1_INLINE static void secp256k1_fe_mul_inner(const uint64_t *a, const uin
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */ /* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
} }
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(const uint64_t *a, uint64_t *r) { SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
VERIFY_BITS(a[0], 56); VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56); VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56); VERIFY_BITS(a[2], 56);

4
src/secp256k1/src/field_gmp_impl.h

@ -46,6 +46,10 @@ static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
mpn_sub(r->n, r->n, FIELD_LIMBS, secp256k1_field_p, FIELD_LIMBS); mpn_sub(r->n, r->n, FIELD_LIMBS, secp256k1_field_p, FIELD_LIMBS);
} }
static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
secp256k1_fe_normalize(r);
}
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) { SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
r->n[0] = a; r->n[0] = a;
for (int i=1; i<FIELD_LIMBS+1; i++) for (int i=1; i<FIELD_LIMBS+1; i++)

32
src/secp256k1/src/field_impl.h

@ -66,7 +66,7 @@ static int secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen) {
return secp256k1_fe_set_b32(r, tmp); return secp256k1_fe_set_b32(r, tmp);
} }
static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) { static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
@ -132,7 +132,7 @@ static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
secp256k1_fe_sqr(&t1, r); secp256k1_fe_sqr(&t1, r);
secp256k1_fe_negate(&t1, &t1, 1); secp256k1_fe_negate(&t1, &t1, 1);
secp256k1_fe_add(&t1, a); secp256k1_fe_add(&t1, a);
secp256k1_fe_normalize(&t1); secp256k1_fe_normalize_var(&t1);
return secp256k1_fe_is_zero(&t1); return secp256k1_fe_is_zero(&t1);
} }
@ -206,7 +206,7 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#elif defined(USE_FIELD_INV_NUM) #elif defined(USE_FIELD_INV_NUM)
unsigned char b[32]; unsigned char b[32];
secp256k1_fe_t c = *a; secp256k1_fe_t c = *a;
secp256k1_fe_normalize(&c); secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c); secp256k1_fe_get_b32(b, &c);
secp256k1_num_t n; secp256k1_num_t n;
secp256k1_num_set_bin(&n, b, 32); secp256k1_num_set_bin(&n, b, 32);
@ -218,30 +218,6 @@ static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#endif #endif
} }
static void secp256k1_fe_inv_all(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]) {
if (len < 1)
return;
VERIFY_CHECK((r + len <= a) || (a + len <= r));
r[0] = a[0];
size_t i = 0;
while (++i < len) {
secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
}
secp256k1_fe_t u; secp256k1_fe_inv(&u, &r[--i]);
while (i > 0) {
int j = i--;
secp256k1_fe_mul(&r[j], &r[i], &u);
secp256k1_fe_mul(&u, &u, &a[j]);
}
r[0] = u;
}
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]) { static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]) {
if (len < 1) if (len < 1)
return; return;
@ -277,7 +253,7 @@ static void secp256k1_fe_start(void) {
#endif #endif
if (secp256k1_fe_consts == NULL) { if (secp256k1_fe_consts == NULL) {
secp256k1_fe_inner_start(); secp256k1_fe_inner_start();
secp256k1_fe_consts_t *ret = (secp256k1_fe_consts_t*)malloc(sizeof(secp256k1_fe_consts_t)); secp256k1_fe_consts_t *ret = (secp256k1_fe_consts_t*)checked_malloc(sizeof(secp256k1_fe_consts_t));
#ifndef USE_NUM_NONE #ifndef USE_NUM_NONE
secp256k1_num_set_bin(&ret->p, secp256k1_fe_consts_p, sizeof(secp256k1_fe_consts_p)); secp256k1_num_set_bin(&ret->p, secp256k1_fe_consts_p, sizeof(secp256k1_fe_consts_p));
#endif #endif

7
src/secp256k1/src/group.h

@ -51,15 +51,16 @@ static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, cons
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */ * for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd); static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd);
/** Check whether a group element is the point at infinity. */ /** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a); static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a);
/** Check whether a group element is valid (i.e., on the curve). */ /** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid(const secp256k1_ge_t *a); static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a);
static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a);
static void secp256k1_ge_neg_var(secp256k1_ge_t *r, const secp256k1_ge_t *a);
/** Get a hex representation of a point. *rlen will be overwritten with the real length. */ /** Get a hex representation of a point. *rlen will be overwritten with the real length. */
static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a); static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a);
@ -84,7 +85,7 @@ static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a);
static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a); static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); static void secp256k1_gej_neg_var(secp256k1_gej_t *r, const secp256k1_gej_t *a);
/** Check whether a group element is the point at infinity. */ /** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a); static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a);

