|
|
|
@ -2,13 +2,16 @@
@@ -2,13 +2,16 @@
|
|
|
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
|
|
#include <map> |
|
|
|
|
|
|
|
|
|
#include <openssl/ecdsa.h> |
|
|
|
|
#include <openssl/rand.h> |
|
|
|
|
#include <openssl/obj_mac.h> |
|
|
|
|
|
|
|
|
|
#include "key.h" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// anonymous namespace with local implementation code (OpenSSL interaction)
|
|
|
|
|
namespace { |
|
|
|
|
|
|
|
|
|
// Generate a private key from just the secret parameter
|
|
|
|
|
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key) |
|
|
|
|
{ |
|
|
|
@ -120,293 +123,273 @@ err:
@@ -120,293 +123,273 @@ err:
|
|
|
|
|
return ret; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void CKey::SetCompressedPubKey(bool fCompressed) |
|
|
|
|
{ |
|
|
|
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED); |
|
|
|
|
fCompressedPubKey = true; |
|
|
|
|
} |
|
|
|
|
// RAII Wrapper around OpenSSL's EC_KEY
|
|
|
|
|
class CECKey { |
|
|
|
|
private: |
|
|
|
|
EC_KEY *pkey; |
|
|
|
|
|
|
|
|
|
void CKey::Reset() |
|
|
|
|
{ |
|
|
|
|
fCompressedPubKey = false; |
|
|
|
|
if (pkey != NULL) |
|
|
|
|
public: |
|
|
|
|
CECKey() { |
|
|
|
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1); |
|
|
|
|
assert(pkey != NULL); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
~CECKey() { |
|
|
|
|
EC_KEY_free(pkey); |
|
|
|
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1); |
|
|
|
|
if (pkey == NULL) |
|
|
|
|
throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed"); |
|
|
|
|
fSet = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CKey::CKey() |
|
|
|
|
{ |
|
|
|
|
pkey = NULL; |
|
|
|
|
Reset(); |
|
|
|
|
} |
|
|
|
|
void GetSecretBytes(unsigned char vch[32]) const { |
|
|
|
|
const BIGNUM *bn = EC_KEY_get0_private_key(pkey); |
|
|
|
|
assert(bn); |
|
|
|
|
int nBytes = BN_num_bytes(bn); |
|
|
|
|
int n=BN_bn2bin(bn,&vch[32 - nBytes]); |
|
|
|
|
assert(n == nBytes); |
|
|
|
|
memset(vch, 0, 32 - nBytes); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CKey::CKey(const CKey& b) |
|
|
|
|
{ |
|
|
|
|
pkey = EC_KEY_dup(b.pkey); |
|
|
|
|
if (pkey == NULL) |
|
|
|
|
throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed"); |
|
|
|
|
fSet = b.fSet; |
|
|
|
|
} |
|
|
|
|
void SetSecretBytes(const unsigned char vch[32]) { |
|
|
|
|
BIGNUM bn; |
|
|
|
|
BN_init(&bn); |
|
|
|
|
assert(BN_bin2bn(vch, 32, &bn)); |
|
|
|
|
assert(EC_KEY_regenerate_key(pkey, &bn)); |
|
|
|
|
BN_clear_free(&bn); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CKey& CKey::operator=(const CKey& b) |
|
|
|
|
{ |
|
|
|
|
if (!EC_KEY_copy(pkey, b.pkey)) |
|
|
|
|
throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed"); |
|
|
|
|
fSet = b.fSet; |
|
|
|
|
return (*this); |
|
|
|
|
} |
|
|
|
|
void GetPrivKey(CPrivKey &privkey) { |
|
|
|
|
int nSize = i2d_ECPrivateKey(pkey, NULL); |
|
|
|
|
assert(nSize); |
|
|
|
|
privkey.resize(nSize); |
|
|
|
|
unsigned char* pbegin = &privkey[0]; |
|
|
|
|
int nSize2 = i2d_ECPrivateKey(pkey, &pbegin); |
|
|
|
|
assert(nSize == nSize2); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CKey::~CKey() |
|
|
|
|
{ |
|
|
|
|
EC_KEY_free(pkey); |
|
|
|
|
} |
|
|
|
|
bool SetPrivKey(const CPrivKey &privkey) { |
|
|
|
|
const unsigned char* pbegin = &privkey[0]; |
|
|
|
|
if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) { |
|
|
|
|
// d2i_ECPrivateKey returns true if parsing succeeds.
