|
|
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
|
|
// Copyright (c) 2009-2017 The Bitcoin Core developers
|
|
|
|
// Distributed under the MIT software license, see the accompanying
|
|
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
|
|
|
|
#ifndef __cplusplus
|
|
|
|
#error This header can only be compiled as C++.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef BITCOIN_PROTOCOL_H
|
|
|
|
#define BITCOIN_PROTOCOL_H
|
|
|
|
|
|
|
|
#include <netaddress.h>
|
|
|
|
#include <serialize.h>
|
|
|
|
#include <uint256.h>
|
|
|
|
#include <version.h>
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
/** Message header.
|
|
|
|
* (4) message start.
|
|
|
|
* (12) command.
|
|
|
|
* (4) size.
|
|
|
|
* (4) checksum.
|
|
|
|
*/
|
|
|
|
class CMessageHeader
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
static constexpr size_t MESSAGE_START_SIZE = 4;
|
|
|
|
static constexpr size_t COMMAND_SIZE = 12;
|
|
|
|
static constexpr size_t MESSAGE_SIZE_SIZE = 4;
|
|
|
|
static constexpr size_t CHECKSUM_SIZE = 4;
|
|
|
|
static constexpr size_t MESSAGE_SIZE_OFFSET = MESSAGE_START_SIZE + COMMAND_SIZE;
|
|
|
|
static constexpr size_t CHECKSUM_OFFSET = MESSAGE_SIZE_OFFSET + MESSAGE_SIZE_SIZE;
|
|
|
|
static constexpr size_t HEADER_SIZE = MESSAGE_START_SIZE + COMMAND_SIZE + MESSAGE_SIZE_SIZE + CHECKSUM_SIZE;
|
|
|
|
typedef unsigned char MessageStartChars[MESSAGE_START_SIZE];
|
|
|
|
|
|
|
|
explicit CMessageHeader(const MessageStartChars& pchMessageStartIn);
|
|
|
|
CMessageHeader(const MessageStartChars& pchMessageStartIn, const char* pszCommand, unsigned int nMessageSizeIn);
|
|
|
|
|
|
|
|
std::string GetCommand() const;
|
|
|
|
bool IsValid(const MessageStartChars& messageStart) const;
|
|
|
|
|
|
|
|
ADD_SERIALIZE_METHODS;
|
overhaul serialization code
The implementation of each class' serialization/deserialization is no longer
passed within a macro. The implementation now lies within a template of form:
template <typename T, typename Stream, typename Operation>
inline static size_t SerializationOp(T thisPtr, Stream& s, Operation ser_action, int nType, int nVersion) {
size_t nSerSize = 0;
/* CODE */
return nSerSize;
}
In cases when codepath should depend on whether or not we are just deserializing
(old fGetSize, fWrite, fRead flags) an additional clause can be used:
bool fRead = boost::is_same<Operation, CSerActionUnserialize>();
The IMPLEMENT_SERIALIZE macro will now be a freestanding clause added within
class' body (similiar to Qt's Q_OBJECT) to implement GetSerializeSize,
Serialize and Unserialize. These are now wrappers around
the "SerializationOp" template.
10 years ago
|
|
|
|
|
|
|
template <typename Stream, typename Operation>
|
|
|
|
inline void SerializationOp(Stream& s, Operation ser_action)
|
|
|
|
{
|
|
|
|
READWRITE(FLATDATA(pchMessageStart));
|
|
|
|
READWRITE(FLATDATA(pchCommand));
|
|
|
|
READWRITE(nMessageSize);
|
|
|
|
READWRITE(FLATDATA(pchChecksum));
|
|
|
|
}
|
|
|
|
|
|
|
|
char pchMessageStart[MESSAGE_START_SIZE];
|
|
|
|
char pchCommand[COMMAND_SIZE];
|
|
|
|
uint32_t nMessageSize;
|
|
|
|
uint8_t pchChecksum[CHECKSUM_SIZE];
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Bitcoin protocol message types. When adding new message types, don't forget
|
|
|
|
* to update allNetMessageTypes in protocol.cpp.
