mirror of
https://github.com/kvazar-network/kevacoin.git
synced 2025-01-10 15:18:09 +00:00
395 lines
15 KiB
C++
395 lines
15 KiB
C++
|
// Copyright (c) 2012-2016 The Bitcoin Core developers
|
||
|
// Distributed under the MIT software license, see the accompanying
|
||
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||
|
#include <boost/test/unit_test.hpp>
|
||
|
#include "cuckoocache.h"
|
||
|
#include "test/test_bitcoin.h"
|
||
|
#include "random.h"
|
||
|
#include <thread>
|
||
|
#include <boost/thread.hpp>
|
||
|
|
||
|
|
||
|
/** Test Suite for CuckooCache
|
||
|
*
|
||
|
* 1) All tests should have a deterministic result (using insecure rand
|
||
|
* with deterministic seeds)
|
||
|
* 2) Some test methods are templated to allow for easier testing
|
||
|
* against new versions / comparing
|
||
|
* 3) Results should be treated as a regression test, ie, did the behavior
|
||
|
* change significantly from what was expected. This can be OK, depending on
|
||
|
* the nature of the change, but requires updating the tests to reflect the new
|
||
|
* expected behavior. For example improving the hit rate may cause some tests
|
||
|
* using BOOST_CHECK_CLOSE to fail.
|
||
|
*
|
||
|
*/
|
||
|
FastRandomContext insecure_rand(true);
|
||
|
|
||
|
BOOST_AUTO_TEST_SUITE(cuckoocache_tests);
|
||
|
|
||
|
|
||
|
/** insecure_GetRandHash fills in a uint256 from insecure_rand
|
||
|
*/
|
||
|
void insecure_GetRandHash(uint256& t)
|
||
|
{
|
||
|
uint32_t* ptr = (uint32_t*)t.begin();
|
||
|
for (uint8_t j = 0; j < 8; ++j)
|
||
|
*(ptr++) = insecure_rand.rand32();
|
||
|
}
|
||
|
|
||
|
/** Definition copied from /src/script/sigcache.cpp
|
||
|
*/
|
||
|
class uint256Hasher
|
||
|
{
|
||
|
public:
|
||
|
template <uint8_t hash_select>
|
||
|
uint32_t operator()(const uint256& key) const
|
||
|
{
|
||
|
static_assert(hash_select <8, "SignatureCacheHasher only has 8 hashes available.");
|
||
|
uint32_t u;
|
||
|
std::memcpy(&u, key.begin() + 4 * hash_select, 4);
|
||
|
return u;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Test that no values not inserted into the cache are read out of it.
|
||
|
*
|
||
|
* There are no repeats in the first 200000 insecure_GetRandHash calls
|
||
|
*/
|
||
|
BOOST_AUTO_TEST_CASE(test_cuckoocache_no_fakes)
|
||
|
{
|
||
|
insecure_rand = FastRandomContext(true);
|
||
|
CuckooCache::cache<uint256, uint256Hasher> cc{};
|
||
|
cc.setup_bytes(32 << 20);
|
||
|
uint256 v;
|
||
|
for (int x = 0; x < 100000; ++x) {
|
||
|
insecure_GetRandHash(v);
|
||
|
cc.insert(v);
|
||
|
}
|
||
|
for (int x = 0; x < 100000; ++x) {
|
||
|
insecure_GetRandHash(v);
|
||
|
BOOST_CHECK(!cc.contains(v, false));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/** This helper returns the hit rate when megabytes*load worth of entries are
|
||
|
* inserted into a megabytes sized cache
|
||
|
*/
|
||
|
template <typename Cache>
|
||
|
double test_cache(size_t megabytes, double load)
|
||
|
{
|
||
|
insecure_rand = FastRandomContext(true);
|
||
|
std::vector<uint256> hashes;
|
||
|
Cache set{};
|
||
|
size_t bytes = megabytes * (1 << 20);
|
||
|
set.setup_bytes(bytes);
|
||
|
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
|
||
|
hashes.resize(n_insert);
|
||
|
for (uint32_t i = 0; i < n_insert; ++i) {
|
||
|
uint32_t* ptr = (uint32_t*)hashes[i].begin();
|
||
|
for (uint8_t j = 0; j < 8; ++j)
|
||
|
*(ptr++) = insecure_rand.rand32();
|
||
|
}
|
||
|
/** We make a copy of the hashes because future optimizations of the
|
||
|
* cuckoocache may overwrite the inserted element, so the test is
|
||
|
* "future proofed".