59
src/secp256k1/src/group_impl.h

@ -28,13 +28,17 @@ static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) {
} }
static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
r->infinity = a->infinity; *r = *a;
r->x = a->x;
r->y = a->y;
secp256k1_fe_normalize(&r->y); secp256k1_fe_normalize(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1); secp256k1_fe_negate(&r->y, &r->y, 1);
} }
static void secp256k1_ge_neg_var(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
*r = *a;
secp256k1_fe_normalize_var(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) { static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) {
char cx[65]; int lx=65; char cx[65]; int lx=65;
char cy[65]; int ly=65; char cy[65]; int ly=65;
@ -85,15 +89,16 @@ static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) {
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]) { static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]) {
size_t count = 0; size_t count = 0;
secp256k1_fe_t az[len]; secp256k1_fe_t *az = checked_malloc(sizeof(secp256k1_fe_t) * len);
for (size_t i=0; i<len; i++) { for (size_t i=0; i<len; i++) {
if (!a[i].infinity) { if (!a[i].infinity) {
az[count++] = a[i].z; az[count++] = a[i].z;
} }
} }
secp256k1_fe_t azi[count]; secp256k1_fe_t *azi = checked_malloc(sizeof(secp256k1_fe_t) * count);
secp256k1_fe_inv_all_var(count, azi, az); secp256k1_fe_inv_all_var(count, azi, az);
free(az);
count = 0; count = 0;
for (size_t i=0; i<len; i++) { for (size_t i=0; i<len; i++) {
@ -106,6 +111,7 @@ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], cons
secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3); secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3);
} }
} }
free(azi);
} }
static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) { static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) {
@ -135,16 +141,16 @@ static void secp256k1_ge_clear(secp256k1_ge_t *r) {
secp256k1_fe_clear(&r->y); secp256k1_fe_clear(&r->y);
} }
static int secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
r->x = *x; r->x = *x;
secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x); secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x);
secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2); secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0; r->infinity = 0;
secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&c, &x3); secp256k1_fe_add(&c, &x3);
if (!secp256k1_fe_sqrt(&r->y, &c)) if (!secp256k1_fe_sqrt_var(&r->y, &c))
return 0; return 0;
secp256k1_fe_normalize(&r->y); secp256k1_fe_normalize_var(&r->y);
if (secp256k1_fe_is_odd(&r->y) != odd) if (secp256k1_fe_is_odd(&r->y) != odd)
secp256k1_fe_negate(&r->y, &r->y, 1); secp256k1_fe_negate(&r->y, &r->y, 1);
return 1; return 1;
@ -162,12 +168,12 @@ static void secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a)
secp256k1_fe_mul(r, &a->x, &zi2); secp256k1_fe_mul(r, &a->x, &zi2);
} }
static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { static void secp256k1_gej_neg_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
r->infinity = a->infinity; r->infinity = a->infinity;
r->x = a->x; r->x = a->x;
r->y = a->y; r->y = a->y;
r->z = a->z; r->z = a->z;
secp256k1_fe_normalize(&r->y); secp256k1_fe_normalize_var(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1); secp256k1_fe_negate(&r->y, &r->y, 1);
} }
@ -175,7 +181,7 @@ static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) {
return a->infinity; return a->infinity;
} }
static int secp256k1_gej_is_valid(const secp256k1_gej_t *a) { static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) {
if (a->infinity) if (a->infinity)
return 0; return 0;
/** y^2 = x^3 + 7 /** y^2 = x^3 + 7
@ -189,12 +195,12 @@ static int secp256k1_gej_is_valid(const secp256k1_gej_t *a) {
secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
secp256k1_fe_mul_int(&z6, 7); secp256k1_fe_mul_int(&z6, 7);
secp256k1_fe_add(&x3, &z6); secp256k1_fe_add(&x3, &z6);
secp256k1_fe_normalize(&y2); secp256k1_fe_normalize_var(&y2);
secp256k1_fe_normalize(&x3); secp256k1_fe_normalize_var(&x3);
return secp256k1_fe_equal(&y2, &x3); return secp256k1_fe_equal(&y2, &x3);
} }
static int secp256k1_ge_is_valid(const secp256k1_ge_t *a) { static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) {
if (a->infinity) if (a->infinity)
return 0; return 0;
/* y^2 = x^3 + 7 */ /* y^2 = x^3 + 7 */
@ -202,8 +208,8 @@ static int secp256k1_ge_is_valid(const secp256k1_ge_t *a) {
secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&x3, &c); secp256k1_fe_add(&x3, &c);
secp256k1_fe_normalize(&y2); secp256k1_fe_normalize_var(&y2);
secp256k1_fe_normalize(&x3); secp256k1_fe_normalize_var(&x3);
return secp256k1_fe_equal(&y2, &x3); return secp256k1_fe_equal(&y2, &x3);
} }
@ -255,11 +261,11 @@ static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a,
secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_normalize(&u1); secp256k1_fe_normalize_var(&u1);
secp256k1_fe_normalize(&u2); secp256k1_fe_normalize_var(&u2);
if (secp256k1_fe_equal(&u1, &u2)) { if (secp256k1_fe_equal(&u1, &u2)) {
secp256k1_fe_normalize(&s1); secp256k1_fe_normalize_var(&s1);
secp256k1_fe_normalize(&s2); secp256k1_fe_normalize_var(&s2);
if (secp256k1_fe_equal(&s1, &s2)) { if (secp256k1_fe_equal(&s1, &s2)) {
secp256k1_gej_double_var(r, a); secp256k1_gej_double_var(r, a);
} else { } else {
@ -294,15 +300,14 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *
} }
r->infinity = 0; r->infinity = 0;
secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z);
secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize(&u1); secp256k1_fe_t u1 = a->x;
secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize(&s1); secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize_var(&s1);
secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_normalize(&u1); secp256k1_fe_normalize_var(&u1);
secp256k1_fe_normalize(&u2); secp256k1_fe_normalize_var(&u2);
if (secp256k1_fe_equal(&u1, &u2)) { if (secp256k1_fe_equal(&u1, &u2)) {
secp256k1_fe_normalize(&s1); secp256k1_fe_normalize_var(&s2);
secp256k1_fe_normalize(&s2);
if (secp256k1_fe_equal(&s1, &s2)) { if (secp256k1_fe_equal(&s1, &s2)) {
secp256k1_gej_double_var(r, a); secp256k1_gej_double_var(r, a);
} else { } else {
@ -434,7 +439,7 @@ static void secp256k1_ge_start(void) {
}; };
#endif #endif
if (secp256k1_ge_consts == NULL) { if (secp256k1_ge_consts == NULL) {
secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)malloc(sizeof(secp256k1_ge_consts_t)); secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)checked_malloc(sizeof(secp256k1_ge_consts_t));
#ifdef USE_ENDOMORPHISM #ifdef USE_ENDOMORPHISM
VERIFY_CHECK(secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta)); VERIFY_CHECK(secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta));
#endif #endif

