Browse Source

CSecret/CKey -> CKey/CPubKey split/refactor

0.10
Pieter Wuille 12 years ago committed by Pieter Wuille
parent
commit
dfa23b94c2
  1. 4
      src/alert.cpp
  2. 9
      src/allocators.h
  3. 22
      src/base58.h
  4. 6
      src/crypter.cpp
  5. 4
      src/crypter.h
  6. 467
      src/key.cpp
  7. 223
      src/key.h
  8. 86
      src/keystore.cpp
  9. 21
      src/keystore.h
  10. 6
      src/qt/signverifymessagedialog.cpp
  11. 19
      src/rpcdump.cpp
  12. 5
      src/rpcrawtransaction.cpp
  13. 14
      src/rpcwallet.cpp
  14. 33
      src/script.cpp
  15. 4
      src/script.h
  16. 10
      src/test/base58_tests.cpp
  17. 11
      src/test/bloom_tests.cpp
  18. 96
      src/test/key_tests.cpp
  19. 2
      src/test/multisig_tests.cpp
  20. 14
      src/test/script_P2SH_tests.cpp
  21. 8
      src/test/script_tests.cpp
  22. 4
      src/test/sigopcount_tests.cpp
  23. 18
      src/wallet.cpp
  24. 4
      src/wallet.h
  25. 59
      src/walletdb.cpp
  26. 10
      src/walletdb.h

4
src/alert.cpp

@ -144,9 +144,7 @@ bool CAlert::RelayTo(CNode* pnode) const @@ -144,9 +144,7 @@ bool CAlert::RelayTo(CNode* pnode) const
bool CAlert::CheckSignature() const
{
CKey key;
if (!key.SetPubKey(ParseHex(fTestNet ? pszTestKey : pszMainKey)))
return error("CAlert::CheckSignature() : SetPubKey failed");
CPubKey key(ParseHex(fTestNet ? pszTestKey : pszMainKey));
if (!key.Verify(Hash(vchMsg.begin(), vchMsg.end()), vchSig))
return error("CAlert::CheckSignature() : verify signature failed");

9
src/allocators.h

@ -176,6 +176,15 @@ private: @@ -176,6 +176,15 @@ private:
{}
};
template<typename T> void LockObject(const T &t) {
LockedPageManager::instance.LockRange((void*)(&t), sizeof(T));
}
template<typename T> void UnlockObject(const T &t) {
OPENSSL_cleanse((void*)(&t), sizeof(T));
LockedPageManager::instance.UnlockRange((void*)(&t), sizeof(T));
}
//
// Allocator that locks its contents from being paged
// out of memory and clears its contents before deletion.

22
src/base58.h

@ -398,21 +398,19 @@ bool inline CBitcoinAddressVisitor::operator()(const CNoDestination &id) const { @@ -398,21 +398,19 @@ bool inline CBitcoinAddressVisitor::operator()(const CNoDestination &id) const {
class CBitcoinSecret : public CBase58Data
{
public:
void SetSecret(const CSecret& vchSecret, bool fCompressed)
void SetKey(const CKey& vchSecret)
{
assert(vchSecret.size() == 32);
SetData(fTestNet ? 239 : 128, &vchSecret[0], vchSecret.size());
if (fCompressed)
assert(vchSecret.IsValid());
SetData(fTestNet ? 239 : 128, vchSecret.begin(), vchSecret.size());
if (vchSecret.IsCompressed())
vchData.push_back(1);
}
CSecret GetSecret(bool &fCompressedOut)
CKey GetKey()
{
CSecret vchSecret;
vchSecret.resize(32);
memcpy(&vchSecret[0], &vchData[0], 32);
fCompressedOut = vchData.size() == 33;
return vchSecret;
CKey ret;
ret.Set(&vchData[0], &vchData[32], vchData.size() > 32 && vchData[32] == 1);
return ret;
}
bool IsValid() const
@ -443,9 +441,9 @@ public: @@ -443,9 +441,9 @@ public:
return SetString(strSecret.c_str());
}
CBitcoinSecret(const CSecret& vchSecret, bool fCompressed)
CBitcoinSecret(const CKey& vchSecret)
{
SetSecret(vchSecret, fCompressed);
SetKey(vchSecret);
}
CBitcoinSecret()