|
||
|
*/
|
||
|
std::vector<uint256> hashes_insert_copy = hashes;
|
||
|
/** Do the insert */
|
||
|
for (uint256& h : hashes_insert_copy)
|
||
|
set.insert(h);
|
||
|
/** Count the hits */
|
||
|
uint32_t count = 0;
|
||
|
for (uint256& h : hashes)
|
||
|
count += set.contains(h, false);
|
||
|
double hit_rate = ((double)count) / ((double)n_insert);
|
||
|
return hit_rate;
|
||
|
}
|
||
|
|
||
|
/** The normalized hit rate for a given load.
|
||
|
*
|
||
|
* The semantics are a little confusing, so please see the below
|
||
|
* explanation.
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* 1) at load 0.5, we expect a perfect hit rate, so we multiply by
|
||
|
* 1.0
|
||
|
* 2) at load 2.0, we expect to see half the entries, so a perfect hit rate
|
||
|
* would be 0.5. Therefore, if we see a hit rate of 0.4, 0.4*2.0 = 0.8 is the
|
||
|
* normalized hit rate.
|
||
|
*
|
||
|
* This is basically the right semantics, but has a bit of a glitch depending on
|
||
|
* how you measure around load 1.0 as after load 1.0 your normalized hit rate
|
||
|
* becomes effectively perfect, ignoring freshness.
|
||
|
*/
|
||
|
double normalize_hit_rate(double hits, double load)
|
||
|
{
|
||
|
return hits * std::max(load, 1.0);
|
||
|
}
|
||
|
|
||
|
/** Check the hit rate on loads ranging from 0.1 to 2.0 */
|
||
|
BOOST_AUTO_TEST_CASE(cuckoocache_hit_rate_ok)
|
||
|
{
|
||
|
/** Arbitrarily selected Hit Rate threshold that happens to work for this test
|
||
|
* as a lower bound on performance.
|
||
|
*/
|
||
|
double HitRateThresh = 0.98;
|
||
|
size_t megabytes = 32;
|
||
|
for (double load = 0.1; load < 2; load *= 2) {
|
||
|
double hits = test_cache<CuckooCache::cache<uint256, uint256Hasher>>(megabytes, load);
|
||
|
BOOST_CHECK(normalize_hit_rate(hits, load) > HitRateThresh);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/** This helper checks that erased elements are preferentially inserted onto and
|
||
|
* that the hit rate of "fresher" keys is reasonable*/
|
||
|
template <typename Cache>
|
||
|
void test_cache_erase(size_t megabytes)
|
||
|
{
|
||
|
double load = 1;
|
||
|
insecure_rand = FastRandomContext(true);
|
||
|
std::vector<uint256> hashes;
|
||
|
Cache set{};
|
||
|
size_t bytes = megabytes * (1 << 20);
|
||
|
set.setup_bytes(bytes);
|
||
|
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
|
||
|
hashes.resize(n_insert);
|
||
|
for (uint32_t i = 0; i < n_insert; ++i) {
|
||
|
uint32_t* ptr = (uint32_t*)hashes[i].begin();
|
||
|
for (uint8_t j = 0; j < 8; ++j)
|
||
|
*(ptr++) = insecure_rand.rand32();
|
||
|
}
|
||
|
/** We make a copy of the hashes because future optimizations of the
|
||
|
* cuckoocache may overwrite the inserted element, so the test is
|
||
|
* "future proofed".