|
|
|
|
*/
|
|
|
|
namespace NetMsgType {
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The version message provides information about the transmitting node to the
|
|
|
|
* receiving node at the beginning of a connection.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#version
|
|
|
|
*/
|
|
|
|
extern const char *VERSION;
|
|
|
|
/**
|
|
|
|
* The verack message acknowledges a previously-received version message,
|
|
|
|
* informing the connecting node that it can begin to send other messages.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#verack
|
|
|
|
*/
|
|
|
|
extern const char *VERACK;
|
|
|
|
/**
|
|
|
|
* The addr (IP address) message relays connection information for peers on the
|
|
|
|
* network.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#addr
|
|
|
|
*/
|
|
|
|
extern const char *ADDR;
|
|
|
|
/**
|
|
|
|
* The inv message (inventory message) transmits one or more inventories of
|
|
|
|
* objects known to the transmitting peer.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#inv
|
|
|
|
*/
|
|
|
|
extern const char *INV;
|
|
|
|
/**
|
|
|
|
* The getdata message requests one or more data objects from another node.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#getdata
|
|
|
|
*/
|
|
|
|
extern const char *GETDATA;
|
|
|
|
/**
|
|
|
|
* The merkleblock message is a reply to a getdata message which requested a
|
|
|
|
* block using the inventory type MSG_MERKLEBLOCK.
|
|
|
|
* @since protocol version 70001 as described by BIP37.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#merkleblock
|
|
|
|
*/
|
|
|
|
extern const char *MERKLEBLOCK;
|
|
|
|
/**
|
|
|
|
* The getblocks message requests an inv message that provides block header
|
|
|
|
* hashes starting from a particular point in the block chain.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#getblocks
|
|
|
|
*/
|
|
|
|
extern const char *GETBLOCKS;
|
|
|
|
/**
|
|
|
|
* The getheaders message requests a headers message that provides block
|
|
|
|
* headers starting from a particular point in the block chain.
|
|
|
|
* @since protocol version 31800.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#getheaders
|
|
|
|
*/
|
|
|
|
extern const char *GETHEADERS;
|
|
|
|
/**
|
|
|
|
* The tx message transmits a single transaction.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#tx
|
|
|
|
*/
|
|
|
|
extern const char *TX;
|
|
|
|
/**
|
|
|
|
* The headers message sends one or more block headers to a node which
|
|
|
|
* previously requested certain headers with a getheaders message.
|
|
|
|
* @since protocol version 31800.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#headers
|
|
|
|
*/
|
|
|
|
extern const char *HEADERS;
|
|
|
|
/**
|
|
|
|
* The block message transmits a single serialized block.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#block
|
|
|
|
*/
|
|
|
|
extern const char *BLOCK;
|
|
|
|
/**
|
|
|
|
* The getaddr message requests an addr message from the receiving node,
|
|
|
|
* preferably one with lots of IP addresses of other receiving nodes.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#getaddr
|
|
|
|
*/
|
|
|
|
extern const char *GETADDR;
|
|
|
|
/**
|
|
|
|
* The mempool message requests the TXIDs of transactions that the receiving
|
|
|
|
* node has verified as valid but which have not yet appeared in a block.
|
|
|
|
* @since protocol version 60002.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#mempool
|
|
|
|
*/
|
|
|
|
extern const char *MEMPOOL;
|
|
|
|
/**
|
|
|
|
* The ping message is sent periodically to help confirm that the receiving
|
|
|
|
* peer is still connected.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#ping
|
|
|
|
*/
|
|
|
|
extern const char *PING;
|
|
|
|
/**
|
|
|
|
* The pong message replies to a ping message, proving to the pinging node that
|
|
|
|
* the ponging node is still alive.
|
|
|
|
* @since protocol version 60001 as described by BIP31.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#pong
|
|
|
|
*/
|
|
|
|
extern const char *PONG;
|
|
|
|
/**
|
|
|
|
* The notfound message is a reply to a getdata message which requested an
|
|
|
|
* object the receiving node does not have available for relay.
|
|
|
|
* @since protocol version 70001.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#notfound
|
|
|
|
*/
|
|
|
|
extern const char *NOTFOUND;
|
|
|
|
/**
|
|
|
|
* The filterload message tells the receiving peer to filter all relayed
|
|
|
|
* transactions and requested merkle blocks through the provided filter.
|
|
|
|
* @since protocol version 70001 as described by BIP37.
|
|
|
|
* Only available with service bit NODE_BLOOM since protocol version
|
|
|
|
* 70011 as described by BIP111.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#filterload
|
|
|
|
*/
|
|
|
|
extern const char *FILTERLOAD;
|
|
|
|
/**
|
|
|
|
* The filteradd message tells the receiving peer to add a single element to a
|
|
|
|
* previously-set bloom filter, such as a new public key.