6
src/crypter.cpp

@ -100,17 +100,17 @@ bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingM @@ -100,17 +100,17 @@ bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingM
}
bool EncryptSecret(CKeyingMaterial& vMasterKey, const CSecret &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext)
bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext)
{
CCrypter cKeyCrypter;
std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE);
memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE);
if(!cKeyCrypter.SetKey(vMasterKey, chIV))
return false;
return cKeyCrypter.Encrypt((CKeyingMaterial)vchPlaintext, vchCiphertext);
return cKeyCrypter.Encrypt(*((const CKeyingMaterial*)&vchPlaintext), vchCiphertext);
}
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CSecret& vchPlaintext)
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext)
{
CCrypter cKeyCrypter;
std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE);

4
src/crypter.h

@ -101,7 +101,7 @@ public: @@ -101,7 +101,7 @@ public:
}
};
bool EncryptSecret(CKeyingMaterial& vMasterKey, const CSecret &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext);
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char> &vchCiphertext, const uint256& nIV, CSecret &vchPlaintext);
bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext);
bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext);
#endif

467
src/key.cpp

@ -2,13 +2,16 @@ @@ -2,13 +2,16 @@
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <map>
#include <openssl/ecdsa.h>
#include <openssl/rand.h>
#include <openssl/obj_mac.h>
#include "key.h"
// anonymous namespace with local implementation code (OpenSSL interaction)
namespace {
// Generate a private key from just the secret parameter
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
{
@ -120,293 +123,273 @@ err: @@ -120,293 +123,273 @@ err:
return ret;
}
void CKey::SetCompressedPubKey(bool fCompressed)
{
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
fCompressedPubKey = true;
}
// RAII Wrapper around OpenSSL's EC_KEY
class CECKey {
private:
EC_KEY *pkey;
void CKey::Reset()
{
fCompressedPubKey = false;
if (pkey != NULL)
public:
CECKey() {
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
assert(pkey != NULL);
}
~CECKey() {
EC_KEY_free(pkey);
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
if (pkey == NULL)
throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed");
fSet = false;
}
}
CKey::CKey()
{
pkey = NULL;
Reset();
}
void GetSecretBytes(unsigned char vch[32]) const {
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
assert(bn);
int nBytes = BN_num_bytes(bn);
int n=BN_bn2bin(bn,&vch[32 - nBytes]);
assert(n == nBytes);
memset(vch, 0, 32 - nBytes);
}
CKey::CKey(const CKey& b)
{
pkey = EC_KEY_dup(b.pkey);
if (pkey == NULL)
throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed");
fSet = b.fSet;
}
void SetSecretBytes(const unsigned char vch[32]) {
BIGNUM bn;
BN_init(&bn);
assert(BN_bin2bn(vch, 32, &bn));
assert(EC_KEY_regenerate_key(pkey, &bn));
BN_clear_free(&bn);
}
CKey& CKey::operator=(const CKey& b)
{
if (!EC_KEY_copy(pkey, b.pkey))
throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed");
fSet = b.fSet;
return (*this);
}
void GetPrivKey(CPrivKey &privkey) {
int nSize = i2d_ECPrivateKey(pkey, NULL);
assert(nSize);
privkey.resize(nSize);
unsigned char* pbegin = &privkey[0];
int nSize2 = i2d_ECPrivateKey(pkey, &pbegin);
assert(nSize == nSize2);
}
CKey::~CKey()
{
EC_KEY_free(pkey);
}
bool SetPrivKey(const CPrivKey &privkey) {
const unsigned char* pbegin = &privkey[0];
if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) {
// d2i_ECPrivateKey returns true if parsing succeeds.
// This doesn't necessarily mean the key is valid.
if (EC_KEY_check_key(pkey))
return true;
}
return false;
}
bool CKey::IsNull() const
{
return !fSet;
}
void GetPubKey(CPubKey &pubkey, bool fCompressed) {
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
int nSize = i2o_ECPublicKey(pkey, NULL);
assert(nSize);
assert(nSize <= 65);
unsigned char c[65];
unsigned char *pbegin = c;
int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
assert(nSize == nSize2);
pubkey.Set(&c[0], &c[nSize]);
}
bool CKey::IsCompressed() const
{
return fCompressedPubKey;
}
bool SetPubKey(const CPubKey &pubkey) {
const unsigned char* pbegin = pubkey.begin();
return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size());
}
void CKey::MakeNewKey(bool fCompressed)
{
if (!EC_KEY_generate_key(pkey))
throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed");
if (fCompressed)
SetCompressedPubKey();
fSet = true;
}
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) {
unsigned int nSize = ECDSA_size(pkey);
vchSig.resize(nSize); // Make sure it is big enough