|
||
|
*/
|
||
|
std::vector<uint256> hashes_insert_copy = hashes;
|
||
|
|
||
|
/** Insert the first half */
|
||
|
for (uint32_t i = 0; i < (n_insert / 2); ++i)
|
||
|
set.insert(hashes_insert_copy[i]);
|
||
|
/** Erase the first quarter */
|
||
|
for (uint32_t i = 0; i < (n_insert / 4); ++i)
|
||
|
set.contains(hashes[i], true);
|
||
|
/** Insert the second half */
|
||
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
|
||
|
set.insert(hashes_insert_copy[i]);
|
||
|
|
||
|
/** elements that we marked erased but that are still there */
|
||
|
size_t count_erased_but_contained = 0;
|
||
|
/** elements that we did not erase but are older */
|
||
|
size_t count_stale = 0;
|
||
|
/** elements that were most recently inserted */
|
||
|
size_t count_fresh = 0;
|
||
|
|
||
|
for (uint32_t i = 0; i < (n_insert / 4); ++i)
|
||
|
count_erased_but_contained += set.contains(hashes[i], false);
|
||
|
for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i)
|
||
|
count_stale += set.contains(hashes[i], false);
|
||
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
|
||
|
count_fresh += set.contains(hashes[i], false);
|
||
|
|
||
|
double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0);
|
||
|
double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0);
|
||
|
double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0);
|
||
|
|
||
|
// Check that our hit_rate_fresh is perfect
|
||
|
BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0);
|
||
|
// Check that we have a more than 2x better hit rate on stale elements than
|
||
|
// erased elements.
|
||
|
BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained);
|
||
|
}
|
||
|
|
||
|
BOOST_AUTO_TEST_CASE(cuckoocache_erase_ok)
|
||
|
{
|
||
|
size_t megabytes = 32;
|
||
|
test_cache_erase<CuckooCache::cache<uint256, uint256Hasher>>(megabytes);
|
||
|
}
|
||
|
|
||
|
template <typename Cache>
|
||
|
void test_cache_erase_parallel(size_t megabytes)
|
||
|
{
|
||
|
double load = 1;
|
||
|
insecure_rand = FastRandomContext(true);
|
||
|
std::vector<uint256> hashes;
|
||
|
Cache set{};
|
||
|
size_t bytes = megabytes * (1 << 20);
|
||
|
set.setup_bytes(bytes);
|
||
|
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
|
||
|
hashes.resize(n_insert);
|
||
|
for (uint32_t i = 0; i < n_insert; ++i) {
|
||
|
uint32_t* ptr = (uint32_t*)hashes[i].begin();
|
||
|
for (uint8_t j = 0; j < 8; ++j)
|
||
|
*(ptr++) = insecure_rand.rand32();
|
||
|
}
|
||
|
/** We make a copy of the hashes because future optimizations of the
|
||
|
* cuckoocache may overwrite the inserted element, so the test is
|
||
|
* "future proofed".
|
||
|
*/
|
||
|
std::vector<uint256> hashes_insert_copy = hashes;
|
||
|
boost::shared_mutex mtx;
|
||
|
|
||
|
{
|
||
|
/** Grab lock to make sure we release inserts */
|
||
|
boost::unique_lock<boost::shared_mutex> l(mtx);
|
||
|
/** Insert the first half */
|
||
|
for (uint32_t i = 0; i < (n_insert / 2); ++i)
|
||
|
set.insert(hashes_insert_copy[i]);
|
||
|
}
|
||
|
|
||
|
/** Spin up 3 threads to run contains with erase.