2
src/secp256k1/src/scalar_impl.h

@ -40,7 +40,7 @@ static void secp256k1_scalar_start(void) {
return; return;
/* Allocate. */ /* Allocate. */
secp256k1_scalar_consts_t *ret = (secp256k1_scalar_consts_t*)malloc(sizeof(secp256k1_scalar_consts_t)); secp256k1_scalar_consts_t *ret = (secp256k1_scalar_consts_t*)checked_malloc(sizeof(secp256k1_scalar_consts_t));
#ifndef USE_NUM_NONE #ifndef USE_NUM_NONE
static const unsigned char secp256k1_scalar_consts_order[] = { static const unsigned char secp256k1_scalar_consts_order[] = {

38
src/secp256k1/src/secp256k1.c

@ -40,15 +40,12 @@ void secp256k1_stop(void) {
secp256k1_fe_stop(); secp256k1_fe_stop();
} }
int secp256k1_ecdsa_verify(const unsigned char *msg, int msglen, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen) { int secp256k1_ecdsa_verify(const unsigned char *msg32, const unsigned char *sig, int siglen, const unsigned char *pubkey, int pubkeylen) {
DEBUG_CHECK(secp256k1_ecmult_consts != NULL); DEBUG_CHECK(secp256k1_ecmult_consts != NULL);
DEBUG_CHECK(msg != NULL); DEBUG_CHECK(msg32 != NULL);
DEBUG_CHECK(msglen <= 32);
DEBUG_CHECK(sig != NULL); DEBUG_CHECK(sig != NULL);
DEBUG_CHECK(pubkey != NULL); DEBUG_CHECK(pubkey != NULL);
unsigned char msg32[32] = {0};
memcpy(msg32 + 32 - msglen, msg, msglen);
int ret = -3; int ret = -3;
secp256k1_scalar_t m; secp256k1_scalar_t m;
secp256k1_ecdsa_sig_t s; secp256k1_ecdsa_sig_t s;
@ -72,10 +69,9 @@ end:
return ret; return ret;
} }
int secp256k1_ecdsa_sign(const unsigned char *message, int messagelen, unsigned char *signature, int *signaturelen, const unsigned char *seckey, const unsigned char *nonce) { int secp256k1_ecdsa_sign(const unsigned char *msg32, unsigned char *signature, int *signaturelen, const unsigned char *seckey, const unsigned char *nonce) {
DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL); DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL);
DEBUG_CHECK(message != NULL); DEBUG_CHECK(msg32 != NULL);
DEBUG_CHECK(messagelen <= 32);
DEBUG_CHECK(signature != NULL); DEBUG_CHECK(signature != NULL);
DEBUG_CHECK(signaturelen != NULL); DEBUG_CHECK(signaturelen != NULL);
DEBUG_CHECK(seckey != NULL); DEBUG_CHECK(seckey != NULL);
@ -85,12 +81,7 @@ int secp256k1_ecdsa_sign(const unsigned char *message, int messagelen, unsigned
secp256k1_scalar_set_b32(&sec, seckey, NULL); secp256k1_scalar_set_b32(&sec, seckey, NULL);
int overflow = 0; int overflow = 0;
secp256k1_scalar_set_b32(&non, nonce, &overflow); secp256k1_scalar_set_b32(&non, nonce, &overflow);
{ secp256k1_scalar_set_b32(&msg, msg32, NULL);
unsigned char c[32] = {0};
memcpy(c + 32 - messagelen, message, messagelen);
secp256k1_scalar_set_b32(&msg, c, NULL);
memset(c, 0, 32);
}