assert(ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey));
vchSig.resize(nSize); // Shrink to fit actual size
return true;
}
bool CKey::SetPrivKey(const CPrivKey& vchPrivKey)
{
const unsigned char* pbegin = &vchPrivKey[0];
if (d2i_ECPrivateKey(&pkey, &pbegin, vchPrivKey.size()))
{
// In testing, d2i_ECPrivateKey can return true
// but fill in pkey with a key that fails
// EC_KEY_check_key, so:
if (EC_KEY_check_key(pkey))
{
fSet = true;
return true;
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
// -1 = error, 0 = bad sig, 1 = good
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
return false;
return true;
}
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) {
bool fOk = false;
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
if (sig==NULL)
return false;
memset(p64, 0, 64);
int nBitsR = BN_num_bits(sig->r);
int nBitsS = BN_num_bits(sig->s);
if (nBitsR <= 256 && nBitsS <= 256) {
CPubKey pubkey;
GetPubKey(pubkey, true);
for (int i=0; i<4; i++) {
CECKey keyRec;
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) {
CPubKey pubkeyRec;
keyRec.GetPubKey(pubkeyRec, true);
if (pubkeyRec == pubkey) {
rec = i;
fOk = true;
break;
}
}
}
assert(fOk);
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]);
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]);
}
ECDSA_SIG_free(sig);
return fOk;
}
// If vchPrivKey data is bad d2i_ECPrivateKey() can
// leave pkey in a state where calling EC_KEY_free()
// crashes. To avoid that, set pkey to NULL and
// leak the memory (a leak is better than a crash)
pkey = NULL;
Reset();
return false;
}
bool CKey::SetSecret(const CSecret& vchSecret, bool fCompressed)
{
EC_KEY_free(pkey);
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
if (pkey == NULL)
throw key_error("CKey::SetSecret() : EC_KEY_new_by_curve_name failed");
if (vchSecret.size() != 32)
throw key_error("CKey::SetSecret() : secret must be 32 bytes");
BIGNUM *bn = BN_bin2bn(&vchSecret[0],32,BN_new());
if (bn == NULL)
throw key_error("CKey::SetSecret() : BN_bin2bn failed");
if (!EC_KEY_regenerate_key(pkey,bn))
// reconstruct public key from a compact signature
// This is only slightly more CPU intensive than just verifying it.
// If this function succeeds, the recovered public key is guaranteed to be valid
// (the signature is a valid signature of the given data for that key)
bool Recover(const uint256 &hash, const unsigned char *p64, int rec)
{
BN_clear_free(bn);
throw key_error("CKey::SetSecret() : EC_KEY_regenerate_key failed");
if (rec<0 || rec>=3)
return false;
ECDSA_SIG *sig = ECDSA_SIG_new();
BN_bin2bn(&p64[0], 32, sig->r);
BN_bin2bn(&p64[32], 32, sig->s);
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
ECDSA_SIG_free(sig);
return ret;
}
};
}; // end of anonymous namespace
bool CKey::Check(const unsigned char *vch) {
// Do not convert to OpenSSL's data structures for range-checking keys,
// it's easy enough to do directly.
static const unsigned char vchMax[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
};
bool fIsZero = true;
for (int i=0; i<32 && fIsZero; i++)
if (vch[i] != 0)
fIsZero = false;
if (fIsZero)
return false;
for (int i=0; i<32; i++) {
if (vch[i] < vchMax[i])
return true;
if (vch[i] > vchMax[i])
return false;
}
BN_clear_free(bn);
fSet = true;
if (fCompressed || fCompressedPubKey)
SetCompressedPubKey();
return true;
}
CSecret CKey::GetSecret(bool &fCompressed) const
{
CSecret vchRet;
vchRet.resize(32);
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
int nBytes = BN_num_bytes(bn);
if (bn == NULL)
throw key_error("CKey::GetSecret() : EC_KEY_get0_private_key failed");
int n=BN_bn2bin(bn,&vchRet[32 - nBytes]);
if (n != nBytes)
throw key_error("CKey::GetSecret(): BN_bn2bin failed");
fCompressed = fCompressedPubKey;
return vchRet;
void CKey::MakeNewKey(bool fCompressedIn) {
do {
RAND_bytes(vch, sizeof(vch));
} while (!Check(vch));
fValid = true;
fCompressed = fCompressedIn;
}
CPrivKey CKey::GetPrivKey() const
{
int nSize = i2d_ECPrivateKey(pkey, NULL);
if (!nSize)
throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey failed");
CPrivKey vchPrivKey(nSize, 0);
unsigned char* pbegin = &vchPrivKey[0];
if (i2d_ECPrivateKey(pkey, &pbegin) != nSize)
throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey returned unexpected size");
return vchPrivKey;
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
CECKey key;
if (!key.SetPrivKey(privkey))
return false;
key.GetSecretBytes(vch);
fCompressed = fCompressedIn;
fValid = true;
return true;
}
bool CKey::SetPubKey(const CPubKey& vchPubKey)
{
const unsigned char* pbegin = vchPubKey.begin();
if (o2i_ECPublicKey(&pkey, &pbegin, vchPubKey.size()))
{
fSet = true;
if (vchPubKey.size() == 33)
SetCompressedPubKey();
return true;
}
pkey = NULL;
Reset();
return false;
CPrivKey CKey::GetPrivKey() const {
