Kevacoin source tree
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1294 lines
52 KiB

#!/usr/bin/env python3
# Copyright (c) 2015-2017 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test block processing.
This reimplements tests from the bitcoinj/FullBlockTestGenerator used
by the pull-tester.
We use the testing framework in which we expect a particular answer from
each test.
"""
from test_framework.test_framework import ComparisonTestFramework
from test_framework.util import *
from test_framework.comptool import TestManager, TestInstance, RejectResult
from test_framework.blocktools import *
import time
from test_framework.key import CECKey
from test_framework.script import *
from test_framework.mininode import network_thread_start
import struct
class PreviousSpendableOutput():
def __init__(self, tx = CTransaction(), n = -1):
self.tx = tx
self.n = n # the output we're spending
# Use this class for tests that require behavior other than normal "mininode" behavior.
# For now, it is used to serialize a bloated varint (b64).
class CBrokenBlock(CBlock):
def __init__(self, header=None):
super(CBrokenBlock, self).__init__(header)
def initialize(self, base_block):
self.vtx = copy.deepcopy(base_block.vtx)
self.hashMerkleRoot = self.calc_merkle_root()
def serialize(self, with_witness=False):
r = b""
r += super(CBlock, self).serialize()
r += struct.pack("<BQ", 255, len(self.vtx))
for tx in self.vtx:
if with_witness:
r += tx.serialize_with_witness()
else:
r += tx.serialize_without_witness()
return r
def normal_serialize(self):
r = b""
r += super(CBrokenBlock, self).serialize()
return r
class FullBlockTest(ComparisonTestFramework):
# Can either run this test as 1 node with expected answers, or two and compare them.
# Change the "outcome" variable from each TestInstance object to only do the comparison.
def set_test_params(self):
self.num_nodes = 1
self.setup_clean_chain = True
self.block_heights = {}
self.coinbase_key = CECKey()
self.coinbase_key.set_secretbytes(b"horsebattery")
self.coinbase_pubkey = self.coinbase_key.get_pubkey()
self.tip = None
self.blocks = {}
def add_options(self, parser):
super().add_options(parser)
parser.add_option("--runbarelyexpensive", dest="runbarelyexpensive", default=True)
def run_test(self):
self.test = TestManager(self, self.options.tmpdir)
self.test.add_all_connections(self.nodes)
network_thread_start()
self.test.run()
def add_transactions_to_block(self, block, tx_list):
[ tx.rehash() for tx in tx_list ]
block.vtx.extend(tx_list)
# this is a little handier to use than the version in blocktools.py
def create_tx(self, spend_tx, n, value, script=CScript([OP_TRUE])):
tx = create_transaction(spend_tx, n, b"", value, script)
return tx
# sign a transaction, using the key we know about
# this signs input 0 in tx, which is assumed to be spending output n in spend_tx
def sign_tx(self, tx, spend_tx, n):
scriptPubKey = bytearray(spend_tx.vout[n].scriptPubKey)
if (scriptPubKey[0] == OP_TRUE): # an anyone-can-spend
tx.vin[0].scriptSig = CScript()
return
(sighash, err) = SignatureHash(spend_tx.vout[n].scriptPubKey, tx, 0, SIGHASH_ALL)
tx.vin[0].scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))])
def create_and_sign_transaction(self, spend_tx, n, value, script=CScript([OP_TRUE])):
tx = self.create_tx(spend_tx, n, value, script)
self.sign_tx(tx, spend_tx, n)
tx.rehash()
return tx
def next_block(self, number, spend=None, additional_coinbase_value=0, script=CScript([OP_TRUE]), solve=True):
if self.tip == None:
base_block_hash = self.genesis_hash
block_time = int(time.time())+1
else:
base_block_hash = self.tip.sha256
block_time = self.tip.nTime + 1
# First create the coinbase
height = self.block_heights[base_block_hash] + 1
coinbase = create_coinbase(height, self.coinbase_pubkey)
coinbase.vout[0].nValue += additional_coinbase_value
coinbase.rehash()
if spend == None:
block = create_block(base_block_hash, coinbase, block_time)
else:
coinbase.vout[0].nValue += spend.tx.vout[spend.n].nValue - 1 # all but one satoshi to fees
coinbase.rehash()
block = create_block(base_block_hash, coinbase, block_time)
tx = create_transaction(spend.tx, spend.n, b"", 1, script) # spend 1 satoshi
self.sign_tx(tx, spend.tx, spend.n)
self.add_transactions_to_block(block, [tx])
block.hashMerkleRoot = block.calc_merkle_root()
if solve:
block.solve()
self.tip = block
self.block_heights[block.sha256] = height
assert number not in self.blocks
self.blocks[number] = block
return block
def get_tests(self):
self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16)
self.block_heights[self.genesis_hash] = 0
spendable_outputs = []
# save the current tip so it can be spent by a later block
def save_spendable_output():
spendable_outputs.append(self.tip)
# get an output that we previously marked as spendable
def get_spendable_output():
return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0)
# returns a test case that asserts that the current tip was accepted
def accepted():
return TestInstance([[self.tip, True]])
# returns a test case that asserts that the current tip was rejected
def rejected(reject = None):
if reject is None:
return TestInstance([[self.tip, False]])
else:
return TestInstance([[self.tip, reject]])
# move the tip back to a previous block
def tip(number):
self.tip = self.blocks[number]
# adds transactions to the block and updates state
def update_block(block_number, new_transactions):
block = self.blocks[block_number]
self.add_transactions_to_block(block, new_transactions)
old_sha256 = block.sha256
block.hashMerkleRoot = block.calc_merkle_root()
block.solve()
# Update the internal state just like in next_block
self.tip = block
if block.sha256 != old_sha256:
self.block_heights[block.sha256] = self.block_heights[old_sha256]
del self.block_heights[old_sha256]
self.blocks[block_number] = block
return block
# shorthand for functions
block = self.next_block
create_tx = self.create_tx
create_and_sign_tx = self.create_and_sign_transaction
# these must be updated if consensus changes
MAX_BLOCK_SIGOPS = 20000
# Create a new block
block(0)
save_spendable_output()
yield accepted()