int ret = !secp256k1_scalar_is_zero(&non) && !overflow; int ret = !secp256k1_scalar_is_zero(&non) && !overflow;
secp256k1_ecdsa_sig_t sig; secp256k1_ecdsa_sig_t sig;
if (ret) { if (ret) {
@ -105,10 +96,9 @@ int secp256k1_ecdsa_sign(const unsigned char *message, int messagelen, unsigned
return ret; return ret;
} }
int secp256k1_ecdsa_sign_compact(const unsigned char *message, int messagelen, unsigned char *sig64, const unsigned char *seckey, const unsigned char *nonce, int *recid) { int secp256k1_ecdsa_sign_compact(const unsigned char *msg32, unsigned char *sig64, const unsigned char *seckey, const unsigned char *nonce, int *recid) {
DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL); DEBUG_CHECK(secp256k1_ecmult_gen_consts != NULL);
DEBUG_CHECK(message != NULL); DEBUG_CHECK(msg32 != NULL);
DEBUG_CHECK(messagelen <= 32);
DEBUG_CHECK(sig64 != NULL); DEBUG_CHECK(sig64 != NULL);
DEBUG_CHECK(seckey != NULL); DEBUG_CHECK(seckey != NULL);
DEBUG_CHECK(nonce != NULL); DEBUG_CHECK(nonce != NULL);
@ -117,12 +107,7 @@ int secp256k1_ecdsa_sign_compact(const unsigned char *message, int messagelen, u
secp256k1_scalar_set_b32(&sec, seckey, NULL); secp256k1_scalar_set_b32(&sec, seckey, NULL);
int overflow = 0; int overflow = 0;
secp256k1_scalar_set_b32(&non, nonce, &overflow); secp256k1_scalar_set_b32(&non, nonce, &overflow);
{ secp256k1_scalar_set_b32(&msg, msg32, NULL);
unsigned char c[32] = {0};
memcpy(c + 32 - messagelen, message, messagelen);
secp256k1_scalar_set_b32(&msg, c, NULL);
memset(c, 0, 32);
}
int ret = !secp256k1_scalar_is_zero(&non) && !overflow; int ret = !secp256k1_scalar_is_zero(&non) && !overflow;
secp256k1_ecdsa_sig_t sig; secp256k1_ecdsa_sig_t sig;
if (ret) { if (ret) {
@ -138,18 +123,15 @@ int secp256k1_ecdsa_sign_compact(const unsigned char *message, int messagelen, u
return ret; return ret;
} }
int secp256k1_ecdsa_recover_compact(const unsigned char *msg, int msglen, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid) { int secp256k1_ecdsa_recover_compact(const unsigned char *msg32, const unsigned char *sig64, unsigned char *pubkey, int *pubkeylen, int compressed, int recid) {
DEBUG_CHECK(secp256k1_ecmult_consts != NULL); DEBUG_CHECK(secp256k1_ecmult_consts != NULL);
DEBUG_CHECK(msg != NULL); DEBUG_CHECK(msg32 != NULL);
DEBUG_CHECK(msglen <= 32);
DEBUG_CHECK(sig64 != NULL); DEBUG_CHECK(sig64 != NULL);
DEBUG_CHECK(pubkey != NULL); DEBUG_CHECK(pubkey != NULL);
DEBUG_CHECK(pubkeylen != NULL); DEBUG_CHECK(pubkeylen != NULL);
DEBUG_CHECK(recid >= 0 && recid <= 3); DEBUG_CHECK(recid >= 0 && recid <= 3);
int ret = 0; int ret = 0;
unsigned char msg32[32] = {0};
memcpy(msg32 + 32 - msglen, msg, msglen);
secp256k1_scalar_t m; secp256k1_scalar_t m;
secp256k1_ecdsa_sig_t sig; secp256k1_ecdsa_sig_t sig;
int overflow = 0; int overflow = 0;