assert(fValid);
CECKey key;
key.SetSecretBytes(vch);
CPrivKey privkey;
key.GetPrivKey(privkey);
return privkey;
}
CPubKey CKey::GetPubKey() const
{
int nSize = i2o_ECPublicKey(pkey, NULL);
if (!nSize)
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed");
assert(nSize <= 65);
CPubKey ret;
unsigned char *pbegin = ret.begin();
if (i2o_ECPublicKey(pkey, &pbegin) != nSize)
throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size");
assert((int)ret.size() == nSize);
return ret;
CPubKey CKey::GetPubKey() const {
assert(fValid);
CECKey key;
key.SetSecretBytes(vch);
CPubKey pubkey;
key.GetPubKey(pubkey, fCompressed);
return pubkey;
}
bool CKey::Sign(uint256 hash, std::vector<unsigned char>& vchSig)
{
unsigned int nSize = ECDSA_size(pkey);
vchSig.resize(nSize); // Make sure it is big enough
if (!ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey))
{
vchSig.clear();
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid)
return false;
}
vchSig.resize(nSize); // Shrink to fit actual size
return true;
CECKey key;
key.SetSecretBytes(vch);
return key.Sign(hash, vchSig);
}
// create a compact signature (65 bytes), which allows reconstructing the used public key
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
// 0x1D = second key with even y, 0x1E = second key with odd y
bool CKey::SignCompact(uint256 hash, std::vector<unsigned char>& vchSig)
{
bool fOk = false;
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
if (sig==NULL)
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid)
return false;
vchSig.clear();
vchSig.resize(65,0);
int nBitsR = BN_num_bits(sig->r);
int nBitsS = BN_num_bits(sig->s);
if (nBitsR <= 256 && nBitsS <= 256)
{
int nRecId = -1;
for (int i=0; i<4; i++)
{
CKey keyRec;
keyRec.fSet = true;
if (fCompressedPubKey)
keyRec.SetCompressedPubKey();
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1)
if (keyRec.GetPubKey() == this->GetPubKey())
{
nRecId = i;
break;
}
}
if (nRecId == -1)
{
ECDSA_SIG_free(sig);
throw key_error("CKey::SignCompact() : unable to construct recoverable key");
}
CECKey key;
key.SetSecretBytes(vch);
vchSig.resize(65);
int rec = -1;
if (!key.SignCompact(hash, &vchSig[1], rec))
return false;
assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
return true;
}
vchSig[0] = nRecId+27+(fCompressedPubKey ? 4 : 0);
BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]);
BN_bn2bin(sig->s,&vchSig[65-(nBitsS+7)/8]);
fOk = true;
}
ECDSA_SIG_free(sig);
return fOk;
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
if (!IsValid())
return false;
CECKey key;
if (!key.SetPubKey(*this))
return false;
if (!key.Verify(hash, vchSig))
return false;
return true;
}
// reconstruct public key from a compact signature
// This is only slightly more CPU intensive than just verifying it.
// If this function succeeds, the recovered public key is guaranteed to be valid
// (the signature is a valid signature of the given data for that key)
bool CKey::SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig)
{
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
if (vchSig.size() != 65)
return false;
int nV = vchSig[0];
if (nV<27 || nV>=35)
CECKey key;
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
return false;
ECDSA_SIG *sig = ECDSA_SIG_new();
BN_bin2bn(&vchSig[1],32,sig->r);
BN_bin2bn(&vchSig[33],32,sig->s);
EC_KEY_free(pkey);
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
if (nV >= 31)
{
SetCompressedPubKey();
nV -= 4;
}
if (ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), nV - 27, 0) == 1)
{
fSet = true;
ECDSA_SIG_free(sig);
return true;
}
ECDSA_SIG_free(sig);
return false;
key.GetPubKey(*this, (vchSig[0] - 27) & 4);
return true;
}
bool CKey::Verify(uint256 hash, const std::vector<unsigned char>& vchSig)
{
// -1 = error, 0 = bad sig, 1 = good
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
if (!IsValid())
return false;
if (vchSig.size() != 65)
return false;
CECKey key;
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
return false;
CPubKey pubkeyRec;
key.GetPubKey(pubkeyRec, IsCompressed());
if (*this != pubkeyRec)
return false;
return true;
}
bool CKey::VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig)
{
CKey key;
if (!key.SetCompactSignature(hash, vchSig))
bool CPubKey::IsFullyValid() const {
if (!IsValid())
return false;
if (GetPubKey() != key.GetPubKey())
CECKey key;
if (!key.SetPubKey(*this))
return false;
return true;
}
bool CKey::IsValid()
{
if (!fSet)
bool CPubKey::Decompress() {
if (!IsValid())
return false;
if (!EC_KEY_check_key(pkey))
CECKey key;
if (!key.SetPubKey(*this))
return false;
bool fCompr;
CSecret secret = GetSecret(fCompr);
CKey key2;
key2.SetSecret(secret, fCompr);
return GetPubKey() == key2.GetPubKey();
key.GetPubKey(*this, false);
return true;
}