# Now we need that block to mature so we can spend the coinbase.
test = TestInstance(sync_every_block=False)
for i in range(99):
block(5000 + i)
test.blocks_and_transactions.append([self.tip, True])
save_spendable_output()
yield test
# collect spendable outputs now to avoid cluttering the code later on
out = []
for i in range(33):
out.append(get_spendable_output())
# Start by building a couple of blocks on top (which output is spent is
# in parentheses):
# genesis -> b1 (0) -> b2 (1)
block(1, spend=out[0])
save_spendable_output()
yield accepted()
block(2, spend=out[1])
yield accepted()
save_spendable_output()
# so fork like this:
#
# genesis -> b1 (0) -> b2 (1)
# \-> b3 (1)
#
# Nothing should happen at this point. We saw b2 first so it takes priority.
tip(1)
b3 = block(3, spend=out[1])
txout_b3 = PreviousSpendableOutput(b3.vtx[1], 0)
yield rejected()
# Now we add another block to make the alternative chain longer.
#
# genesis -> b1 (0) -> b2 (1)
# \-> b3 (1) -> b4 (2)
block(4, spend=out[2])
yield accepted()
# ... and back to the first chain.
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b3 (1) -> b4 (2)
tip(2)
block(5, spend=out[2])
save_spendable_output()
yield rejected()
block(6, spend=out[3])
yield accepted()
# Try to create a fork that double-spends
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b7 (2) -> b8 (4)
# \-> b3 (1) -> b4 (2)
tip(5)
block(7, spend=out[2])
yield rejected()
block(8, spend=out[4])
yield rejected()
# Try to create a block that has too much fee
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b9 (4)
# \-> b3 (1) -> b4 (2)
tip(6)
block(9, spend=out[4], additional_coinbase_value=1)
yield rejected(RejectResult(16, b'bad-cb-amount'))
# Create a fork that ends in a block with too much fee (the one that causes the reorg)
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b10 (3) -> b11 (4)
# \-> b3 (1) -> b4 (2)
tip(5)
block(10, spend=out[3])
yield rejected()
block(11, spend=out[4], additional_coinbase_value=1)
yield rejected(RejectResult(16, b'bad-cb-amount'))
# Try again, but with a valid fork first
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b14 (5)
# (b12 added last)
# \-> b3 (1) -> b4 (2)
tip(5)
b12 = block(12, spend=out[3])
save_spendable_output()
b13 = block(13, spend=out[4])
# Deliver the block header for b12, and the block b13.
# b13 should be accepted but the tip won't advance until b12 is delivered.
yield TestInstance([[CBlockHeader(b12), None], [b13, False]])
save_spendable_output()
# b14 is invalid, but the node won't know that until it tries to connect
# Tip still can't advance because b12 is missing
block(14, spend=out[5], additional_coinbase_value=1)
yield rejected()
yield TestInstance([[b12, True, b13.sha256]]) # New tip should be b13.
# Add a block with MAX_BLOCK_SIGOPS and one with one more sigop
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b16 (6)
# \-> b3 (1) -> b4 (2)
# Test that a block with a lot of checksigs is okay
lots_of_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS - 1))
tip(13)
block(15, spend=out[5], script=lots_of_checksigs)
yield accepted()
save_spendable_output()
# Test that a block with too many checksigs is rejected
too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS))
block(16, spend=out[6], script=too_many_checksigs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# Attempt to spend a transaction created on a different fork
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b17 (b3.vtx[1])
# \-> b3 (1) -> b4 (2)
tip(15)
block(17, spend=txout_b3)
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# Attempt to spend a transaction created on a different fork (on a fork this time)
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5)
# \-> b18 (b3.vtx[1]) -> b19 (6)
# \-> b3 (1) -> b4 (2)
tip(13)
block(18, spend=txout_b3)
yield rejected()
block(19, spend=out[6])
yield rejected()
# Attempt to spend a coinbase at depth too low
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b20 (7)
# \-> b3 (1) -> b4 (2)
tip(15)
block(20, spend=out[7])
yield rejected(RejectResult(16, b'bad-txns-premature-spend-of-coinbase'))
# Attempt to spend a coinbase at depth too low (on a fork this time)
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5)
# \-> b21 (6) -> b22 (5)
# \-> b3 (1) -> b4 (2)
tip(13)
block(21, spend=out[6])
yield rejected()
block(22, spend=out[5])
yield rejected()
# Create a block on either side of MAX_BLOCK_BASE_SIZE and make sure its accepted/rejected
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6)
# \-> b24 (6) -> b25 (7)
# \-> b3 (1) -> b4 (2)
tip(15)
b23 = block(23, spend=out[6])
tx = CTransaction()
script_length = MAX_BLOCK_BASE_SIZE - len(b23.serialize()) - 69
script_output = CScript([b'\x00' * script_length])
tx.vout.append(CTxOut(0, script_output))
tx.vin.append(CTxIn(COutPoint(b23.vtx[1].sha256, 0)))
b23 = update_block(23, [tx])
# Make sure the math above worked out to produce a max-sized block
assert_equal(len(b23.serialize()), MAX_BLOCK_BASE_SIZE)
yield accepted()
save_spendable_output()
# Make the next block one byte bigger and check that it fails
tip(15)
b24 = block(24, spend=out[6])
script_length = MAX_BLOCK_BASE_SIZE - len(b24.serialize()) - 69
script_output = CScript([b'\x00' * (script_length+1)])
tx.vout = [CTxOut(0, script_output)]
b24 = update_block(24, [tx])
assert_equal(len(b24.serialize()), MAX_BLOCK_BASE_SIZE+1)
yield rejected(RejectResult(16, b'bad-blk-length'))
block(25, spend=out[7])
yield rejected()
# Create blocks with a coinbase input script size out of range
# genesis -> b1 (0) -> b2 (1) -> b5 (2) -> b6 (3)
# \-> b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7)
# \-> ... (6) -> ... (7)
# \-> b3 (1) -> b4 (2)
tip(15)
b26 = block(26, spend=out[6])
b26.vtx[0].vin[0].scriptSig = b'\x00'
b26.vtx[0].rehash()
