Jeremy Rubin
8 years ago
2 changed files with 395 additions and 0 deletions
@ -0,0 +1,394 @@
@@ -0,0 +1,394 @@
|
||||
// Copyright (c) 2012-2016 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
#include <boost/test/unit_test.hpp> |
||||
#include "cuckoocache.h" |
||||
#include "test/test_bitcoin.h" |
||||
#include "random.h" |
||||
#include <thread> |
||||
#include <boost/thread.hpp> |
||||
|
||||
|
||||
/** Test Suite for CuckooCache
|
||||
* |
||||
* 1) All tests should have a deterministic result (using insecure rand |
||||
* with deterministic seeds) |
||||
* 2) Some test methods are templated to allow for easier testing |
||||
* against new versions / comparing |
||||
* 3) Results should be treated as a regression test, ie, did the behavior |
||||
* change significantly from what was expected. This can be OK, depending on |
||||
* the nature of the change, but requires updating the tests to reflect the new |
||||
* expected behavior. For example improving the hit rate may cause some tests |
||||
* using BOOST_CHECK_CLOSE to fail. |
||||
* |
||||
*/ |
||||
FastRandomContext insecure_rand(true); |
||||
|
||||
BOOST_AUTO_TEST_SUITE(cuckoocache_tests); |
||||
|
||||
|
||||
/** insecure_GetRandHash fills in a uint256 from insecure_rand
|
||||
*/ |
||||
void insecure_GetRandHash(uint256& t) |
||||
{ |
||||
uint32_t* ptr = (uint32_t*)t.begin(); |
||||
for (uint8_t j = 0; j < 8; ++j) |
||||
*(ptr++) = insecure_rand.rand32(); |
||||
} |
||||
|
||||
/** Definition copied from /src/script/sigcache.cpp
|
||||
*/ |
||||
class uint256Hasher |
||||
{ |
||||
public: |
||||
template <uint8_t hash_select> |
||||
uint32_t operator()(const uint256& key) const |
||||
{ |
||||
static_assert(hash_select <8, "SignatureCacheHasher only has 8 hashes available."); |
||||
uint32_t u; |
||||
std::memcpy(&u, key.begin() + 4 * hash_select, 4); |
||||
return u; |
||||
} |
||||
}; |
||||
|
||||
|
||||
/* Test that no values not inserted into the cache are read out of it.
|
||||
* |
||||
* There are no repeats in the first 200000 insecure_GetRandHash calls |
||||
*/ |
||||
BOOST_AUTO_TEST_CASE(test_cuckoocache_no_fakes) |
||||
{ |
||||
insecure_rand = FastRandomContext(true); |
||||
CuckooCache::cache<uint256, uint256Hasher> cc{}; |
||||
cc.setup_bytes(32 << 20); |
||||
uint256 v; |
||||
for (int x = 0; x < 100000; ++x) { |
||||
insecure_GetRandHash(v); |
||||
cc.insert(v); |
||||
} |
||||
for (int x = 0; x < 100000; ++x) { |
||||
insecure_GetRandHash(v); |
||||
BOOST_CHECK(!cc.contains(v, false)); |
||||
} |
||||
}; |
||||
|
||||
/** This helper returns the hit rate when megabytes*load worth of entries are
|
||||
* inserted into a megabytes sized cache |
||||
*/ |
||||
template <typename Cache> |
||||
double test_cache(size_t megabytes, double load) |
||||
{ |
||||
insecure_rand = FastRandomContext(true); |
||||
std::vector<uint256> hashes; |
||||
Cache set{}; |
||||
size_t bytes = megabytes * (1 << 20); |
||||
set.setup_bytes(bytes); |
||||
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
||||
hashes.resize(n_insert); |
||||
for (uint32_t i = 0; i < n_insert; ++i) { |
||||
uint32_t* ptr = (uint32_t*)hashes[i].begin(); |
||||
for (uint8_t j = 0; j < 8; ++j) |
||||
*(ptr++) = insecure_rand.rand32(); |
||||
} |
||||
/** We make a copy of the hashes because future optimizations of the
|
||||
* cuckoocache may overwrite the inserted element, so the test is |
||||
* "future proofed". |
||||
*/ |
||||
std::vector<uint256> hashes_insert_copy = hashes; |
||||
/** Do the insert */ |
||||
for (uint256& h : hashes_insert_copy) |
||||
set.insert(h); |
||||
/** Count the hits */ |
||||
uint32_t count = 0; |
||||
for (uint256& h : hashes) |
||||
count += set.contains(h, false); |
||||
double hit_rate = ((double)count) / ((double)n_insert); |
||||
return hit_rate; |
||||
} |
||||
|
||||
/** The normalized hit rate for a given load.