|
|
|
|
* @since protocol version 70001 as described by BIP37.
|
|
|
|
* Only available with service bit NODE_BLOOM since protocol version
|
|
|
|
* 70011 as described by BIP111.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#filteradd
|
|
|
|
*/
|
|
|
|
extern const char *FILTERADD;
|
|
|
|
/**
|
|
|
|
* The filterclear message tells the receiving peer to remove a previously-set
|
|
|
|
* bloom filter.
|
|
|
|
* @since protocol version 70001 as described by BIP37.
|
|
|
|
* Only available with service bit NODE_BLOOM since protocol version
|
|
|
|
* 70011 as described by BIP111.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#filterclear
|
|
|
|
*/
|
|
|
|
extern const char *FILTERCLEAR;
|
|
|
|
/**
|
|
|
|
* The reject message informs the receiving node that one of its previous
|
|
|
|
* messages has been rejected.
|
|
|
|
* @since protocol version 70002 as described by BIP61.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#reject
|
|
|
|
*/
|
|
|
|
extern const char *REJECT;
|
|
|
|
/**
|
|
|
|
* Indicates that a node prefers to receive new block announcements via a
|
|
|
|
* "headers" message rather than an "inv".
|
|
|
|
* @since protocol version 70012 as described by BIP130.
|
|
|
|
* @see https://bitcoin.org/en/developer-reference#sendheaders
|
|
|
|
*/
|
|
|
|
extern const char *SENDHEADERS;
|
|
|
|
/**
|
|
|
|
* The feefilter message tells the receiving peer not to inv us any txs
|
|
|
|
* which do not meet the specified min fee rate.
|
|
|
|
* @since protocol version 70013 as described by BIP133
|
|
|
|
*/
|
|
|
|
extern const char *FEEFILTER;
|
|
|
|
/**
|
|
|
|
* Contains a 1-byte bool and 8-byte LE version number.
|
|
|
|
* Indicates that a node is willing to provide blocks via "cmpctblock" messages.
|
|
|
|
* May indicate that a node prefers to receive new block announcements via a
|
|
|
|
* "cmpctblock" message rather than an "inv", depending on message contents.
|
|
|
|
* @since protocol version 70014 as described by BIP 152
|
|
|
|
*/
|
|
|
|
extern const char *SENDCMPCT;
|
|
|
|
/**
|
|
|
|
* Contains a CBlockHeaderAndShortTxIDs object - providing a header and
|
|
|
|
* list of "short txids".
|
|
|
|
* @since protocol version 70014 as described by BIP 152
|
|
|
|
*/
|
|
|
|
extern const char *CMPCTBLOCK;
|
|
|
|
/**
|
|
|
|
* Contains a BlockTransactionsRequest
|
|
|
|
* Peer should respond with "blocktxn" message.
|
|
|
|
* @since protocol version 70014 as described by BIP 152
|
|
|
|
*/
|
|
|
|
extern const char *GETBLOCKTXN;
|
|
|
|
/**
|
|
|
|
* Contains a BlockTransactions.
|
|
|
|
* Sent in response to a "getblocktxn" message.
|
|
|
|
* @since protocol version 70014 as described by BIP 152
|
|
|
|
*/
|
|
|
|
extern const char *BLOCKTXN;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Get a vector of all valid message types (see above) */
|
|
|
|
const std::vector<std::string> &getAllNetMessageTypes();
|
|
|
|
|
|
|
|
/** nServices flags */
|
|
|
|
enum ServiceFlags : uint64_t {
|
|
|
|
// Nothing
|
|
|
|
NODE_NONE = 0,
|
|
|
|
// NODE_NETWORK means that the node is capable of serving the complete block chain. It is currently
|
|
|
|
// set by all Bitcoin Core non pruned nodes, and is unset by SPV clients or other light clients.
|
|
|
|
NODE_NETWORK = (1 << 0),
|
|
|
|
// NODE_GETUTXO means the node is capable of responding to the getutxo protocol request.
|
|
|
|
// Bitcoin Core does not support this but a patch set called Bitcoin XT does.
|
|
|
|
// See BIP 64 for details on how this is implemented.
|
|
|
|
NODE_GETUTXO = (1 << 1),
|
|
|
|
// NODE_BLOOM means the node is capable and willing to handle bloom-filtered connections.