# update_block causes the merkle root to get updated, even with no new
# transactions, and updates the required state.
b26 = update_block(26, [])
yield rejected(RejectResult(16, b'bad-cb-length'))
# Extend the b26 chain to make sure bitcoind isn't accepting b26
block(27, spend=out[7])
yield rejected(False)
# Now try a too-large-coinbase script
tip(15)
b28 = block(28, spend=out[6])
b28.vtx[0].vin[0].scriptSig = b'\x00' * 101
b28.vtx[0].rehash()
b28 = update_block(28, [])
yield rejected(RejectResult(16, b'bad-cb-length'))
# Extend the b28 chain to make sure bitcoind isn't accepting b28
block(29, spend=out[7])
yield rejected(False)
# b30 has a max-sized coinbase scriptSig.
tip(23)
b30 = block(30)
b30.vtx[0].vin[0].scriptSig = b'\x00' * 100
b30.vtx[0].rehash()
b30 = update_block(30, [])
yield accepted()
save_spendable_output()
# b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY
#
# genesis -> ... -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
# \-> b36 (11)
# \-> b34 (10)
# \-> b32 (9)
#
# MULTISIG: each op code counts as 20 sigops. To create the edge case, pack another 19 sigops at the end.
lots_of_multisigs = CScript([OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19)
b31 = block(31, spend=out[8], script=lots_of_multisigs)
assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS)
yield accepted()
save_spendable_output()
# this goes over the limit because the coinbase has one sigop
too_many_multisigs = CScript([OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS // 20))
b32 = block(32, spend=out[9], script=too_many_multisigs)
assert_equal(get_legacy_sigopcount_block(b32), MAX_BLOCK_SIGOPS + 1)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# CHECKMULTISIGVERIFY
tip(31)
lots_of_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS-1) // 20) + [OP_CHECKSIG] * 19)
block(33, spend=out[9], script=lots_of_multisigs)
yield accepted()
save_spendable_output()
too_many_multisigs = CScript([OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS // 20))
block(34, spend=out[10], script=too_many_multisigs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# CHECKSIGVERIFY
tip(33)
lots_of_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS - 1))
b35 = block(35, spend=out[10], script=lots_of_checksigs)
yield accepted()
save_spendable_output()
too_many_checksigs = CScript([OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS))
block(36, spend=out[11], script=too_many_checksigs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# Check spending of a transaction in a block which failed to connect
#
# b6 (3)
# b12 (3) -> b13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10)
# \-> b37 (11)
# \-> b38 (11/37)
#
# save 37's spendable output, but then double-spend out11 to invalidate the block
tip(35)
b37 = block(37, spend=out[11])
txout_b37 = PreviousSpendableOutput(b37.vtx[1], 0)
tx = create_and_sign_tx(out[11].tx, out[11].n, 0)
b37 = update_block(37, [tx])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# attempt to spend b37's first non-coinbase tx, at which point b37 was still considered valid
tip(35)
block(38, spend=txout_b37)
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# Check P2SH SigOp counting
#
#
# 13 (4) -> b15 (5) -> b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12)
# \-> b40 (12)
#
# b39 - create some P2SH outputs that will require 6 sigops to spend:
#
# redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG
# p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL
#
tip(35)
b39 = block(39)
b39_outputs = 0
b39_sigops_per_output = 6
# Build the redeem script, hash it, use hash to create the p2sh script
redeem_script = CScript([self.coinbase_pubkey] + [OP_2DUP, OP_CHECKSIGVERIFY]*5 + [OP_CHECKSIG])
redeem_script_hash = hash160(redeem_script)
p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL])
# Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE
# This must be signed because it is spending a coinbase
spend = out[11]
tx = create_tx(spend.tx, spend.n, 1, p2sh_script)
tx.vout.append(CTxOut(spend.tx.vout[spend.n].nValue - 1, CScript([OP_TRUE])))
self.sign_tx(tx, spend.tx, spend.n)
tx.rehash()
b39 = update_block(39, [tx])
b39_outputs += 1
# Until block is full, add tx's with 1 satoshi to p2sh_script, the rest to OP_TRUE
tx_new = None
tx_last = tx
total_size=len(b39.serialize())
while(total_size < MAX_BLOCK_BASE_SIZE):
tx_new = create_tx(tx_last, 1, 1, p2sh_script)
tx_new.vout.append(CTxOut(tx_last.vout[1].nValue - 1, CScript([OP_TRUE])))
tx_new.rehash()
total_size += len(tx_new.serialize())
if total_size >= MAX_BLOCK_BASE_SIZE:
break
b39.vtx.append(tx_new) # add tx to block
tx_last = tx_new
b39_outputs += 1
b39 = update_block(39, [])
yield accepted()
save_spendable_output()