|
|
|
|
|
// This doesn't necessarily mean the key is valid.
|
|
|
|
|
if (EC_KEY_check_key(pkey)) |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::IsNull() const |
|
|
|
|
{ |
|
|
|
|
return !fSet; |
|
|
|
|
} |
|
|
|
|
void GetPubKey(CPubKey &pubkey, bool fCompressed) { |
|
|
|
|
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED); |
|
|
|
|
int nSize = i2o_ECPublicKey(pkey, NULL); |
|
|
|
|
assert(nSize); |
|
|
|
|
assert(nSize <= 65); |
|
|
|
|
unsigned char c[65]; |
|
|
|
|
unsigned char *pbegin = c; |
|
|
|
|
int nSize2 = i2o_ECPublicKey(pkey, &pbegin); |
|
|
|
|
assert(nSize == nSize2); |
|
|
|
|
pubkey.Set(&c[0], &c[nSize]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::IsCompressed() const |
|
|
|
|
{ |
|
|
|
|
return fCompressedPubKey; |
|
|
|
|
} |
|
|
|
|
bool SetPubKey(const CPubKey &pubkey) { |
|
|
|
|
const unsigned char* pbegin = pubkey.begin(); |
|
|
|
|
return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void CKey::MakeNewKey(bool fCompressed) |
|
|
|
|
{ |
|
|
|
|
if (!EC_KEY_generate_key(pkey)) |
|
|
|
|
throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed"); |
|
|
|
|
if (fCompressed) |
|
|
|
|
SetCompressedPubKey(); |
|
|
|
|
fSet = true; |
|
|
|
|
} |
|
|
|
|
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) { |
|
|
|
|
unsigned int nSize = ECDSA_size(pkey); |
|
|
|
|
vchSig.resize(nSize); // Make sure it is big enough
|
|
|
|
|
assert(ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey)); |
|
|
|
|
vchSig.resize(nSize); // Shrink to fit actual size
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::SetPrivKey(const CPrivKey& vchPrivKey) |
|
|
|
|
{ |
|
|
|
|
const unsigned char* pbegin = &vchPrivKey[0]; |
|
|
|
|
if (d2i_ECPrivateKey(&pkey, &pbegin, vchPrivKey.size())) |
|
|
|
|
{ |
|
|
|
|
// In testing, d2i_ECPrivateKey can return true
|
|
|
|
|
// but fill in pkey with a key that fails
|
|
|
|
|
// EC_KEY_check_key, so:
|
|
|
|
|
if (EC_KEY_check_key(pkey)) |
|
|
|
|
{ |
|
|
|
|
fSet = true; |
|
|
|
|
return true; |
|
|
|
|
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) { |
|
|
|
|
// -1 = error, 0 = bad sig, 1 = good
|
|
|
|
|
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1) |
|
|
|
|
return false; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) { |
|
|
|
|
bool fOk = false; |
|
|
|
|
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); |
|
|
|
|
if (sig==NULL) |
|
|
|
|
return false; |
|
|
|
|
memset(p64, 0, 64); |
|
|
|
|
int nBitsR = BN_num_bits(sig->r); |
|
|
|
|
int nBitsS = BN_num_bits(sig->s); |
|
|
|
|
if (nBitsR <= 256 && nBitsS <= 256) { |
|
|
|
|
CPubKey pubkey; |