334
src/secp256k1/src/tests.c

@ -11,6 +11,8 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <time.h>
#include "secp256k1.c" #include "secp256k1.c"
#include "testrand_impl.h" #include "testrand_impl.h"
@ -46,7 +48,7 @@ void random_group_element_test(secp256k1_ge_t *ge) {
secp256k1_fe_t fe; secp256k1_fe_t fe;
do { do {
random_field_element_test(&fe); random_field_element_test(&fe);
if (secp256k1_ge_set_xo(ge, &fe, secp256k1_rand32() & 1)) if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand32() & 1))
break; break;
} while(1); } while(1);
} }
@ -400,6 +402,30 @@ void scalar_test(void) {
CHECK(secp256k1_scalar_eq(&r1, &r2)); CHECK(secp256k1_scalar_eq(&r1, &r2));
} }
{
/* Test multiplicative identity. */
secp256k1_scalar_t r1, v1;
secp256k1_scalar_set_int(&v1,1);
secp256k1_scalar_mul(&r1, &s1, &v1);
CHECK(secp256k1_scalar_eq(&r1, &s1));
}
{
/* Test additive identity. */
secp256k1_scalar_t r1, v0;
secp256k1_scalar_set_int(&v0,0);
secp256k1_scalar_add(&r1, &s1, &v0);
CHECK(secp256k1_scalar_eq(&r1, &s1));
}
{
/* Test zero product property. */
secp256k1_scalar_t r1, v0;
secp256k1_scalar_set_int(&v0,0);
secp256k1_scalar_mul(&r1, &s1, &v0);
CHECK(secp256k1_scalar_eq(&r1, &v0));
}
} }
void run_scalar_tests(void) { void run_scalar_tests(void) {
@ -411,9 +437,12 @@ void run_scalar_tests(void) {
/* (-1)+1 should be zero. */ /* (-1)+1 should be zero. */
secp256k1_scalar_t s, o; secp256k1_scalar_t s, o;
secp256k1_scalar_set_int(&s, 1); secp256k1_scalar_set_int(&s, 1);
CHECK(secp256k1_scalar_is_one(&s));
secp256k1_scalar_negate(&o, &s); secp256k1_scalar_negate(&o, &s);
secp256k1_scalar_add(&o, &o, &s); secp256k1_scalar_add(&o, &o, &s);
CHECK(secp256k1_scalar_is_zero(&o)); CHECK(secp256k1_scalar_is_zero(&o));
secp256k1_scalar_negate(&o, &o);
CHECK(secp256k1_scalar_is_zero(&o));
} }
#ifndef USE_NUM_NONE #ifndef USE_NUM_NONE
@ -459,14 +488,14 @@ void random_fe_non_zero(secp256k1_fe_t *nz) {
void random_fe_non_square(secp256k1_fe_t *ns) { void random_fe_non_square(secp256k1_fe_t *ns) {
random_fe_non_zero(ns); random_fe_non_zero(ns);
secp256k1_fe_t r; secp256k1_fe_t r;
if (secp256k1_fe_sqrt(&r, ns)) { if (secp256k1_fe_sqrt_var(&r, ns)) {
secp256k1_fe_negate(ns, ns, 1); secp256k1_fe_negate(ns, ns, 1);
} }
} }
int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
secp256k1_fe_t an = *a; secp256k1_fe_normalize(&an); secp256k1_fe_t an = *a; secp256k1_fe_normalize(&an);
secp256k1_fe_t bn = *b; secp256k1_fe_normalize(&bn); secp256k1_fe_t bn = *b; secp256k1_fe_normalize_var(&bn);
return secp256k1_fe_equal(&an, &bn); return secp256k1_fe_equal(&an, &bn);
} }
@ -476,6 +505,55 @@ int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
return check_fe_equal(&x, &one); return check_fe_equal(&x, &one);
} }
void run_field_misc(void) {
const unsigned char f32_5[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05,
};
secp256k1_fe_t x;
secp256k1_fe_t y;
secp256k1_fe_t z;
secp256k1_fe_t q;
secp256k1_fe_t fe5;
CHECK(secp256k1_fe_set_b32(&fe5, f32_5));
for (int i=0; i<5*count; i++) {
random_fe(&x);
random_fe_non_zero(&y);
/* Test the fe equality and comparison operations. */
CHECK(secp256k1_fe_cmp_var(&x, &x) == 0);
CHECK(secp256k1_fe_equal(&x, &x));
z = x;
secp256k1_fe_add(&z,&y);
secp256k1_fe_normalize(&z);
/* Test the conditional move. */
secp256k1_fe_cmov(&z, &x, 0);
CHECK(secp256k1_fe_equal(&x, &z) == 0);
CHECK(secp256k1_fe_cmp_var(&x, &z) != 0);
secp256k1_fe_cmov(&y, &x, 1);
CHECK(secp256k1_fe_equal(&x, &y));
/* Test that mul_int, mul, and add agree. */
secp256k1_fe_add(&y, &x);
secp256k1_fe_add(&y, &x);
z = x;
secp256k1_fe_mul_int(&z, 3);
CHECK(check_fe_equal(&y, &z));
secp256k1_fe_add(&y, &x);
secp256k1_fe_add(&z, &x);
CHECK(check_fe_equal(&z, &y));
z = x;
secp256k1_fe_mul_int(&z, 5);
secp256k1_fe_mul(&q, &x, &fe5);
CHECK(check_fe_equal(&z, &q));
secp256k1_fe_negate(&x, &x, 1);
secp256k1_fe_add(&z, &x);
secp256k1_fe_add(&q, &x);
CHECK(check_fe_equal(&y, &z));
CHECK(check_fe_equal(&q, &y));
}
}
void run_field_inv(void) { void run_field_inv(void) {
secp256k1_fe_t x, xi, xii; secp256k1_fe_t x, xi, xii;
for (int i=0; i<10*count; i++) { for (int i=0; i<10*count; i++) {
@ -498,23 +576,6 @@ void run_field_inv_var(void) {
} }
} }
void run_field_inv_all(void) {
secp256k1_fe_t x[16], xi[16], xii[16];
/* Check it's safe to call for 0 elements */
secp256k1_fe_inv_all(0, xi, x);
for (int i=0; i<count; i++) {
size_t len = (secp256k1_rand32() & 15) + 1;
for (size_t j=0; j<len; j++)
random_fe_non_zero(&x[j]);
secp256k1_fe_inv_all(len, xi, x);
for (size_t j=0; j<len; j++)
CHECK(check_fe_inverse(&x[j], &xi[j]));
secp256k1_fe_inv_all(len, xii, xi);
for (size_t j=0; j<len; j++)
CHECK(check_fe_equal(&x[j], &xii[j]));
}
}
void run_field_inv_all_var(void) { void run_field_inv_all_var(void) {
secp256k1_fe_t x[16], xi[16], xii[16]; secp256k1_fe_t x[16], xi[16], xii[16];
/* Check it's safe to call for 0 elements */ /* Check it's safe to call for 0 elements */
@ -549,7 +610,7 @@ void run_sqr(void) {