# Test sigops in P2SH redeem scripts
#
# b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops.
# The first tx has one sigop and then at the end we add 2 more to put us just over the max.
#
# b41 does the same, less one, so it has the maximum sigops permitted.
#
tip(39)
b40 = block(40, spend=out[12])
sigops = get_legacy_sigopcount_block(b40)
numTxes = (MAX_BLOCK_SIGOPS - sigops) // b39_sigops_per_output
assert_equal(numTxes <= b39_outputs, True)
lastOutpoint = COutPoint(b40.vtx[1].sha256, 0)
new_txs = []
for i in range(1, numTxes+1):
tx = CTransaction()
tx.vout.append(CTxOut(1, CScript([OP_TRUE])))
tx.vin.append(CTxIn(lastOutpoint, b''))
# second input is corresponding P2SH output from b39
tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b''))
# Note: must pass the redeem_script (not p2sh_script) to the signature hash function
(sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL)
sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))
scriptSig = CScript([sig, redeem_script])
tx.vin[1].scriptSig = scriptSig
tx.rehash()
new_txs.append(tx)
lastOutpoint = COutPoint(tx.sha256, 0)
b40_sigops_to_fill = MAX_BLOCK_SIGOPS - (numTxes * b39_sigops_per_output + sigops) + 1
tx = CTransaction()
tx.vin.append(CTxIn(lastOutpoint, b''))
tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill)))
tx.rehash()
new_txs.append(tx)
update_block(40, new_txs)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# same as b40, but one less sigop
tip(39)
block(41, spend=None)
update_block(41, b40.vtx[1:-1])
b41_sigops_to_fill = b40_sigops_to_fill - 1
tx = CTransaction()
tx.vin.append(CTxIn(lastOutpoint, b''))
tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill)))
tx.rehash()
update_block(41, [tx])
yield accepted()
# Fork off of b39 to create a constant base again
#
# b23 (6) -> b30 (7) -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13)
# \-> b41 (12)
#
tip(39)
block(42, spend=out[12])
yield rejected()
save_spendable_output()
block(43, spend=out[13])
yield accepted()
save_spendable_output()
# Test a number of really invalid scenarios
#
# -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b44 (14)
# \-> ??? (15)
# The next few blocks are going to be created "by hand" since they'll do funky things, such as having
# the first transaction be non-coinbase, etc. The purpose of b44 is to make sure this works.
height = self.block_heights[self.tip.sha256] + 1
coinbase = create_coinbase(height, self.coinbase_pubkey)
b44 = CBlock()
b44.nTime = self.tip.nTime + 1
b44.hashPrevBlock = self.tip.sha256
b44.nBits = 0x207fffff
b44.vtx.append(coinbase)
b44.hashMerkleRoot = b44.calc_merkle_root()
b44.solve()
self.tip = b44
self.block_heights[b44.sha256] = height
self.blocks[44] = b44
yield accepted()
# A block with a non-coinbase as the first tx
non_coinbase = create_tx(out[15].tx, out[15].n, 1)
b45 = CBlock()
b45.nTime = self.tip.nTime + 1
b45.hashPrevBlock = self.tip.sha256
b45.nBits = 0x207fffff
b45.vtx.append(non_coinbase)
b45.hashMerkleRoot = b45.calc_merkle_root()
b45.calc_sha256()
b45.solve()
self.block_heights[b45.sha256] = self.block_heights[self.tip.sha256]+1
self.tip = b45
self.blocks[45] = b45
yield rejected(RejectResult(16, b'bad-cb-missing'))
# A block with no txns
tip(44)
b46 = CBlock()
b46.nTime = b44.nTime+1
b46.hashPrevBlock = b44.sha256
b46.nBits = 0x207fffff
b46.vtx = []
b46.hashMerkleRoot = 0
b46.solve()
self.block_heights[b46.sha256] = self.block_heights[b44.sha256]+1
self.tip = b46
assert 46 not in self.blocks
self.blocks[46] = b46
s = ser_uint256(b46.hashMerkleRoot)
yield rejected(RejectResult(16, b'bad-blk-length'))
# A block with invalid work
tip(44)
b47 = block(47, solve=False)
target = uint256_from_compact(b47.nBits)
while b47.scrypt256 < target: #changed > to <
b47.nNonce += 1
b47.rehash()
yield rejected(RejectResult(16, b'high-hash'))
# A block with timestamp > 2 hrs in the future
tip(44)
b48 = block(48, solve=False)
b48.nTime = int(time.time()) + 60 * 60 * 3
b48.solve()
yield rejected(RejectResult(16, b'time-too-new'))
# A block with an invalid merkle hash
tip(44)
b49 = block(49)
b49.hashMerkleRoot += 1
b49.solve()
yield rejected(RejectResult(16, b'bad-txnmrklroot'))