|
|
|
|
GetPubKey(pubkey, true); |
|
|
|
|
for (int i=0; i<4; i++) { |
|
|
|
|
CECKey keyRec; |
|
|
|
|
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) { |
|
|
|
|
CPubKey pubkeyRec; |
|
|
|
|
keyRec.GetPubKey(pubkeyRec, true); |
|
|
|
|
if (pubkeyRec == pubkey) { |
|
|
|
|
rec = i; |
|
|
|
|
fOk = true; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
assert(fOk); |
|
|
|
|
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]); |
|
|
|
|
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]); |
|
|
|
|
} |
|
|
|
|
ECDSA_SIG_free(sig); |
|
|
|
|
return fOk; |
|
|
|
|
} |
|
|
|
|
// If vchPrivKey data is bad d2i_ECPrivateKey() can
|
|
|
|
|
// leave pkey in a state where calling EC_KEY_free()
|
|
|
|
|
// crashes. To avoid that, set pkey to NULL and
|
|
|
|
|
// leak the memory (a leak is better than a crash)
|
|
|
|
|
pkey = NULL; |
|
|
|
|
Reset(); |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::SetSecret(const CSecret& vchSecret, bool fCompressed) |
|
|
|
|
{ |
|
|
|
|
EC_KEY_free(pkey); |
|
|
|
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1); |
|
|
|
|
if (pkey == NULL) |
|
|
|
|
throw key_error("CKey::SetSecret() : EC_KEY_new_by_curve_name failed"); |
|
|
|
|
if (vchSecret.size() != 32) |
|
|
|
|
throw key_error("CKey::SetSecret() : secret must be 32 bytes"); |
|
|
|
|
BIGNUM *bn = BN_bin2bn(&vchSecret[0],32,BN_new()); |
|
|
|
|
if (bn == NULL) |
|
|
|
|
throw key_error("CKey::SetSecret() : BN_bin2bn failed"); |
|
|
|
|
if (!EC_KEY_regenerate_key(pkey,bn)) |
|
|
|
|
// reconstruct public key from a compact signature
|
|
|
|
|
// This is only slightly more CPU intensive than just verifying it.
|
|
|
|
|
// If this function succeeds, the recovered public key is guaranteed to be valid
|
|
|
|
|
// (the signature is a valid signature of the given data for that key)
|
|
|
|
|
bool Recover(const uint256 &hash, const unsigned char *p64, int rec) |
|
|
|
|
{ |
|
|
|
|
BN_clear_free(bn); |
|
|
|
|
throw key_error("CKey::SetSecret() : EC_KEY_regenerate_key failed"); |
|
|
|
|
if (rec<0 || rec>=3) |
|
|
|
|
return false; |
|
|
|
|
ECDSA_SIG *sig = ECDSA_SIG_new(); |
|
|
|
|
BN_bin2bn(&p64[0], 32, sig->r); |
|
|
|
|
BN_bin2bn(&p64[32], 32, sig->s); |
|
|
|
|
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1; |
|
|
|
|
ECDSA_SIG_free(sig); |
|
|
|
|
return ret; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
}; // end of anonymous namespace
|
|
|
|
|
|
|
|
|
|
bool CKey::Check(const unsigned char *vch) { |
|
|
|
|
// Do not convert to OpenSSL's data structures for range-checking keys,
|
|
|
|
|
// it's easy enough to do directly.