223
src/key.h

@ -1,11 +1,10 @@ @@ -1,11 +1,10 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Copyright (c) 2009-2013 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H
#include <stdexcept>
#include <vector>
#include "allocators.h"
@ -13,23 +12,6 @@ @@ -13,23 +12,6 @@
#include "uint256.h"
#include "hash.h"
#include <openssl/ec.h> // for EC_KEY definition
// secp160k1
// const unsigned int PRIVATE_KEY_SIZE = 192;
// const unsigned int PUBLIC_KEY_SIZE = 41;
// const unsigned int SIGNATURE_SIZE = 48;
//
// secp192k1
// const unsigned int PRIVATE_KEY_SIZE = 222;
// const unsigned int PUBLIC_KEY_SIZE = 49;
// const unsigned int SIGNATURE_SIZE = 57;
//
// secp224k1
// const unsigned int PRIVATE_KEY_SIZE = 250;
// const unsigned int PUBLIC_KEY_SIZE = 57;
// const unsigned int SIGNATURE_SIZE = 66;
//
// secp256k1:
// const unsigned int PRIVATE_KEY_SIZE = 279;
// const unsigned int PUBLIC_KEY_SIZE = 65;
@ -38,12 +20,6 @@ @@ -38,12 +20,6 @@
// see www.keylength.com
// script supports up to 75 for single byte push
class key_error : public std::runtime_error
{
public:
explicit key_error(const std::string& str) : std::runtime_error(str) {}
};
/** A reference to a CKey: the Hash160 of its serialized public key */
class CKeyID : public uint160
{
@ -63,8 +39,11 @@ public: @@ -63,8 +39,11 @@ public:
/** An encapsulated public key. */
class CPubKey {
private:
// Just store the serialized data.
// Its length can very cheaply be computed from the first byte.
unsigned char vch[65];
// Compute the length of a pubkey with a given first byte.
unsigned int static GetLen(unsigned char chHeader) {
if (chHeader == 2 || chHeader == 3)
return 33;
@ -73,146 +52,206 @@ private: @@ -73,146 +52,206 @@ private:
return 0;
}
unsigned char *begin() {
return vch;
// Set this key data to be invalid
void Invalidate() {
vch[0] = 0xFF;
}
friend class CKey;
public:
CPubKey() { vch[0] = 0xFF; }
CPubKey(const std::vector<unsigned char> &vchPubKeyIn) {
int len = vchPubKeyIn.empty() ? 0 : GetLen(vchPubKeyIn[0]);
if (len) {
memcpy(vch, &vchPubKeyIn[0], len);
} else {
vch[0] = 0xFF;
}
// Construct an invalid public key.
CPubKey() {
Invalidate();
}
unsigned int size() const {
return GetLen(vch[0]);
// Initialize a public key using begin/end iterators to byte data.
template<typename T>
void Set(const T pbegin, const T pend) {
int len = pend == pbegin ? 0 : GetLen(pbegin[0]);
if (len && len == (pend-pbegin))
memcpy(vch, (unsigned char*)&pbegin[0], len);
else
Invalidate();
}
const unsigned char *begin() const {
return vch;
// Construct a public key using begin/end iterators to byte data.
template<typename T>
CPubKey(const T pbegin, const T pend) {
Set(pbegin, pend);
}
const unsigned char *end() const {
return vch+size();
// Construct a public key from a byte vector.
CPubKey(const std::vector<unsigned char> &vch) {
Set(vch.begin(), vch.end());
}
friend bool operator==(const CPubKey &a, const CPubKey &b) { return memcmp(a.vch, b.vch, a.size()) == 0; }
friend bool operator!=(const CPubKey &a, const CPubKey &b) { return memcmp(a.vch, b.vch, a.size()) != 0; }
// Simply read-only vector-like interface to the pubkey data.
unsigned int size() const { return GetLen(vch[0]); }
const unsigned char *begin() const { return vch; }
const unsigned char *end() const { return vch+size(); }
const unsigned char &operator[](unsigned int pos) const { return vch[pos]; }
// Comparator implementation.
friend bool operator==(const CPubKey &a, const CPubKey &b) {
return a.vch[0] == b.vch[0] &&
memcmp(a.vch, b.vch, a.size()) == 0;
}
friend bool operator!=(const CPubKey &a, const CPubKey &b) {
return !(a == b);
}
friend bool operator<(const CPubKey &a, const CPubKey &b) {
return a.vch[0] < b.vch[0] ||
(a.vch[0] == b.vch[0] && memcmp(a.vch+1, b.vch+1, a.size() - 1) < 0);
(a.vch[0] == b.vch[0] && memcmp(a.vch, b.vch, a.size()) < 0);
}
// Implement serialization, as if this was a byte vector.
unsigned int GetSerializeSize(int nType, int nVersion) const {
return size() + 1;
}
template<typename Stream> void Serialize(Stream &s, int nType, int nVersion) const {
unsigned int len = size();
::Serialize(s, VARINT(len), nType, nVersion);
s.write((char*)vch, len);
}
template<typename Stream> void Unserialize(Stream &s, int nType, int nVersion) {
unsigned int len;
::Unserialize(s, VARINT(len), nType, nVersion);
if (len <= 65) {
s.read((char*)vch, len);
} else {
// invalid pubkey
vch[0] = 0xFF;
// invalid pubkey, skip available data
char dummy;
while (len--)
s.read(&dummy, 1);
Invalidate();
}
}
// Get the KeyID of this public key (hash of its serialization)
CKeyID GetID() const {
return CKeyID(Hash160(vch, vch+size()));
}
// Get the 256-bit hash of this public key.
uint256 GetHash() const {
return Hash(vch, vch+size());
}
// just check syntactic correctness.
bool IsValid() const {
return size() > 0;
}
// fully validate whether this is a valid public key (more expensive than IsValid())