# A block with an incorrect POW limit
tip(44)
b50 = block(50)
b50.nBits = b50.nBits - 1
b50.solve()
yield rejected(RejectResult(16, b'bad-diffbits'))
# A block with two coinbase txns
tip(44)
b51 = block(51)
cb2 = create_coinbase(51, self.coinbase_pubkey)
b51 = update_block(51, [cb2])
yield rejected(RejectResult(16, b'bad-cb-multiple'))
# A block w/ duplicate txns
# Note: txns have to be in the right position in the merkle tree to trigger this error
tip(44)
b52 = block(52, spend=out[15])
tx = create_tx(b52.vtx[1], 0, 1)
b52 = update_block(52, [tx, tx])
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
# Test block timestamps
# -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15)
# \-> b54 (15)
#
tip(43)
block(53, spend=out[14])
yield rejected() # rejected since b44 is at same height
save_spendable_output()
# invalid timestamp (b35 is 5 blocks back, so its time is MedianTimePast)
b54 = block(54, spend=out[15])
b54.nTime = b35.nTime - 1
b54.solve()
yield rejected(RejectResult(16, b'time-too-old'))
# valid timestamp
tip(53)
b55 = block(55, spend=out[15])
b55.nTime = b35.nTime
update_block(55, [])
yield accepted()
save_spendable_output()
# Test CVE-2012-2459
#
# -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57p2 (16)
# \-> b57 (16)
# \-> b56p2 (16)
# \-> b56 (16)
#
# Merkle tree malleability (CVE-2012-2459): repeating sequences of transactions in a block without
# affecting the merkle root of a block, while still invalidating it.
# See: src/consensus/merkle.h
#
# b57 has three txns: coinbase, tx, tx1. The merkle root computation will duplicate tx.
# Result: OK
#
# b56 copies b57 but duplicates tx1 and does not recalculate the block hash. So it has a valid merkle
# root but duplicate transactions.
# Result: Fails
#
# b57p2 has six transactions in its merkle tree:
# - coinbase, tx, tx1, tx2, tx3, tx4
# Merkle root calculation will duplicate as necessary.
# Result: OK.
#
# b56p2 copies b57p2 but adds both tx3 and tx4. The purpose of the test is to make sure the code catches
# duplicate txns that are not next to one another with the "bad-txns-duplicate" error (which indicates
# that the error was caught early, avoiding a DOS vulnerability.)
# b57 - a good block with 2 txs, don't submit until end
tip(55)
b57 = block(57)
tx = create_and_sign_tx(out[16].tx, out[16].n, 1)
tx1 = create_tx(tx, 0, 1)
b57 = update_block(57, [tx, tx1])
# b56 - copy b57, add a duplicate tx
tip(55)
b56 = copy.deepcopy(b57)
self.blocks[56] = b56
assert_equal(len(b56.vtx),3)
b56 = update_block(56, [tx1])
assert_equal(b56.hash, b57.hash)
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
# b57p2 - a good block with 6 tx'es, don't submit until end
tip(55)
b57p2 = block("57p2")
tx = create_and_sign_tx(out[16].tx, out[16].n, 1)
tx1 = create_tx(tx, 0, 1)
tx2 = create_tx(tx1, 0, 1)
tx3 = create_tx(tx2, 0, 1)
tx4 = create_tx(tx3, 0, 1)
b57p2 = update_block("57p2", [tx, tx1, tx2, tx3, tx4])
# b56p2 - copy b57p2, duplicate two non-consecutive tx's
tip(55)
b56p2 = copy.deepcopy(b57p2)
self.blocks["b56p2"] = b56p2
assert_equal(b56p2.hash, b57p2.hash)
assert_equal(len(b56p2.vtx),6)
b56p2 = update_block("b56p2", [tx3, tx4])
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
tip("57p2")
yield accepted()
tip(57)
yield rejected() #rejected because 57p2 seen first
save_spendable_output()
# Test a few invalid tx types
#
# -> b35 (10) -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> ??? (17)
#
# tx with prevout.n out of range
tip(57)
b58 = block(58, spend=out[17])
tx = CTransaction()
assert(len(out[17].tx.vout) < 42)
tx.vin.append(CTxIn(COutPoint(out[17].tx.sha256, 42), CScript([OP_TRUE]), 0xffffffff))
tx.vout.append(CTxOut(0, b""))
tx.calc_sha256()
b58 = update_block(58, [tx])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# tx with output value > input value out of range
tip(57)
b59 = block(59)
tx = create_and_sign_tx(out[17].tx, out[17].n, 51*COIN)
b59 = update_block(59, [tx])
yield rejected(RejectResult(16, b'bad-txns-in-belowout'))
# reset to good chain
tip(57)
b60 = block(60, spend=out[17])
yield accepted()
save_spendable_output()
# Test BIP30
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> b61 (18)