|
|
|
|
// Bitcoin Core nodes used to support this by default, without advertising this bit,
|
|
|
|
// but no longer do as of protocol version 70011 (= NO_BLOOM_VERSION)
|
|
|
|
NODE_BLOOM = (1 << 2),
|
|
|
|
// NODE_WITNESS indicates that a node can be asked for blocks and transactions including
|
|
|
|
// witness data.
|
|
|
|
NODE_WITNESS = (1 << 3),
|
|
|
|
// NODE_XTHIN means the node supports Xtreme Thinblocks
|
|
|
|
// If this is turned off then the node will not service nor make xthin requests
|
|
|
|
NODE_XTHIN = (1 << 4),
|
|
|
|
// NODE_NETWORK_LIMITED means the same as NODE_NETWORK with the limitation of only
|
|
|
|
// serving the last 288 (2 day) blocks
|
|
|
|
// See BIP159 for details on how this is implemented.
|
|
|
|
NODE_NETWORK_LIMITED = (1 << 10),
|
|
|
|
|
|
|
|
// Bits 24-31 are reserved for temporary experiments. Just pick a bit that
|
|
|
|
// isn't getting used, or one not being used much, and notify the
|
|
|
|
// bitcoin-development mailing list. Remember that service bits are just
|
|
|
|
// unauthenticated advertisements, so your code must be robust against
|
|
|
|
// collisions and other cases where nodes may be advertising a service they
|
|
|
|
// do not actually support. Other service bits should be allocated via the
|
|
|
|
// BIP process.
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Gets the set of service flags which are "desirable" for a given peer.
|
|
|
|
*
|
|
|
|
* These are the flags which are required for a peer to support for them
|
|
|
|
* to be "interesting" to us, ie for us to wish to use one of our few
|
|
|
|
* outbound connection slots for or for us to wish to prioritize keeping
|
|
|
|
* their connection around.
|
|
|
|
*
|
|
|
|
* Relevant service flags may be peer- and state-specific in that the
|
|
|
|
* version of the peer may determine which flags are required (eg in the
|
|
|
|
* case of NODE_NETWORK_LIMITED where we seek out NODE_NETWORK peers
|
|
|
|
* unless they set NODE_NETWORK_LIMITED and we are out of IBD, in which
|
|
|
|
* case NODE_NETWORK_LIMITED suffices).
|
|
|
|
*
|
|
|
|
* Thus, generally, avoid calling with peerServices == NODE_NONE, unless
|
|
|
|
* state-specific flags must absolutely be avoided. When called with
|
|
|
|
* peerServices == NODE_NONE, the returned desirable service flags are
|
|
|
|
* guaranteed to not change dependant on state - ie they are suitable for
|
|
|
|
* use when describing peers which we know to be desirable, but for which
|
|
|
|
* we do not have a confirmed set of service flags.
|
|
|
|
*
|
|
|
|
* If the NODE_NONE return value is changed, contrib/seeds/makeseeds.py
|
|
|
|
* should be updated appropriately to filter for the same nodes.
|
|
|
|
*/
|
|
|
|
static ServiceFlags GetDesirableServiceFlags(ServiceFlags services) {
|
|
|
|
return ServiceFlags(NODE_NETWORK | NODE_WITNESS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A shortcut for (services & GetDesirableServiceFlags(services))
|
|
|
|
* == GetDesirableServiceFlags(services), ie determines whether the given
|
|
|
|
* set of service flags are sufficient for a peer to be "relevant".
|
|
|
|
*/
|
|
|
|
static inline bool HasAllDesirableServiceFlags(ServiceFlags services) {
|
|
|
|
return !(GetDesirableServiceFlags(services) & (~services));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Checks if a peer with the given service flags may be capable of having a
|
|
|
|
* robust address-storage DB. Currently an alias for checking NODE_NETWORK.