|
||
|
*/
|
||
|
std::vector<std::thread> threads;
|
||
|
/** Erase the first quarter */
|
||
|
for (uint32_t x = 0; x < 3; ++x)
|
||
|
/** Each thread is emplaced with x copy-by-value
|
||
|
*/
|
||
|
threads.emplace_back([&, x] {
|
||
|
boost::shared_lock<boost::shared_mutex> l(mtx);
|
||
|
size_t ntodo = (n_insert/4)/3;
|
||
|
size_t start = ntodo*x;
|
||
|
size_t end = ntodo*(x+1);
|
||
|
for (uint32_t i = start; i < end; ++i)
|
||
|
set.contains(hashes[i], true);
|
||
|
});
|
||
|
|
||
|
/** Wait for all threads to finish
|
||
|
*/
|
||
|
for (std::thread& t : threads)
|
||
|
t.join();
|
||
|
/** Grab lock to make sure we observe erases */
|
||
|
boost::unique_lock<boost::shared_mutex> l(mtx);
|
||
|
/** Insert the second half */
|
||
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
|
||
|
set.insert(hashes_insert_copy[i]);
|
||
|
|
||
|
/** elements that we marked erased but that are still there */
|
||
|
size_t count_erased_but_contained = 0;
|
||
|
/** elements that we did not erase but are older */
|
||
|
size_t count_stale = 0;
|
||
|
/** elements that were most recently inserted */
|
||
|
size_t count_fresh = 0;
|
||
|
|
||
|
for (uint32_t i = 0; i < (n_insert / 4); ++i)
|
||
|
count_erased_but_contained += set.contains(hashes[i], false);
|
||
|
for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i)
|
||
|
count_stale += set.contains(hashes[i], false);
|
||
|
for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
|
||
|
count_fresh += set.contains(hashes[i], false);
|
||
|
|
||
|
double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0);
|
||
|
double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0);
|
||
|
double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0);
|
||
|
|
||
|
// Check that our hit_rate_fresh is perfect
|
||
|
BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0);
|
||
|
// Check that we have a more than 2x better hit rate on stale elements than
|
||
|
// erased elements.
|
||
|
BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained);
|
||
|
}
|
||
|
BOOST_AUTO_TEST_CASE(cuckoocache_erase_parallel_ok)
|
||
|
{
|
||
|
size_t megabytes = 32;
|
||
|
test_cache_erase_parallel<CuckooCache::cache<uint256, uint256Hasher>>(megabytes);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename Cache>
|
||
|
void test_cache_generations()
|
||
|
{
|
||
|
// This test checks that for a simulation of network activity, the fresh hit
|
||
|
// rate is never below 99%, and the number of times that it is worse than
|
||
|
// 99.9% are less than 1% of the time.
|
||
|
double min_hit_rate = 0.99;
|
||
|
double tight_hit_rate = 0.999;
|
||
|
double max_rate_less_than_tight_hit_rate = 0.01;
|
||
|
// A cache that meets this specification is therefore shown to have a hit
|
||
|
// rate of at least tight_hit_rate * (1 - max_rate_less_than_tight_hit_rate) +
|
||
|
// min_hit_rate*max_rate_less_than_tight_hit_rate = 0.999*99%+0.99*1% == 99.89%
|
||
|
// hit rate with low variance.
|
||
|
|
||
|
// We use deterministic values, but this test has also passed on many
|
||
|
// iterations with non-deterministic values, so it isn't "overfit" to the
|
||
|
// specific entropy in FastRandomContext(true) and implementation of the
|
||
|
// cache.
|
||
|
insecure_rand = FastRandomContext(true);
|
||
|
|
||
|
// block_activity models a chunk of network activity. n_insert elements are
|
||
|
// adde to the cache. The first and last n/4 are stored for removal later
|
||
|
// and the middle n/2 are not stored. This models a network which uses half
|
||
|
// the signatures of recently (since the last block) added transactions
|
||
|
// immediately and never uses the other half.