#
# Blocks are not allowed to contain a transaction whose id matches that of an earlier,
# not-fully-spent transaction in the same chain. To test, make identical coinbases;
# the second one should be rejected.
#
tip(60)
b61 = block(61, spend=out[18])
b61.vtx[0].vin[0].scriptSig = b60.vtx[0].vin[0].scriptSig #equalize the coinbases
b61.vtx[0].rehash()
b61 = update_block(61, [])
assert_equal(b60.vtx[0].serialize(), b61.vtx[0].serialize())
yield rejected(RejectResult(16, b'bad-txns-BIP30'))
# Test tx.isFinal is properly rejected (not an exhaustive tx.isFinal test, that should be in data-driven transaction tests)
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> b62 (18)
#
tip(60)
b62 = block(62)
tx = CTransaction()
tx.nLockTime = 0xffffffff #this locktime is non-final
assert(out[18].n < len(out[18].tx.vout))
tx.vin.append(CTxIn(COutPoint(out[18].tx.sha256, out[18].n))) # don't set nSequence
tx.vout.append(CTxOut(0, CScript([OP_TRUE])))
assert(tx.vin[0].nSequence < 0xffffffff)
tx.calc_sha256()
b62 = update_block(62, [tx])
yield rejected(RejectResult(16, b'bad-txns-nonfinal'))
# Test a non-final coinbase is also rejected
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17)
# \-> b63 (-)
#
tip(60)
b63 = block(63)
b63.vtx[0].nLockTime = 0xffffffff
b63.vtx[0].vin[0].nSequence = 0xDEADBEEF
b63.vtx[0].rehash()
b63 = update_block(63, [])
yield rejected(RejectResult(16, b'bad-txns-nonfinal'))
# This checks that a block with a bloated VARINT between the block_header and the array of tx such that
# the block is > MAX_BLOCK_BASE_SIZE with the bloated varint, but <= MAX_BLOCK_BASE_SIZE without the bloated varint,
# does not cause a subsequent, identical block with canonical encoding to be rejected. The test does not
# care whether the bloated block is accepted or rejected; it only cares that the second block is accepted.
#
# What matters is that the receiving node should not reject the bloated block, and then reject the canonical
# block on the basis that it's the same as an already-rejected block (which would be a consensus failure.)
#
# -> b39 (11) -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18)
# \
# b64a (18)
# b64a is a bloated block (non-canonical varint)
# b64 is a good block (same as b64 but w/ canonical varint)
#
tip(60)
regular_block = block("64a", spend=out[18])
# make it a "broken_block," with non-canonical serialization
b64a = CBrokenBlock(regular_block)
b64a.initialize(regular_block)
self.blocks["64a"] = b64a
self.tip = b64a
tx = CTransaction()
# use canonical serialization to calculate size
script_length = MAX_BLOCK_BASE_SIZE - len(b64a.normal_serialize()) - 69
script_output = CScript([b'\x00' * script_length])
tx.vout.append(CTxOut(0, script_output))
tx.vin.append(CTxIn(COutPoint(b64a.vtx[1].sha256, 0)))
b64a = update_block("64a", [tx])
assert_equal(len(b64a.serialize()), MAX_BLOCK_BASE_SIZE + 8)
yield TestInstance([[self.tip, None]])
# comptool workaround: to make sure b64 is delivered, manually erase b64a from blockstore
self.test.block_store.erase(b64a.sha256)
tip(60)
b64 = CBlock(b64a)
b64.vtx = copy.deepcopy(b64a.vtx)
assert_equal(b64.hash, b64a.hash)
assert_equal(len(b64.serialize()), MAX_BLOCK_BASE_SIZE)
self.blocks[64] = b64
update_block(64, [])
yield accepted()
save_spendable_output()
# Spend an output created in the block itself
#
# -> b42 (12) -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
#
tip(64)
block(65)
tx1 = create_and_sign_tx(out[19].tx, out[19].n, out[19].tx.vout[0].nValue)
tx2 = create_and_sign_tx(tx1, 0, 0)
update_block(65, [tx1, tx2])
yield accepted()
save_spendable_output()
# Attempt to spend an output created later in the same block
#
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
# \-> b66 (20)
tip(65)
block(66)
tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue)
tx2 = create_and_sign_tx(tx1, 0, 1)
update_block(66, [tx2, tx1])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# Attempt to double-spend a transaction created in a block
#
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19)
# \-> b67 (20)
#
#
tip(65)
block(67)
tx1 = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue)
tx2 = create_and_sign_tx(tx1, 0, 1)
tx3 = create_and_sign_tx(tx1, 0, 2)
update_block(67, [tx1, tx2, tx3])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# More tests of block subsidy
#
# -> b43 (13) -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20)
# \-> b68 (20)
#
# b68 - coinbase with an extra 10 satoshis,
# creates a tx that has 9 satoshis from out[20] go to fees
# this fails because the coinbase is trying to claim 1 satoshi too much in fees
#
# b69 - coinbase with extra 10 satoshis, and a tx that gives a 10 satoshi fee
# this succeeds
#
tip(65)
block(68, additional_coinbase_value=10)
tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-9)
update_block(68, [tx])
yield rejected(RejectResult(16, b'bad-cb-amount'))
tip(65)
b69 = block(69, additional_coinbase_value=10)
tx = create_and_sign_tx(out[20].tx, out[20].n, out[20].tx.vout[0].nValue-10)
update_block(69, [tx])
yield accepted()
save_spendable_output()
# Test spending the outpoint of a non-existent transaction
#
# -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20)
# \-> b70 (21)
#
tip(69)
block(70, spend=out[21])
bogus_tx = CTransaction()
bogus_tx.sha256 = uint256_from_str(b"23c70ed7c0506e9178fc1a987f40a33946d4ad4c962b5ae3a52546da53af0c5c")
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(bogus_tx.sha256, 0), b"", 0xffffffff))
tx.vout.append(CTxOut(1, b""))
update_block(70, [tx])
yield rejected(RejectResult(16, b'bad-txns-inputs-missingorspent'))