|
|
|
|
*/
|
|
|
|
static inline bool MayHaveUsefulAddressDB(ServiceFlags services) {
|
|
|
|
return services & NODE_NETWORK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** A CService with information about it as peer */
|
|
|
|
class CAddress : public CService
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CAddress();
|
|
|
|
explicit CAddress(CService ipIn, ServiceFlags nServicesIn);
|
|
|
|
|
|
|
|
void Init();
|
|
|
|
|
|
|
|
ADD_SERIALIZE_METHODS;
|
|
|
|
|
|
|
|
template <typename Stream, typename Operation>
|
|
|
|
inline void SerializationOp(Stream& s, Operation ser_action)
|
|
|
|
{
|
|
|
|
if (ser_action.ForRead())
|
|
|
|
Init();
|
|
|
|
int nVersion = s.GetVersion();
|
|
|
|
if (s.GetType() & SER_DISK)
|
|
|
|
READWRITE(nVersion);
|
|
|
|
if ((s.GetType() & SER_DISK) ||
|
|
|
|
(nVersion >= CADDR_TIME_VERSION && !(s.GetType() & SER_GETHASH)))
|
|
|
|
READWRITE(nTime);
|
|
|
|
uint64_t nServicesInt = nServices;
|
|
|
|
READWRITE(nServicesInt);
|
|
|
|
nServices = (ServiceFlags)nServicesInt;
|
|
|
|
READWRITE(*(CService*)this);
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: make private (improves encapsulation)
|
|
|
|
public:
|
|
|
|
ServiceFlags nServices;
|
|
|
|
|
|
|
|
// disk and network only
|
|
|
|
unsigned int nTime;
|
|
|
|
};
|
|
|
|
|
|
|
|
/** getdata message type flags */
|
|
|
|
const uint32_t MSG_WITNESS_FLAG = 1 << 30;
|
|
|
|
const uint32_t MSG_TYPE_MASK = 0xffffffff >> 2;
|
|
|
|
|
|
|
|
/** getdata / inv message types.
|
|
|
|
* These numbers are defined by the protocol. When adding a new value, be sure
|
|
|
|
* to mention it in the respective BIP.
|
|
|
|
*/
|
|
|
|
enum GetDataMsg
|
|
|
|
{
|
|
|
|
UNDEFINED = 0,
|
|
|
|
MSG_TX = 1,
|
|
|
|
MSG_BLOCK = 2,
|
|
|
|
// The following can only occur in getdata. Invs always use TX or BLOCK.
|
|
|
|
MSG_FILTERED_BLOCK = 3, //!< Defined in BIP37
|
|
|
|
MSG_CMPCT_BLOCK = 4, //!< Defined in BIP152
|
|
|
|
MSG_WITNESS_BLOCK = MSG_BLOCK | MSG_WITNESS_FLAG, //!< Defined in BIP144
|
|
|
|
MSG_WITNESS_TX = MSG_TX | MSG_WITNESS_FLAG, //!< Defined in BIP144
|
|
|
|
MSG_FILTERED_WITNESS_BLOCK = MSG_FILTERED_BLOCK | MSG_WITNESS_FLAG,
|
|
|
|
};
|
|
|
|
|
|
|
|
/** inv message data */
|
|
|
|
class CInv
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CInv();
|
|
|
|
CInv(int typeIn, const uint256& hashIn);
|
|
|
|
|
|
|
|
ADD_SERIALIZE_METHODS;
|
overhaul serialization code
The implementation of each class' serialization/deserialization is no longer
passed within a macro. The implementation now lies within a template of form:
template <typename T, typename Stream, typename Operation>
inline static size_t SerializationOp(T thisPtr, Stream& s, Operation ser_action, int nType, int nVersion) {
size_t nSerSize = 0;
/* CODE */
return nSerSize;
}
In cases when codepath should depend on whether or not we are just deserializing
(old fGetSize, fWrite, fRead flags) an additional clause can be used:
bool fRead = boost::is_same<Operation, CSerActionUnserialize>();
The IMPLEMENT_SERIALIZE macro will now be a freestanding clause added within
class' body (similiar to Qt's Q_OBJECT) to implement GetSerializeSize,
Serialize and Unserialize. These are now wrappers around
the "SerializationOp" template.
10 years ago
|
|
|
|
|
|
|
template <typename Stream, typename Operation>
|
|
|
|
inline void SerializationOp(Stream& s, Operation ser_action)
|
|
|
|
{
|
|
|
|
READWRITE(type);
|
|
|
|
READWRITE(hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
friend bool operator<(const CInv& a, const CInv& b);
|
|
|
|
|
|
|
|
std::string GetCommand() const;
|
|
|
|
std::string ToString() const;
|
|
|
|
|
|
|
|
// TODO: make private (improves encapsulation)
|
|
|
|
public:
|
|
|
|
int type;
|
|
|
|
uint256 hash;
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // BITCOIN_PROTOCOL_H
|