bool IsFullyValid() const;
// Check whether this is a compressed public key.
bool IsCompressed() const {
return size() == 33;
}
std::vector<unsigned char> Raw() const {
return std::vector<unsigned char>(vch, vch+size());
}
// Verify a DER signature (~72 bytes).
// If this public key is not fully valid, the return value will be false.
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const;
// Verify a compact signature (~65 bytes).
// See CKey::SignCompact.
bool VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const;
// Recover a public key from a compact signature.
bool RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig);
// Turn this public key into an uncompressed public key.
bool Decompress();
};
// secure_allocator is defined in allocators.h
// CPrivKey is a serialized private key, with all parameters included (279 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
// CSecret is a serialization of just the secret parameter (32 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;
/** An encapsulated OpenSSL Elliptic Curve key (public and/or private) */
class CKey
{
protected:
EC_KEY* pkey;
bool fSet;
bool fCompressedPubKey;
/** An encapsulated private key. */
class CKey {
private:
// Whether this private key is valid. We check for correctness when modifying the key
// data, so fValid should always correspond to the actual state.
bool fValid;
// Whether the public key corresponding to this private key is (to be) compressed.
bool fCompressed;
// The actual byte data
unsigned char vch[32];
// Check whether the 32-byte array pointed to be vch is valid keydata.
bool static Check(const unsigned char *vch);
public:
void SetCompressedPubKey(bool fCompressed = true);
void Reset();
// Construct an invalid private key.
CKey() : fValid(false) {
LockObject(vch);
}
CKey();
CKey(const CKey& b);
// Copy constructor. This is necessary because of memlocking.
CKey(const CKey &secret) : fValid(secret.fValid), fCompressed(secret.fCompressed) {
LockObject(vch);
memcpy(vch, secret.vch, sizeof(vch));
}
CKey& operator=(const CKey& b);
// Destructor (again necessary because of memlocking).
~CKey() {
UnlockObject(vch);
}
~CKey();
// Initialize using begin and end iterators to byte data.
template<typename T>
void Set(const T pbegin, const T pend, bool fCompressedIn) {
if (pend - pbegin != 32) {
fValid = false;
return;
}
if (Check(&pbegin[0])) {
memcpy(vch, (unsigned char*)&pbegin[0], 32);
fValid = true;
fCompressed = fCompressedIn;
} else {
fValid = false;
}
}
// Simple read-only vector-like interface.
unsigned int size() const { return (fValid ? 32 : 0); }
const unsigned char *begin() const { return vch; }
const unsigned char *end() const { return vch + size(); }
// Check whether this private key is valid.
bool IsValid() const { return fValid; }
bool IsNull() const;
bool IsCompressed() const;
// Check whether the public key corresponding to this private key is (to be) compressed.
bool IsCompressed() const { return fCompressed; }
// Initialize from a CPrivKey (serialized OpenSSL private key data).
bool SetPrivKey(const CPrivKey &vchPrivKey, bool fCompressed);
// Generate a new private key using a cryptographic PRNG.
void MakeNewKey(bool fCompressed);
bool SetPrivKey(const CPrivKey& vchPrivKey);
bool SetSecret(const CSecret& vchSecret, bool fCompressed = false);
CSecret GetSecret(bool &fCompressed) const;
// Convert the private key to a CPrivKey (serialized OpenSSL private key data).
// This is expensive.
CPrivKey GetPrivKey() const;
bool SetPubKey(const CPubKey& vchPubKey);
// Compute the public key from a private key.
// This is expensive.
CPubKey GetPubKey() const;
bool Sign(uint256 hash, std::vector<unsigned char>& vchSig);
// Create a DER-serialized signature.
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const;
// create a compact signature (65 bytes), which allows reconstructing the used public key
// Create a compact signature (65 bytes), which allows reconstructing the used public key.
// The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
// The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
// 0x1D = second key with even y, 0x1E = second key with odd y
bool SignCompact(uint256 hash, std::vector<unsigned char>& vchSig);
// reconstruct public key from a compact signature
// This is only slightly more CPU intensive than just verifying it.
// If this function succeeds, the recovered public key is guaranteed to be valid
// (the signature is a valid signature of the given data for that key)
bool SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig);
bool Verify(uint256 hash, const std::vector<unsigned char>& vchSig);
// Verify a compact signature
bool VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig);
bool IsValid();
// 0x1D = second key with even y, 0x1E = second key with odd y,
// add 0x04 for compressed keys.
bool SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const;
};
#endif