void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) { void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
secp256k1_fe_t r1, r2; secp256k1_fe_t r1, r2;
int v = secp256k1_fe_sqrt(&r1, a); int v = secp256k1_fe_sqrt_var(&r1, a);
CHECK((v == 0) == (k == NULL)); CHECK((v == 0) == (k == NULL));
if (k != NULL) { if (k != NULL) {
@ -769,6 +830,7 @@ void run_ecmult_chain(void) {
} }
void test_point_times_order(const secp256k1_gej_t *point) { void test_point_times_order(const secp256k1_gej_t *point) {
unsigned char pub[65];
/* X * (point + G) + (order-X) * (pointer + G) = 0 */ /* X * (point + G) + (order-X) * (pointer + G) = 0 */
secp256k1_scalar_t x; secp256k1_scalar_t x;
random_scalar_order_test(&x); random_scalar_order_test(&x);
@ -779,27 +841,36 @@ void test_point_times_order(const secp256k1_gej_t *point) {
secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */ secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
secp256k1_gej_add_var(&res1, &res1, &res2); secp256k1_gej_add_var(&res1, &res1, &res2);
CHECK(secp256k1_gej_is_infinity(&res1)); CHECK(secp256k1_gej_is_infinity(&res1));
CHECK(secp256k1_gej_is_valid(&res1) == 0); CHECK(secp256k1_gej_is_valid_var(&res1) == 0);
secp256k1_ge_t res3; secp256k1_ge_t res3;
secp256k1_ge_set_gej(&res3, &res1); secp256k1_ge_set_gej(&res3, &res1);
CHECK(secp256k1_ge_is_infinity(&res3)); CHECK(secp256k1_ge_is_infinity(&res3));
CHECK(secp256k1_ge_is_valid(&res3) == 0); CHECK(secp256k1_ge_is_valid_var(&res3) == 0);
int psize = 65;
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0);
psize = 65;
CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0);
} }
void run_point_times_order(void) { void run_point_times_order(void) {
secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "02", 2)); secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "02", 2));
for (int i=0; i<500; i++) { for (int i=0; i<500; i++) {
secp256k1_ge_t p; secp256k1_ge_t p;
if (secp256k1_ge_set_xo(&p, &x, 1)) { if (secp256k1_ge_set_xo_var(&p, &x, 1)) {
CHECK(secp256k1_ge_is_valid(&p)); CHECK(secp256k1_ge_is_valid_var(&p));
secp256k1_gej_t j; secp256k1_gej_t j;
secp256k1_gej_set_ge(&j, &p); secp256k1_gej_set_ge(&j, &p);
CHECK(secp256k1_gej_is_valid(&j)); CHECK(secp256k1_gej_is_valid_var(&j));
test_point_times_order(&j); test_point_times_order(&j);
} }
secp256k1_fe_sqr(&x, &x); secp256k1_fe_sqr(&x, &x);
} }
char c[65]; int cl=65; char c[65];
int cl = 1;
c[1] = 123;
secp256k1_fe_get_hex(c, &cl, &x); /* Check that fe_get_hex handles a too short input. */
CHECK(c[1] == 123);
cl = 65;
secp256k1_fe_get_hex(c, &cl, &x); secp256k1_fe_get_hex(c, &cl, &x);
CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0); CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0);
} }
@ -894,7 +965,10 @@ void test_ecdsa_end_to_end(void) {
/* Construct and verify corresponding public key. */ /* Construct and verify corresponding public key. */
CHECK(secp256k1_ec_seckey_verify(privkey) == 1); CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
unsigned char pubkey[65]; int pubkeylen = 65; unsigned char pubkey[65]; int pubkeylen = 65;
CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, secp256k1_rand32() % 2) == 1); CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, (secp256k1_rand32() & 3) != 0) == 1);
if (secp256k1_rand32() & 1) {
CHECK(secp256k1_ec_pubkey_decompress(pubkey, &pubkeylen));
}
CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen)); CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));
/* Verify private key import and export. */ /* Verify private key import and export. */
@ -935,38 +1009,96 @@ void test_ecdsa_end_to_end(void) {
while(1) { while(1) {
unsigned char rnd[32]; unsigned char rnd[32];
secp256k1_rand256_test(rnd); secp256k1_rand256_test(rnd);
if (secp256k1_ecdsa_sign(message, 32, signature, &signaturelen, privkey, rnd) == 1) { if (secp256k1_ecdsa_sign(message, signature, &signaturelen, privkey, rnd) == 1) {
break; break;
} }
} }
/* Verify. */ /* Verify. */
CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) == 1); CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) == 1);
/* Destroy signature and verify again. */ /* Destroy signature and verify again. */
signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255); signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) != 1); CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) != 1);
/* Compact sign. */ /* Compact sign. */
unsigned char csignature[64]; int recid = 0; unsigned char csignature[64]; int recid = 0;
while(1) { while(1) {
unsigned char rnd[32]; unsigned char rnd[32];
secp256k1_rand256_test(rnd); secp256k1_rand256_test(rnd);
if (secp256k1_ecdsa_sign_compact(message, 32, csignature, privkey, rnd, &recid) == 1) { if (secp256k1_ecdsa_sign_compact(message, csignature, privkey, rnd, &recid) == 1) {
break; break;
} }
} }
/* Recover. */ /* Recover. */
unsigned char recpubkey[65]; int recpubkeylen = 0; unsigned char recpubkey[65]; int recpubkeylen = 0;
CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1); CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