|
||||
* |
||||
* The semantics are a little confusing, so please see the below |
||||
* explanation. |
||||
* |
||||
* Examples: |
||||
* |
||||
* 1) at load 0.5, we expect a perfect hit rate, so we multiply by |
||||
* 1.0 |
||||
* 2) at load 2.0, we expect to see half the entries, so a perfect hit rate |
||||
* would be 0.5. Therefore, if we see a hit rate of 0.4, 0.4*2.0 = 0.8 is the |
||||
* normalized hit rate. |
||||
* |
||||
* This is basically the right semantics, but has a bit of a glitch depending on |
||||
* how you measure around load 1.0 as after load 1.0 your normalized hit rate |
||||
* becomes effectively perfect, ignoring freshness. |
||||
*/ |
||||
double normalize_hit_rate(double hits, double load) |
||||
{ |
||||
return hits * std::max(load, 1.0); |
||||
} |
||||
|
||||
/** Check the hit rate on loads ranging from 0.1 to 2.0 */ |
||||
BOOST_AUTO_TEST_CASE(cuckoocache_hit_rate_ok) |
||||
{ |
||||
/** Arbitrarily selected Hit Rate threshold that happens to work for this test
|
||||
* as a lower bound on performance. |
||||
*/ |
||||
double HitRateThresh = 0.98; |
||||
size_t megabytes = 32; |
||||
for (double load = 0.1; load < 2; load *= 2) { |
||||
double hits = test_cache<CuckooCache::cache<uint256, uint256Hasher>>(megabytes, load); |
||||
BOOST_CHECK(normalize_hit_rate(hits, load) > HitRateThresh); |
||||
} |
||||
} |
||||
|
||||
|
||||
/** This helper checks that erased elements are preferentially inserted onto and
|
||||
* that the hit rate of "fresher" keys is reasonable*/ |
||||
template <typename Cache> |
||||
void test_cache_erase(size_t megabytes) |
||||
{ |
||||
double load = 1; |
||||
insecure_rand = FastRandomContext(true); |
||||
std::vector<uint256> hashes; |
||||
Cache set{}; |
||||
size_t bytes = megabytes * (1 << 20); |
||||
set.setup_bytes(bytes); |
||||
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
||||
hashes.resize(n_insert); |
||||
for (uint32_t i = 0; i < n_insert; ++i) { |
||||
uint32_t* ptr = (uint32_t*)hashes[i].begin(); |
||||
for (uint8_t j = 0; j < 8; ++j) |
||||
*(ptr++) = insecure_rand.rand32(); |
||||
} |
||||
/** We make a copy of the hashes because future optimizations of the
|
||||
* cuckoocache may overwrite the inserted element, so the test is |
||||
* "future proofed". |
||||
*/ |
||||
std::vector<uint256> hashes_insert_copy = hashes; |
||||
|
||||
/** Insert the first half */ |
||||
for (uint32_t i = 0; i < (n_insert / 2); ++i) |
||||
set.insert(hashes_insert_copy[i]); |
||||
/** Erase the first quarter */ |
||||
for (uint32_t i = 0; i < (n_insert / 4); ++i) |
||||
set.contains(hashes[i], true); |
||||
/** Insert the second half */ |
||||
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
||||
set.insert(hashes_insert_copy[i]); |
||||
|
||||
/** elements that we marked erased but that are still there */ |
||||
size_t count_erased_but_contained = 0; |
||||
/** elements that we did not erase but are older */ |
||||
size_t count_stale = 0; |
||||
/** elements that were most recently inserted */ |
||||
size_t count_fresh = 0; |
||||
|
||||
for (uint32_t i = 0; i < (n_insert / 4); ++i) |
||||
count_erased_but_contained += set.contains(hashes[i], false); |
||||
for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) |
||||
count_stale += set.contains(hashes[i], false); |
||||
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
||||
count_fresh += set.contains(hashes[i], false); |
||||
|
||||
double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); |
||||
double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); |
||||
double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); |
||||
|
||||
// Check that our hit_rate_fresh is perfect
|
||||
BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); |
||||
// Check that we have a more than 2x better hit rate on stale elements than
|
||||
// erased elements.