86
src/keystore.cpp

@ -15,61 +15,50 @@ bool CKeyStore::GetPubKey(const CKeyID &address, CPubKey &vchPubKeyOut) const @@ -15,61 +15,50 @@ bool CKeyStore::GetPubKey(const CKeyID &address, CPubKey &vchPubKeyOut) const
return true;
}
bool CBasicKeyStore::AddKey(const CKey& key)
bool CKeyStore::AddKey(const CKey &key) {
return AddKeyPubKey(key, key.GetPubKey());
}
bool CBasicKeyStore::AddKeyPubKey(const CKey& key, const CPubKey &pubkey)
{
bool fCompressed = false;
CSecret secret = key.GetSecret(fCompressed);
{
LOCK(cs_KeyStore);
mapKeys[key.GetPubKey().GetID()] = make_pair(secret, fCompressed);
}
LOCK(cs_KeyStore);
mapKeys[pubkey.GetID()] = key;
return true;
}
bool CBasicKeyStore::AddCScript(const CScript& redeemScript)
{
{
LOCK(cs_KeyStore);
mapScripts[redeemScript.GetID()] = redeemScript;
}
LOCK(cs_KeyStore);
mapScripts[redeemScript.GetID()] = redeemScript;
return true;
}
bool CBasicKeyStore::HaveCScript(const CScriptID& hash) const
{
bool result;
{
LOCK(cs_KeyStore);
result = (mapScripts.count(hash) > 0);
}
return result;
LOCK(cs_KeyStore);
return mapScripts.count(hash) > 0;
}
bool CBasicKeyStore::GetCScript(const CScriptID &hash, CScript& redeemScriptOut) const
{
LOCK(cs_KeyStore);
ScriptMap::const_iterator mi = mapScripts.find(hash);
if (mi != mapScripts.end())
{
LOCK(cs_KeyStore);
ScriptMap::const_iterator mi = mapScripts.find(hash);
if (mi != mapScripts.end())
{
redeemScriptOut = (*mi).second;
return true;
}
redeemScriptOut = (*mi).second;
return true;
}
return false;
}
bool CCryptoKeyStore::SetCrypted()
{
{
LOCK(cs_KeyStore);
if (fUseCrypto)
return true;
if (!mapKeys.empty())
return false;
fUseCrypto = true;
}
LOCK(cs_KeyStore);
if (fUseCrypto)
return true;
if (!mapKeys.empty())
return false;
fUseCrypto = true;
return true;
}
@ -99,14 +88,13 @@ bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn) @@ -99,14 +88,13 @@ bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn)
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
CSecret vchSecret;
CKeyingMaterial vchSecret;
if(!DecryptSecret(vMasterKeyIn, vchCryptedSecret, vchPubKey.GetHash(), vchSecret))
return false;
if (vchSecret.size() != 32)
return false;
CKey key;
key.SetPubKey(vchPubKey);
key.SetSecret(vchSecret);
key.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed());
if (key.GetPubKey() == vchPubKey)
break;
return false;
@ -117,23 +105,22 @@ bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn) @@ -117,23 +105,22 @@ bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn)