# Test accepting an invalid block which has the same hash as a valid one (via merkle tree tricks)
#
# -> b53 (14) -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21)
# \-> b71 (21)
#
# b72 is a good block.
# b71 is a copy of 72, but re-adds one of its transactions. However, it has the same hash as b71.
#
tip(69)
b72 = block(72)
tx1 = create_and_sign_tx(out[21].tx, out[21].n, 2)
tx2 = create_and_sign_tx(tx1, 0, 1)
b72 = update_block(72, [tx1, tx2]) # now tip is 72
b71 = copy.deepcopy(b72)
b71.vtx.append(tx2) # add duplicate tx2
self.block_heights[b71.sha256] = self.block_heights[b69.sha256] + 1 # b71 builds off b69
self.blocks[71] = b71
assert_equal(len(b71.vtx), 4)
assert_equal(len(b72.vtx), 3)
assert_equal(b72.sha256, b71.sha256)
tip(71)
yield rejected(RejectResult(16, b'bad-txns-duplicate'))
tip(72)
yield accepted()
save_spendable_output()
# Test some invalid scripts and MAX_BLOCK_SIGOPS
#
# -> b55 (15) -> b57 (16) -> b60 (17) -> b64 (18) -> b65 (19) -> b69 (20) -> b72 (21)
# \-> b** (22)
#
# b73 - tx with excessive sigops that are placed after an excessively large script element.
# The purpose of the test is to make sure those sigops are counted.
#
# script is a bytearray of size 20,526
#
# bytearray[0-19,998] : OP_CHECKSIG
# bytearray[19,999] : OP_PUSHDATA4
# bytearray[20,000-20,003]: 521 (max_script_element_size+1, in little-endian format)
# bytearray[20,004-20,525]: unread data (script_element)
# bytearray[20,526] : OP_CHECKSIG (this puts us over the limit)
#
tip(72)
b73 = block(73)
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1
a = bytearray([OP_CHECKSIG] * size)
a[MAX_BLOCK_SIGOPS - 1] = int("4e",16) # OP_PUSHDATA4
element_size = MAX_SCRIPT_ELEMENT_SIZE + 1
a[MAX_BLOCK_SIGOPS] = element_size % 256
a[MAX_BLOCK_SIGOPS+1] = element_size // 256
a[MAX_BLOCK_SIGOPS+2] = 0
a[MAX_BLOCK_SIGOPS+3] = 0
tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a))
b73 = update_block(73, [tx])
assert_equal(get_legacy_sigopcount_block(b73), MAX_BLOCK_SIGOPS+1)
yield rejected(RejectResult(16, b'bad-blk-sigops'))
# b74/75 - if we push an invalid script element, all prevous sigops are counted,
# but sigops after the element are not counted.
#
# The invalid script element is that the push_data indicates that
# there will be a large amount of data (0xffffff bytes), but we only
# provide a much smaller number. These bytes are CHECKSIGS so they would
# cause b75 to fail for excessive sigops, if those bytes were counted.
#
# b74 fails because we put MAX_BLOCK_SIGOPS+1 before the element
# b75 succeeds because we put MAX_BLOCK_SIGOPS before the element
#
#
tip(72)
b74 = block(74)
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 # total = 20,561
a = bytearray([OP_CHECKSIG] * size)
a[MAX_BLOCK_SIGOPS] = 0x4e
a[MAX_BLOCK_SIGOPS+1] = 0xfe
a[MAX_BLOCK_SIGOPS+2] = 0xff
a[MAX_BLOCK_SIGOPS+3] = 0xff
a[MAX_BLOCK_SIGOPS+4] = 0xff
tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a))
b74 = update_block(74, [tx])
yield rejected(RejectResult(16, b'bad-blk-sigops'))
tip(72)
b75 = block(75)
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42
a = bytearray([OP_CHECKSIG] * size)
a[MAX_BLOCK_SIGOPS-1] = 0x4e
a[MAX_BLOCK_SIGOPS] = 0xff
a[MAX_BLOCK_SIGOPS+1] = 0xff
a[MAX_BLOCK_SIGOPS+2] = 0xff
a[MAX_BLOCK_SIGOPS+3] = 0xff
tx = create_and_sign_tx(out[22].tx, 0, 1, CScript(a))
b75 = update_block(75, [tx])
yield accepted()
save_spendable_output()
# Check that if we push an element filled with CHECKSIGs, they are not counted
tip(75)
b76 = block(76)
size = MAX_BLOCK_SIGOPS - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5
a = bytearray([OP_CHECKSIG] * size)
a[MAX_BLOCK_SIGOPS-1] = 0x4e # PUSHDATA4, but leave the following bytes as just checksigs
tx = create_and_sign_tx(out[23].tx, 0, 1, CScript(a))
b76 = update_block(76, [tx])
yield accepted()
save_spendable_output()