|
||||
BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); |
||||
} |
||||
|
||||
BOOST_AUTO_TEST_CASE(cuckoocache_erase_ok) |
||||
{ |
||||
size_t megabytes = 32; |
||||
test_cache_erase<CuckooCache::cache<uint256, uint256Hasher>>(megabytes); |
||||
} |
||||
|
||||
template <typename Cache> |
||||
void test_cache_erase_parallel(size_t megabytes) |
||||
{ |
||||
double load = 1; |
||||
insecure_rand = FastRandomContext(true); |
||||
std::vector<uint256> hashes; |
||||
Cache set{}; |
||||
size_t bytes = megabytes * (1 << 20); |
||||
set.setup_bytes(bytes); |
||||
uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
||||
hashes.resize(n_insert); |
||||
for (uint32_t i = 0; i < n_insert; ++i) { |
||||
uint32_t* ptr = (uint32_t*)hashes[i].begin(); |
||||
for (uint8_t j = 0; j < 8; ++j) |
||||
*(ptr++) = insecure_rand.rand32(); |
||||
} |
||||
/** We make a copy of the hashes because future optimizations of the
|
||||
* cuckoocache may overwrite the inserted element, so the test is |
||||
* "future proofed". |
||||
*/ |
||||
std::vector<uint256> hashes_insert_copy = hashes; |
||||
boost::shared_mutex mtx; |
||||
|
||||
{ |
||||
/** Grab lock to make sure we release inserts */ |
||||
boost::unique_lock<boost::shared_mutex> l(mtx); |
||||
/** Insert the first half */ |
||||
for (uint32_t i = 0; i < (n_insert / 2); ++i) |
||||
set.insert(hashes_insert_copy[i]); |
||||
} |
||||
|
||||
/** Spin up 3 threads to run contains with erase.
|
||||
*/ |
||||
std::vector<std::thread> threads; |
||||
/** Erase the first quarter */ |
||||
for (uint32_t x = 0; x < 3; ++x) |
||||
/** Each thread is emplaced with x copy-by-value
|
||||
*/ |
||||
threads.emplace_back([&, x] { |
||||
boost::shared_lock<boost::shared_mutex> l(mtx); |
||||
size_t ntodo = (n_insert/4)/3; |
||||
size_t start = ntodo*x; |
||||
size_t end = ntodo*(x+1); |
||||
for (uint32_t i = start; i < end; ++i) |
||||
set.contains(hashes[i], true); |
||||
}); |
||||
|
||||
/** Wait for all threads to finish
|
||||
*/ |
||||
for (std::thread& t : threads) |
||||
t.join(); |
||||
/** Grab lock to make sure we observe erases */ |
||||
boost::unique_lock<boost::shared_mutex> l(mtx); |
||||
/** Insert the second half */ |
||||
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
||||
set.insert(hashes_insert_copy[i]); |
||||
|
||||
/** elements that we marked erased but that are still there */ |
||||
size_t count_erased_but_contained = 0; |
||||
/** elements that we did not erase but are older */ |
||||
size_t count_stale = 0; |
||||
/** elements that were most recently inserted */ |
||||
size_t count_fresh = 0; |
||||
|
||||
for (uint32_t i = 0; i < (n_insert / 4); ++i) |
||||
count_erased_but_contained += set.contains(hashes[i], false); |
||||
for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i) |
||||
count_stale += set.contains(hashes[i], false); |
||||
for (uint32_t i = (n_insert / 2); i < n_insert; ++i) |
||||
count_fresh += set.contains(hashes[i], false); |
||||
|
||||
double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0); |
||||
double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0); |
||||
double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0); |
||||
|
||||
// Check that our hit_rate_fresh is perfect
|
||||
BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0); |
||||
// Check that we have a more than 2x better hit rate on stale elements than
|
||||
// erased elements.
|
||||
BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained); |
||||
} |
||||
BOOST_AUTO_TEST_CASE(cuckoocache_erase_parallel_ok) |
||||
{ |
||||
size_t megabytes = 32; |
||||
test_cache_erase_parallel<CuckooCache::cache<uint256, uint256Hasher>>(megabytes); |
||||
} |
||||
|
||||
|
||||
template <typename Cache> |
||||
void test_cache_generations() |
||||
{ |
||||
// This test checks that for a simulation of network activity, the fresh hit
|
||||
// rate is never below 99%, and the number of times that it is worse than
|
||||
// 99.9% are less than 1% of the time.
|
||||
double min_hit_rate = 0.99; |
||||
double tight_hit_rate = 0.999; |
||||
double max_rate_less_than_tight_hit_rate = 0.01; |
||||
// A cache that meets this specification is therefore shown to have a hit
|
||||
// rate of at least tight_hit_rate * (1 - max_rate_less_than_tight_hit_rate) +
|
||||
// min_hit_rate*max_rate_less_than_tight_hit_rate = 0.999*99%+0.99*1% == 99.89%
|
||||
// hit rate with low variance.