|
||
|
struct block_activity {
|
||
|
std::vector<uint256> reads;
|
||
|
block_activity(uint32_t n_insert, Cache& c) : reads()
|
||
|
{
|
||
|
std::vector<uint256> inserts;
|
||
|
inserts.resize(n_insert);
|
||
|
reads.reserve(n_insert / 2);
|
||
|
for (uint32_t i = 0; i < n_insert; ++i) {
|
||
|
uint32_t* ptr = (uint32_t*)inserts[i].begin();
|
||
|
for (uint8_t j = 0; j < 8; ++j)
|
||
|
*(ptr++) = insecure_rand.rand32();
|
||
|
}
|
||
|
for (uint32_t i = 0; i < n_insert / 4; ++i)
|
||
|
reads.push_back(inserts[i]);
|
||
|
for (uint32_t i = n_insert - (n_insert / 4); i < n_insert; ++i)
|
||
|
reads.push_back(inserts[i]);
|
||
|
for (auto h : inserts)
|
||
|
c.insert(h);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
const uint32_t BLOCK_SIZE = 10000;
|
||
|
// We expect window size 60 to perform reasonably given that each epoch
|
||
|
// stores 45% of the cache size (~472k).
|
||
|
const uint32_t WINDOW_SIZE = 60;
|
||
|
const uint32_t POP_AMOUNT = (BLOCK_SIZE / WINDOW_SIZE) / 2;
|
||
|
const double load = 10;
|
||
|
const size_t megabytes = 32;
|
||
|
const size_t bytes = megabytes * (1 << 20);
|
||
|
const uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
|
||
|
|
||
|
std::vector<block_activity> hashes;
|
||
|
Cache set{};
|
||
|
set.setup_bytes(bytes);
|
||
|
hashes.reserve(n_insert / BLOCK_SIZE);
|
||
|
std::deque<block_activity> last_few;
|
||
|
uint32_t out_of_tight_tolerance = 0;
|
||
|
uint32_t total = n_insert / BLOCK_SIZE;
|
||
|
// we use the deque last_few to model a sliding window of blocks. at each
|
||
|
// step, each of the last WINDOW_SIZE block_activities checks the cache for
|
||
|
// POP_AMOUNT of the hashes that they inserted, and marks these erased.
|
||
|
for (uint32_t i = 0; i < total; ++i) {
|
||
|
if (last_few.size() == WINDOW_SIZE)
|
||
|
last_few.pop_front();
|
||
|
last_few.emplace_back(BLOCK_SIZE, set);
|
||
|
uint32_t count = 0;
|
||
|
for (auto& act : last_few)
|
||
|
for (uint32_t k = 0; k < POP_AMOUNT; ++k) {
|
||
|
count += set.contains(act.reads.back(), true);
|
||
|
act.reads.pop_back();
|
||
|
}
|
||
|
// We use last_few.size() rather than WINDOW_SIZE for the correct
|
||
|
// behavior on the first WINDOW_SIZE iterations where the deque is not
|
||
|
// full yet.
|
||
|
double hit = (double(count)) / (last_few.size() * POP_AMOUNT);
|
||
|
// Loose Check that hit rate is above min_hit_rate
|
||
|
BOOST_CHECK(hit > min_hit_rate);
|
||
|
// Tighter check, count number of times we are less than tight_hit_rate
|
||
|
// (and implicityly, greater than min_hit_rate)
|
||
|
out_of_tight_tolerance += hit < tight_hit_rate;
|
||
|
}
|
||
|
// Check that being out of tolerance happens less than
|
||
|
// max_rate_less_than_tight_hit_rate of the time
|
||
|
BOOST_CHECK(double(out_of_tight_tolerance) / double(total) < max_rate_less_than_tight_hit_rate);
|
||
|
}
|
||
|
BOOST_AUTO_TEST_CASE(cuckoocache_generations)
|
||
|
{
|
||
|
test_cache_generations<CuckooCache::cache<uint256, uint256Hasher>>();
|
||
|
}
|
||
|
|
||
|
BOOST_AUTO_TEST_SUITE_END();
|