|
|
|
|
|
static const unsigned char vchMax[32] = { |
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, |
|
|
|
|
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, |
|
|
|
|
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, |
|
|
|
|
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40 |
|
|
|
|
}; |
|
|
|
|
bool fIsZero = true; |
|
|
|
|
for (int i=0; i<32 && fIsZero; i++) |
|
|
|
|
if (vch[i] != 0) |
|
|
|
|
fIsZero = false; |
|
|
|
|
if (fIsZero) |
|
|
|
|
return false; |
|
|
|
|
for (int i=0; i<32; i++) { |
|
|
|
|
if (vch[i] < vchMax[i]) |
|
|
|
|
return true; |
|
|
|
|
if (vch[i] > vchMax[i]) |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
BN_clear_free(bn); |
|
|
|
|
fSet = true; |
|
|
|
|
if (fCompressed || fCompressedPubKey) |
|
|
|
|
SetCompressedPubKey(); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CSecret CKey::GetSecret(bool &fCompressed) const |
|
|
|
|
{ |
|
|
|
|
CSecret vchRet; |
|
|
|
|
vchRet.resize(32); |
|
|
|
|
const BIGNUM *bn = EC_KEY_get0_private_key(pkey); |
|
|
|
|
int nBytes = BN_num_bytes(bn); |
|
|
|
|
if (bn == NULL) |
|
|
|
|
throw key_error("CKey::GetSecret() : EC_KEY_get0_private_key failed"); |
|
|
|
|
int n=BN_bn2bin(bn,&vchRet[32 - nBytes]); |
|
|
|
|
if (n != nBytes) |
|
|
|
|
throw key_error("CKey::GetSecret(): BN_bn2bin failed"); |
|
|
|
|
fCompressed = fCompressedPubKey; |
|
|
|
|
return vchRet; |
|
|
|
|
void CKey::MakeNewKey(bool fCompressedIn) { |
|
|
|
|
do { |
|
|
|
|
RAND_bytes(vch, sizeof(vch)); |
|
|
|
|
} while (!Check(vch)); |
|
|
|
|
fValid = true; |
|
|
|
|
fCompressed = fCompressedIn; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CPrivKey CKey::GetPrivKey() const |
|
|
|
|
{ |
|
|
|
|
int nSize = i2d_ECPrivateKey(pkey, NULL); |
|
|
|
|
if (!nSize) |
|
|
|
|
throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey failed"); |
|
|
|
|
CPrivKey vchPrivKey(nSize, 0); |
|
|
|
|
unsigned char* pbegin = &vchPrivKey[0]; |
|
|
|
|
if (i2d_ECPrivateKey(pkey, &pbegin) != nSize) |
|
|
|
|
throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey returned unexpected size"); |
|
|
|
|
return vchPrivKey; |
|
|
|
|
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { |
|
|
|
|
CECKey key; |
|
|
|
|
if (!key.SetPrivKey(privkey)) |
|
|
|
|
return false; |
|
|
|
|
key.GetSecretBytes(vch); |
|
|
|
|
fCompressed = fCompressedIn; |
|
|
|
|
fValid = true; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::SetPubKey(const CPubKey& vchPubKey) |
|
|
|
|
{ |
|
|
|
|
const unsigned char* pbegin = vchPubKey.begin(); |
|
|
|
|
if (o2i_ECPublicKey(&pkey, &pbegin, vchPubKey.size())) |
|
|
|
|
{ |
|
|
|
|
fSet = true; |
|
|
|
|
if (vchPubKey.size() == 33) |
|
|
|
|
SetCompressedPubKey(); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
pkey = NULL; |
|
|
|
|
Reset(); |
|
|
|
|
return false; |
|
|
|
|
CPrivKey CKey::GetPrivKey() const { |
|
|
|
|
assert(fValid); |
|
|
|
|
CECKey key; |
|
|
|
|
key.SetSecretBytes(vch); |
|
|
|
|
CPrivKey privkey; |
|
|
|
|
key.GetPrivKey(privkey); |
|
|
|
|
return privkey; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
CPubKey CKey::GetPubKey() const |
|
|
|
|
{ |
|
|
|
|
int nSize = i2o_ECPublicKey(pkey, NULL); |
|
|
|
|
if (!nSize) |
|
|
|
|
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed"); |
|
|
|
|
assert(nSize <= 65); |
|
|
|
|
CPubKey ret; |
|
|
|
|
unsigned char *pbegin = ret.begin(); |
|
|
|
|
if (i2o_ECPublicKey(pkey, &pbegin) != nSize) |
|
|
|
|