CHECK(recpubkeylen == pubkeylen); CHECK(recpubkeylen == pubkeylen);
CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0); CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
/* Destroy signature and verify again. */ /* Destroy signature and verify again. */
csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255); csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 || CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 ||
memcmp(pubkey, recpubkey, pubkeylen) != 0); memcmp(pubkey, recpubkey, pubkeylen) != 0);
CHECK(recpubkeylen == pubkeylen); CHECK(recpubkeylen == pubkeylen);
} }
void test_random_pubkeys(void) {
unsigned char in[65];
/* Generate some randomly sized pubkeys. */
uint32_t r = secp256k1_rand32();
int len = (r & 3) == 0 ? 65 : 33;
r>>=2;
if ((r & 3) == 0) len = (r & 252) >> 3;
r>>=8;
if (len == 65) {
in[0] = (r & 2) ? 4 : (r & 1? 6 : 7);
} else {
in[0] = (r & 1) ? 2 : 3;
}
r>>=2;
if ((r & 7) == 0) in[0] = (r & 2040) >> 3;
r>>=11;
if (len > 1) secp256k1_rand256(&in[1]);
if (len > 33) secp256k1_rand256(&in[33]);
secp256k1_ge_t elem;
secp256k1_ge_t elem2;
if (secp256k1_eckey_pubkey_parse(&elem, in, len)) {
unsigned char out[65];
unsigned char firstb;
int res;
int size = len;
firstb = in[0];
/* If the pubkey can be parsed, it should round-trip... */
CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33));
CHECK(size == len);
CHECK(memcmp(&in[1], &out[1], len-1) == 0);
/* ... except for the type of hybrid inputs. */
if ((in[0] != 6) && (in[0] != 7)) CHECK(in[0] == out[0]);
size = 65;
CHECK(secp256k1_eckey_pubkey_serialize(&elem, in, &size, 0));
CHECK(size == 65);
CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size));
CHECK(ge_equals_ge(&elem,&elem2));
/* Check that the X9.62 hybrid type is checked. */
in[0] = (r & 1) ? 6 : 7;
res = secp256k1_eckey_pubkey_parse(&elem2, in, size);
if (firstb == 2 || firstb == 3) {
if (in[0] == firstb + 4) CHECK(res);
else CHECK(!res);
}
if (res) {
CHECK(ge_equals_ge(&elem,&elem2));
CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0));
CHECK(memcmp(&in[1], &out[1], 64) == 0);
}
}
}
void run_random_pubkeys(void) {
for (int i=0; i<10*count; i++) {
test_random_pubkeys();
}
}
void run_ecdsa_end_to_end(void) { void run_ecdsa_end_to_end(void) {
for (int i=0; i<64*count; i++) { for (int i=0; i<64*count; i++) {
test_ecdsa_end_to_end(); test_ecdsa_end_to_end();
@ -995,10 +1127,10 @@ void test_ecdsa_edge_cases(void) {
}; };
unsigned char pubkey[65]; unsigned char pubkey[65];
int pubkeylen = 65; int pubkeylen = 65;
CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 0)); CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0));
CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 1)); CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1));
CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 2)); CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2));
CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 3)); CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3));
/* signature (r,s) = (4,4), which can be recovered with all 4 recids. */ /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
const unsigned char sigb64[64] = { const unsigned char sigb64[64] = {
@ -1016,6 +1148,36 @@ void test_ecdsa_edge_cases(void) {
for (int recid = 0; recid < 4; recid++) { for (int recid = 0; recid < 4; recid++) {
/* (4,4) encoded in DER. */ /* (4,4) encoded in DER. */
unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04}; unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01};
unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00};
unsigned char sigbderalt1[39] = {
0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
};
unsigned char sigbderalt2[39] = {
0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
};
unsigned char sigbderalt3[40] = {
0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
};
unsigned char sigbderalt4[40] = {
0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
};
/* (order + r,4) encoded in DER. */ /* (order + r,4) encoded in DER. */
unsigned char sigbderlong[40] = { unsigned char sigbderlong[40] = {
0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF, 0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
@ -1024,18 +1186,45 @@ void test_ecdsa_edge_cases(void) {
0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04 0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
}; };
CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkeyb, &pubkeyblen, 1, recid)); CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkeyb, &pubkeyblen, 1, recid));
CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1); CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1);
for (int recid2 = 0; recid2 < 4; recid2++) { for (int recid2 = 0; recid2 < 4; recid2++) {
unsigned char pubkey2b[33]; unsigned char pubkey2b[33];
int pubkey2blen = 33; int pubkey2blen = 33;
CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkey2b, &pubkey2blen, 1, recid2)); CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkey2b, &pubkey2blen, 1, recid2));