|
||||
|
||||
// We use deterministic values, but this test has also passed on many
|
||||
// iterations with non-deterministic values, so it isn't "overfit" to the
|
||||
// specific entropy in FastRandomContext(true) and implementation of the
|
||||
// cache.
|
||||
insecure_rand = FastRandomContext(true); |
||||
|
||||
// block_activity models a chunk of network activity. n_insert elements are
|
||||
// adde to the cache. The first and last n/4 are stored for removal later
|
||||
// and the middle n/2 are not stored. This models a network which uses half
|
||||
// the signatures of recently (since the last block) added transactions
|
||||
// immediately and never uses the other half.
|
||||
struct block_activity { |
||||
std::vector<uint256> reads; |
||||
block_activity(uint32_t n_insert, Cache& c) : reads() |
||||
{ |
||||
std::vector<uint256> inserts; |
||||
inserts.resize(n_insert); |
||||
reads.reserve(n_insert / 2); |
||||
for (uint32_t i = 0; i < n_insert; ++i) { |
||||
uint32_t* ptr = (uint32_t*)inserts[i].begin(); |
||||
for (uint8_t j = 0; j < 8; ++j) |
||||
*(ptr++) = insecure_rand.rand32(); |
||||
} |
||||
for (uint32_t i = 0; i < n_insert / 4; ++i) |
||||
reads.push_back(inserts[i]); |
||||
for (uint32_t i = n_insert - (n_insert / 4); i < n_insert; ++i) |
||||
reads.push_back(inserts[i]); |
||||
for (auto h : inserts) |
||||
c.insert(h); |
||||
} |
||||
}; |
||||
|
||||
const uint32_t BLOCK_SIZE = 10000; |
||||
// We expect window size 60 to perform reasonably given that each epoch
|
||||
// stores 45% of the cache size (~472k).
|
||||
const uint32_t WINDOW_SIZE = 60; |
||||
const uint32_t POP_AMOUNT = (BLOCK_SIZE / WINDOW_SIZE) / 2; |
||||
const double load = 10; |
||||
const size_t megabytes = 32; |
||||
const size_t bytes = megabytes * (1 << 20); |
||||
const uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256))); |
||||
|
||||
std::vector<block_activity> hashes; |
||||
Cache set{}; |
||||
set.setup_bytes(bytes); |
||||
hashes.reserve(n_insert / BLOCK_SIZE); |
||||
std::deque<block_activity> last_few; |
||||
uint32_t out_of_tight_tolerance = 0; |
||||
uint32_t total = n_insert / BLOCK_SIZE; |
||||
// we use the deque last_few to model a sliding window of blocks. at each
|
||||
// step, each of the last WINDOW_SIZE block_activities checks the cache for
|
||||
// POP_AMOUNT of the hashes that they inserted, and marks these erased.
|
||||
for (uint32_t i = 0; i < total; ++i) { |
||||
if (last_few.size() == WINDOW_SIZE) |
||||
last_few.pop_front(); |
||||
last_few.emplace_back(BLOCK_SIZE, set); |
||||
uint32_t count = 0; |
||||
for (auto& act : last_few) |
||||
for (uint32_t k = 0; k < POP_AMOUNT; ++k) { |
||||
count += set.contains(act.reads.back(), true); |
||||
act.reads.pop_back(); |
||||
} |
||||
// We use last_few.size() rather than WINDOW_SIZE for the correct
|
||||
// behavior on the first WINDOW_SIZE iterations where the deque is not
|
||||
// full yet.
|
||||
double hit = (double(count)) / (last_few.size() * POP_AMOUNT); |
||||
// Loose Check that hit rate is above min_hit_rate
|
||||
BOOST_CHECK(hit > min_hit_rate); |
||||
// Tighter check, count number of times we are less than tight_hit_rate
|
||||
// (and implicityly, greater than min_hit_rate)
|
||||
out_of_tight_tolerance += hit < tight_hit_rate; |
||||
} |
||||
// Check that being out of tolerance happens less than
|
||||
// max_rate_less_than_tight_hit_rate of the time
|
||||
BOOST_CHECK(double(out_of_tight_tolerance) / double(total) < max_rate_less_than_tight_hit_rate); |
||||
} |
||||
BOOST_AUTO_TEST_CASE(cuckoocache_generations) |
||||
{ |
||||
test_cache_generations<CuckooCache::cache<uint256, uint256Hasher>>(); |
||||
} |
||||
|
||||
BOOST_AUTO_TEST_SUITE_END(); |
Loading…
Reference in new issue