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size"); |
|
|
|
|
assert((int)ret.size() == nSize); |
|
|
|
|
return ret; |
|
|
|
|
CPubKey CKey::GetPubKey() const { |
|
|
|
|
assert(fValid); |
|
|
|
|
CECKey key; |
|
|
|
|
key.SetSecretBytes(vch); |
|
|
|
|
CPubKey pubkey; |
|
|
|
|
key.GetPubKey(pubkey, fCompressed); |
|
|
|
|
return pubkey; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::Sign(uint256 hash, std::vector<unsigned char>& vchSig) |
|
|
|
|
{ |
|
|
|
|
unsigned int nSize = ECDSA_size(pkey); |
|
|
|
|
vchSig.resize(nSize); // Make sure it is big enough
|
|
|
|
|
if (!ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey)) |
|
|
|
|
{ |
|
|
|
|
vchSig.clear(); |
|
|
|
|
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const { |
|
|
|
|
if (!fValid) |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
vchSig.resize(nSize); // Shrink to fit actual size
|
|
|
|
|
return true; |
|
|
|
|
CECKey key; |
|
|
|
|
key.SetSecretBytes(vch); |
|
|
|
|
return key.Sign(hash, vchSig); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// create a compact signature (65 bytes), which allows reconstructing the used public key
|
|
|
|
|
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
|
|
|
|
|
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
|
|
|
|
|
// 0x1D = second key with even y, 0x1E = second key with odd y
|
|
|
|
|
bool CKey::SignCompact(uint256 hash, std::vector<unsigned char>& vchSig) |
|
|
|
|
{ |
|
|
|
|
bool fOk = false; |
|
|
|
|
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); |
|
|
|
|
if (sig==NULL) |
|
|
|
|
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const { |
|
|
|
|
if (!fValid) |
|
|
|
|
return false; |
|
|
|
|
vchSig.clear(); |
|
|
|
|
vchSig.resize(65,0); |
|
|
|
|
int nBitsR = BN_num_bits(sig->r); |
|
|
|
|
int nBitsS = BN_num_bits(sig->s); |
|
|
|
|
if (nBitsR <= 256 && nBitsS <= 256) |
|
|
|
|
{ |
|
|
|
|
int nRecId = -1; |
|
|
|
|
for (int i=0; i<4; i++) |
|
|
|
|
{ |
|
|
|
|
CKey keyRec; |
|
|
|
|
keyRec.fSet = true; |
|
|
|
|
if (fCompressedPubKey) |
|
|
|
|
keyRec.SetCompressedPubKey(); |
|
|
|
|
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) |
|
|
|
|
if (keyRec.GetPubKey() == this->GetPubKey()) |
|
|
|
|
{ |
|
|
|
|
nRecId = i; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (nRecId == -1) |
|
|
|
|
{ |
|
|
|
|
ECDSA_SIG_free(sig); |
|
|
|
|
throw key_error("CKey::SignCompact() : unable to construct recoverable key"); |
|
|
|
|
} |
|
|
|
|
CECKey key; |
|
|
|
|
key.SetSecretBytes(vch); |
|
|
|
|
vchSig.resize(65); |
|
|
|
|
int rec = -1; |
|
|
|
|
if (!key.SignCompact(hash, &vchSig[1], rec)) |
|
|
|
|
return false; |
|
|
|
|
assert(rec != -1); |
|
|
|
|
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
vchSig[0] = nRecId+27+(fCompressedPubKey ? 4 : 0); |
|
|
|
|
BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]); |
|
|
|
|
BN_bn2bin(sig->s,&vchSig[65-(nBitsS+7)/8]); |
|
|
|
|
fOk = true; |
|
|
|
|
} |
|
|
|
|
ECDSA_SIG_free(sig); |
|
|
|
|
return fOk; |
|
|
|
|
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { |
|
|
|
|
if (!IsValid()) |
|
|
|
|
return false; |
|
|
|
|
CECKey key; |
|
|
|
|
if (!key.SetPubKey(*this)) |
|
|
|
|
return false; |
|
|
|
|
if (!key.Verify(hash, vchSig)) |
|
|
|
|
return false; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// reconstruct public key from a compact signature
|
|
|
|
|
// This is only slightly more CPU intensive than just verifying it.