/* Verifying with (order + r,4) should always fail. */ /* Verifying with (order + r,4) should always fail. */
CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1); CHECK(secp256k1_ecdsa_verify(msg32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1);
} }
/* DER parsing tests. */
/* Zero length r/s. */
CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zr, sizeof(sigcder_zr), pubkeyb, pubkeyblen) == -2);
CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zs, sizeof(sigcder_zs), pubkeyb, pubkeyblen) == -2);
/* Leading zeros. */
CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt1, sizeof(sigbderalt1), pubkeyb, pubkeyblen) == 1);
CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt2, sizeof(sigbderalt2), pubkeyb, pubkeyblen) == 1);
CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == 1);
CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == 1);
sigbderalt3[4] = 1;
CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == -2);
sigbderalt4[7] = 1;
CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == -2);
/* Damage signature. */ /* Damage signature. */
sigbder[7]++; sigbder[7]++;
CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0); CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0);
sigbder[7]--;
CHECK(secp256k1_ecdsa_verify(msg32, sigbder, 6, pubkeyb, pubkeyblen) == -2);
CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder)-1, pubkeyb, pubkeyblen) == -2);
for(int i = 0; i<8; i++) {
unsigned char orig = sigbder[i];
/*Try every single-byte change.*/
for (int c=0; c<256; c++) {
if (c == orig ) continue;
sigbder[i] = c;
CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) ==
(i==4 || i==7) ? 0 : -2 );
}
sigbder[i] = orig;
}
} }
/* Test the case where ECDSA recomputes a point that is infinity. */ /* Test the case where ECDSA recomputes a point that is infinity. */
@ -1069,18 +1258,60 @@ void test_ecdsa_edge_cases(void) {
}; };
unsigned char pubkeyc[65]; unsigned char pubkeyc[65];
int pubkeyclen = 65; int pubkeyclen = 65;
CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1); CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1);
CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1); CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1);
sigcder[4] = 0; sigcder[4] = 0;
sigc64[31] = 0; sigc64[31] = 0;
CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0); CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0); CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
sigcder[4] = 1; sigcder[4] = 1;
sigcder[7] = 0; sigcder[7] = 0;
sigc64[31] = 1; sigc64[31] = 1;
sigc64[63] = 0; sigc64[63] = 0;
CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0); CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0); CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
}
/*Signature where s would be zero.*/
{
const unsigned char nonce[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
};
const unsigned char key[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
};
unsigned char msg[32] = {
0x86, 0x41, 0x99, 0x81, 0x06, 0x23, 0x44, 0x53,
0xaa, 0x5f, 0x9d, 0x6a, 0x31, 0x78, 0xf4, 0xf7,
0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62,
0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9,
};
unsigned char sig[72];
int siglen = 72;
CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce) == 0);
msg[31] = 0xaa;
siglen = 72;
CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce) == 1);
}
/* Privkey export where pubkey is the point at infinity. */
{
unsigned char privkey[300];
unsigned char seckey[32] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41,
};
int outlen = 300;
CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 0));
CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 1));
} }
} }
@ -1185,8 +1416,8 @@ int main(int argc, char **argv) {
/* field tests */ /* field tests */
run_field_inv(); run_field_inv();
run_field_inv_var(); run_field_inv_var();
run_field_inv_all();
run_field_inv_all_var(); run_field_inv_all_var();
run_field_misc();
run_sqr(); run_sqr();
run_sqrt(); run_sqrt();
@ -1199,6 +1430,7 @@ int main(int argc, char **argv) {
run_ecmult_chain(); run_ecmult_chain();
/* ecdsa tests */ /* ecdsa tests */
run_random_pubkeys();
run_ecdsa_sign_verify(); run_ecdsa_sign_verify();
run_ecdsa_end_to_end(); run_ecdsa_end_to_end();
run_ecdsa_edge_cases(); run_ecdsa_edge_cases();

6
src/secp256k1/src/util.h

@ -61,6 +61,12 @@
#define VERIFY_CHECK(cond) do { (void)(cond); } while(0) #define VERIFY_CHECK(cond) do { (void)(cond); } while(0)
#endif #endif
static inline void *checked_malloc(size_t size) {
void *ret = malloc(size);
CHECK(ret != NULL);
return ret;
}
/* Macro for restrict, when available and not in a VERIFY build. */ /* Macro for restrict, when available and not in a VERIFY build. */
#if defined(SECP256K1_BUILD) && defined(VERIFY) #if defined(SECP256K1_BUILD) && defined(VERIFY)
# define SECP256K1_RESTRICT # define SECP256K1_RESTRICT

Loading…
Cancel
Save