kevacoin/src/allocators.h

269 lines
9.0 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
2013-10-20 19:25:06 +00:00
// Copyright (c) 2009-2013 The Bitcoin developers
2014-12-13 04:09:33 +00:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_ALLOCATORS_H
#define BITCOIN_ALLOCATORS_H
#include <map>
#include <string>
#include <string.h>
#include <vector>
#include <boost/thread/mutex.hpp>
#include <boost/thread/once.hpp>
#include <openssl/crypto.h> // for OPENSSL_cleanse()
/**
* Thread-safe class to keep track of locked (ie, non-swappable) memory pages.
*
* Memory locks do not stack, that is, pages which have been locked several times by calls to mlock()
* will be unlocked by a single call to munlock(). This can result in keying material ending up in swap when
* those functions are used naively. This class simulates stacking memory locks by keeping a counter per page.
*
* @note By using a map from each page base address to lock count, this class is optimized for
* small objects that span up to a few pages, mostly smaller than a page. To support large allocations,
* something like an interval tree would be the preferred data structure.
*/
template <class Locker>
class LockedPageManagerBase
{
public:
LockedPageManagerBase(size_t page_size) : page_size(page_size)
{
// Determine bitmask for extracting page from address
assert(!(page_size & (page_size - 1))); // size must be power of two
page_mask = ~(page_size - 1);
}
~LockedPageManagerBase()
{
assert(this->GetLockedPageCount() == 0);
}
// For all pages in affected range, increase lock count
void LockRange(void* p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if (!size)
return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for (size_t page = start_page; page <= end_page; page += page_size) {
Histogram::iterator it = histogram.find(page);
if (it == histogram.end()) // Newly locked page
{
locker.Lock(reinterpret_cast<void*>(page), page_size);
histogram.insert(std::make_pair(page, 1));
} else // Page was already locked; increase counter
{
it->second += 1;
}
}
}
// For all pages in affected range, decrease lock count
void UnlockRange(void* p, size_t size)
{
boost::mutex::scoped_lock lock(mutex);
if (!size)
return;
const size_t base_addr = reinterpret_cast<size_t>(p);
const size_t start_page = base_addr & page_mask;
const size_t end_page = (base_addr + size - 1) & page_mask;
for (size_t page = start_page; page <= end_page; page += page_size) {
Histogram::iterator it = histogram.find(page);
assert(it != histogram.end()); // Cannot unlock an area that was not locked
// Decrease counter for page, when it is zero, the page will be unlocked
it->second -= 1;
if (it->second == 0) // Nothing on the page anymore that keeps it locked
{
// Unlock page and remove the count from histogram
locker.Unlock(reinterpret_cast<void*>(page), page_size);
histogram.erase(it);
}
}
}
// Get number of locked pages for diagnostics
int GetLockedPageCount()
{
boost::mutex::scoped_lock lock(mutex);
return histogram.size();
}
private:
Locker locker;
boost::mutex mutex;
size_t page_size, page_mask;
// map of page base address to lock count
typedef std::map<size_t, int> Histogram;
Histogram histogram;
};
/**
* OS-dependent memory page locking/unlocking.
* Defined as policy class to make stubbing for test possible.
*/
class MemoryPageLocker
{
public:
/** Lock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Lock(const void* addr, size_t len);
/** Unlock memory pages.
* addr and len must be a multiple of the system page size
*/
bool Unlock(const void* addr, size_t len);
};
/**
* Singleton class to keep track of locked (ie, non-swappable) memory pages, for use in
* std::allocator templates.
*
* Some implementations of the STL allocate memory in some constructors (i.e., see
* MSVC's vector<T> implementation where it allocates 1 byte of memory in the allocator.)
* Due to the unpredictable order of static initializers, we have to make sure the
* LockedPageManager instance exists before any other STL-based objects that use
* secure_allocator are created. So instead of having LockedPageManager also be
2014-07-23 20:47:18 +00:00
* static-initialized, it is created on demand.