|
|
|
|
|
// If this function succeeds, the recovered public key is guaranteed to be valid
|
|
|
|
|
// (the signature is a valid signature of the given data for that key)
|
|
|
|
|
bool CKey::SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig) |
|
|
|
|
{ |
|
|
|
|
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) { |
|
|
|
|
if (vchSig.size() != 65) |
|
|
|
|
return false; |
|
|
|
|
int nV = vchSig[0]; |
|
|
|
|
if (nV<27 || nV>=35) |
|
|
|
|
CECKey key; |
|
|
|
|
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4)) |
|
|
|
|
return false; |
|
|
|
|
ECDSA_SIG *sig = ECDSA_SIG_new(); |
|
|
|
|
BN_bin2bn(&vchSig[1],32,sig->r); |
|
|
|
|
BN_bin2bn(&vchSig[33],32,sig->s); |
|
|
|
|
|
|
|
|
|
EC_KEY_free(pkey); |
|
|
|
|
pkey = EC_KEY_new_by_curve_name(NID_secp256k1); |
|
|
|
|
if (nV >= 31) |
|
|
|
|
{ |
|
|
|
|
SetCompressedPubKey(); |
|
|
|
|
nV -= 4; |
|
|
|
|
} |
|
|
|
|
if (ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), nV - 27, 0) == 1) |
|
|
|
|
{ |
|
|
|
|
fSet = true; |
|
|
|
|
ECDSA_SIG_free(sig); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
ECDSA_SIG_free(sig); |
|
|
|
|
return false; |
|
|
|
|
key.GetPubKey(*this, (vchSig[0] - 27) & 4); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::Verify(uint256 hash, const std::vector<unsigned char>& vchSig) |
|
|
|
|
{ |
|
|
|
|
// -1 = error, 0 = bad sig, 1 = good
|
|
|
|
|
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1) |
|
|
|
|
bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const { |
|
|
|
|
if (!IsValid()) |
|
|
|
|
return false; |
|
|
|
|
if (vchSig.size() != 65) |
|
|
|
|
return false; |
|
|
|
|
CECKey key; |
|
|
|
|
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4)) |
|
|
|
|
return false; |
|
|
|
|
CPubKey pubkeyRec; |
|
|
|
|
key.GetPubKey(pubkeyRec, IsCompressed()); |
|
|
|
|
if (*this != pubkeyRec) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig) |
|
|
|
|
{ |
|
|
|
|
CKey key; |
|
|
|
|
if (!key.SetCompactSignature(hash, vchSig)) |
|
|
|
|
bool CPubKey::IsFullyValid() const { |
|
|
|
|
if (!IsValid()) |
|
|
|
|
return false; |
|
|
|
|
if (GetPubKey() != key.GetPubKey()) |
|
|
|
|
CECKey key; |
|
|
|
|
if (!key.SetPubKey(*this)) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool CKey::IsValid() |
|
|
|
|
{ |
|
|
|
|
if (!fSet) |
|
|
|
|
bool CPubKey::Decompress() { |
|
|
|
|
if (!IsValid()) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
if (!EC_KEY_check_key(pkey)) |
|
|
|
|
CECKey key; |
|
|
|
|
if (!key.SetPubKey(*this)) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
bool fCompr; |
|
|
|
|
CSecret secret = GetSecret(fCompr); |
|
|
|
|
CKey key2; |
|
|
|
|
key2.SetSecret(secret, fCompr); |
|
|
|
|
return GetPubKey() == key2.GetPubKey(); |
|
|
|
|
key.GetPubKey(*this, false); |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|