# Test transaction resurrection
#
# -> b77 (24) -> b78 (25) -> b79 (26)
# \-> b80 (25) -> b81 (26) -> b82 (27)
#
# b78 creates a tx, which is spent in b79. After b82, both should be in mempool
#
# The tx'es must be unsigned and pass the node's mempool policy. It is unsigned for the
# rather obscure reason that the Python signature code does not distinguish between
# Low-S and High-S values (whereas the bitcoin code has custom code which does so);
# as a result of which, the odds are 50% that the python code will use the right
# value and the transaction will be accepted into the mempool. Until we modify the
# test framework to support low-S signing, we are out of luck.
#
# To get around this issue, we construct transactions which are not signed and which
# spend to OP_TRUE. If the standard-ness rules change, this test would need to be
# updated. (Perhaps to spend to a P2SH OP_TRUE script)
#
tip(76)
block(77)
tx77 = create_and_sign_tx(out[24].tx, out[24].n, 10*COIN)
update_block(77, [tx77])
yield accepted()
save_spendable_output()
block(78)
tx78 = create_tx(tx77, 0, 9*COIN)
update_block(78, [tx78])
yield accepted()
block(79)
tx79 = create_tx(tx78, 0, 8*COIN)
update_block(79, [tx79])
yield accepted()
# mempool should be empty
assert_equal(len(self.nodes[0].getrawmempool()), 0)
tip(77)
block(80, spend=out[25])
yield rejected()
save_spendable_output()
block(81, spend=out[26])
yield rejected() # other chain is same length
save_spendable_output()
block(82, spend=out[27])
yield accepted() # now this chain is longer, triggers re-org
save_spendable_output()
# now check that tx78 and tx79 have been put back into the peer's mempool
mempool = self.nodes[0].getrawmempool()
assert_equal(len(mempool), 2)
assert(tx78.hash in mempool)
assert(tx79.hash in mempool)
# Test invalid opcodes in dead execution paths.
#
# -> b81 (26) -> b82 (27) -> b83 (28)
#
block(83)
op_codes = [OP_IF, OP_INVALIDOPCODE, OP_ELSE, OP_TRUE, OP_ENDIF]
script = CScript(op_codes)
tx1 = create_and_sign_tx(out[28].tx, out[28].n, out[28].tx.vout[0].nValue, script)
tx2 = create_and_sign_tx(tx1, 0, 0, CScript([OP_TRUE]))
tx2.vin[0].scriptSig = CScript([OP_FALSE])
tx2.rehash()
update_block(83, [tx1, tx2])
yield accepted()
save_spendable_output()
# Reorg on/off blocks that have OP_RETURN in them (and try to spend them)
#
# -> b81 (26) -> b82 (27) -> b83 (28) -> b84 (29) -> b87 (30) -> b88 (31)
# \-> b85 (29) -> b86 (30) \-> b89a (32)
#
#
block(84)
tx1 = create_tx(out[29].tx, out[29].n, 0, CScript([OP_RETURN]))
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
tx1.vout.append(CTxOut(0, CScript([OP_TRUE])))
tx1.calc_sha256()
self.sign_tx(tx1, out[29].tx, out[29].n)
tx1.rehash()
tx2 = create_tx(tx1, 1, 0, CScript([OP_RETURN]))
tx2.vout.append(CTxOut(0, CScript([OP_RETURN])))
tx3 = create_tx(tx1, 2, 0, CScript([OP_RETURN]))
tx3.vout.append(CTxOut(0, CScript([OP_TRUE])))
tx4 = create_tx(tx1, 3, 0, CScript([OP_TRUE]))
tx4.vout.append(CTxOut(0, CScript([OP_RETURN])))
tx5 = create_tx(tx1, 4, 0, CScript([OP_RETURN]))
update_block(84, [tx1,tx2,tx3,tx4,tx5])
yield accepted()
save_spendable_output()
tip(83)
block(85, spend=out[29])
yield rejected()
block(86, spend=out[30])
yield accepted()
tip(84)
block(87, spend=out[30])
yield rejected()
save_spendable_output()
block(88, spend=out[31])
yield accepted()
save_spendable_output()
# trying to spend the OP_RETURN output is rejected
block("89a", spend=out[32])
tx = create_tx(tx1, 0, 0, CScript([OP_TRUE]))
update_block("89a", [tx])
yield rejected()
# Test re-org of a week's worth of blocks (1088 blocks)
# This test takes a minute or two and can be accomplished in memory
#
if self.options.runbarelyexpensive:
tip(88)
LARGE_REORG_SIZE = 1088
test1 = TestInstance(sync_every_block=False)
spend=out[32]
for i in range(89, LARGE_REORG_SIZE + 89):
b = block(i, spend)
tx = CTransaction()
script_length = MAX_BLOCK_BASE_SIZE - len(b.serialize()) - 69
script_output = CScript([b'\x00' * script_length])
tx.vout.append(CTxOut(0, script_output))
tx.vin.append(CTxIn(COutPoint(b.vtx[1].sha256, 0)))
b = update_block(i, [tx])
assert_equal(len(b.serialize()), MAX_BLOCK_BASE_SIZE)
test1.blocks_and_transactions.append([self.tip, True])
save_spendable_output()
spend = get_spendable_output()
yield test1
chain1_tip = i
# now create alt chain of same length
tip(88)
test2 = TestInstance(sync_every_block=False)
for i in range(89, LARGE_REORG_SIZE + 89):
block("alt"+str(i))
test2.blocks_and_transactions.append([self.tip, False])
yield test2
# extend alt chain to trigger re-org
block("alt" + str(chain1_tip + 1))
yield accepted()
# ... and re-org back to the first chain
tip(chain1_tip)
block(chain1_tip + 1)
yield rejected()
block(chain1_tip + 2)
yield accepted()
chain1_tip += 2
if __name__ == '__main__':
FullBlockTest().main()