*/
class LockedPageManager : public LockedPageManagerBase<MemoryPageLocker>
{
public:
static LockedPageManager& Instance()
{
boost::call_once(LockedPageManager::CreateInstance, LockedPageManager::init_flag);
return *LockedPageManager::_instance;
}
private:
LockedPageManager();
static void CreateInstance()
{
// Using a local static instance guarantees that the object is initialized
// when it's first needed and also deinitialized after all objects that use
// it are done with it. I can think of one unlikely scenario where we may
// have a static deinitialization order/problem, but the check in
// LockedPageManagerBase's destructor helps us detect if that ever happens.
static LockedPageManager instance;
LockedPageManager::_instance = &instance;
}
static LockedPageManager* _instance;
static boost::once_flag init_flag;
};
2013-05-04 14:10:09 +00:00
//
// Functions for directly locking/unlocking memory objects.
// Intended for non-dynamically allocated structures.
//
template <typename T>
void LockObject(const T& t)
{
LockedPageManager::Instance().LockRange((void*)(&t), sizeof(T));
}
template <typename T>
void UnlockObject(const T& t)
{
OPENSSL_cleanse((void*)(&t), sizeof(T));
LockedPageManager::Instance().UnlockRange((void*)(&t), sizeof(T));
}
//
// Allocator that locks its contents from being paged
// out of memory and clears its contents before deletion.
//
template <typename T>
struct secure_allocator : public std::allocator<T> {
// MSVC8 default copy constructor is broken
typedef std::allocator<T> base;
typedef typename base::size_type size_type;
typedef typename base::difference_type difference_type;
typedef typename base::pointer pointer;
typedef typename base::const_pointer const_pointer;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::value_type value_type;
secure_allocator() throw() {}
secure_allocator(const secure_allocator& a) throw() : base(a) {}
template <typename U>
secure_allocator(const secure_allocator<U>& a) throw() : base(a)
{
}
~secure_allocator() throw() {}
template <typename _Other>
struct rebind {
typedef secure_allocator<_Other> other;
};
T* allocate(std::size_t n, const void* hint = 0)
{
T* p;
p = std::allocator<T>::allocate(n, hint);
if (p != NULL)
LockedPageManager::Instance().LockRange(p, sizeof(T) * n);
return p;
}
void deallocate(T* p, std::size_t n)
{
if (p != NULL) {
OPENSSL_cleanse(p, sizeof(T) * n);
LockedPageManager::Instance().UnlockRange(p, sizeof(T) * n);
}
std::allocator<T>::deallocate(p, n);
}
};
//
// Allocator that clears its contents before deletion.
//
template <typename T>
struct zero_after_free_allocator : public std::allocator<T> {
// MSVC8 default copy constructor is broken
typedef std::allocator<T> base;
typedef typename base::size_type size_type;
typedef typename base::difference_type difference_type;
typedef typename base::pointer pointer;
typedef typename base::const_pointer const_pointer;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::value_type value_type;
zero_after_free_allocator() throw() {}
zero_after_free_allocator(const zero_after_free_allocator& a) throw() : base(a) {}
template <typename U>
zero_after_free_allocator(const zero_after_free_allocator<U>& a) throw() : base(a)
{
}
~zero_after_free_allocator() throw() {}
template <typename _Other>
struct rebind {
typedef zero_after_free_allocator<_Other> other;
};
void deallocate(T* p, std::size_t n)
{
if (p != NULL)
OPENSSL_cleanse(p, sizeof(T) * n);
std::allocator<T>::deallocate(p, n);
}
};
// This is exactly like std::string, but with a custom allocator.
typedef std::basic_string<char, std::char_traits<char>, secure_allocator<char> > SecureString;
// Byte-vector that clears its contents before deletion.
typedef std::vector<char, zero_after_free_allocator<char> > CSerializeData;
#endif // BITCOIN_ALLOCATORS_H