return true;
}
bool CCryptoKeyStore::AddKey(const CKey& key)
bool CCryptoKeyStore::AddKeyPubKey(const CKey& key, const CPubKey &pubkey)
{
{
LOCK(cs_KeyStore);
if (!IsCrypted())
return CBasicKeyStore::AddKey(key);
return CBasicKeyStore::AddKeyPubKey(key, pubkey);
if (IsLocked())
return false;
std::vector<unsigned char> vchCryptedSecret;
CPubKey vchPubKey = key.GetPubKey();
bool fCompressed;
if (!EncryptSecret(vMasterKey, key.GetSecret(fCompressed), vchPubKey.GetHash(), vchCryptedSecret))
CKeyingMaterial vchSecret(key.begin(), key.end());
if (!EncryptSecret(vMasterKey, vchSecret, pubkey.GetHash(), vchCryptedSecret))
return false;
if (!AddCryptedKey(key.GetPubKey(), vchCryptedSecret))
if (!AddCryptedKey(pubkey, vchCryptedSecret))
return false;
}
return true;
@ -164,13 +151,12 @@ bool CCryptoKeyStore::GetKey(const CKeyID &address, CKey& keyOut) const @@ -164,13 +151,12 @@ bool CCryptoKeyStore::GetKey(const CKeyID &address, CKey& keyOut) const
{
const CPubKey &vchPubKey = (*mi).second.first;
const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
CSecret vchSecret;
CKeyingMaterial vchSecret;
if (!DecryptSecret(vMasterKey, vchCryptedSecret, vchPubKey.GetHash(), vchSecret))
return false;
if (vchSecret.size() != 32)
return false;
keyOut.SetPubKey(vchPubKey);
keyOut.SetSecret(vchSecret);
keyOut.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed());
return true;
}
}
@ -204,13 +190,11 @@ bool CCryptoKeyStore::EncryptKeys(CKeyingMaterial& vMasterKeyIn) @@ -204,13 +190,11 @@ bool CCryptoKeyStore::EncryptKeys(CKeyingMaterial& vMasterKeyIn)
fUseCrypto = true;
BOOST_FOREACH(KeyMap::value_type& mKey, mapKeys)
{
CKey key;
if (!key.SetSecret(mKey.second.first, mKey.second.second))
return false;
const CPubKey vchPubKey = key.GetPubKey();
const CKey &key = mKey.second;
CPubKey vchPubKey = key.GetPubKey();
CKeyingMaterial vchSecret(key.begin(), key.end());
std::vector<unsigned char> vchCryptedSecret;
bool fCompressed;
if (!EncryptSecret(vMasterKeyIn, key.GetSecret(fCompressed), vchPubKey.GetHash(), vchCryptedSecret))
if (!EncryptSecret(vMasterKeyIn, vchSecret, vchPubKey.GetHash(), vchCryptedSecret))
return false;
if (!AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;

21
src/keystore.h

@ -21,7 +21,8 @@ public: @@ -21,7 +21,8 @@ public:
virtual ~CKeyStore() {}
// Add a key to the store.
virtual bool AddKey(const CKey& key) =0;
virtual bool AddKeyPubKey(const CKey &key, const CPubKey &pubkey) =0;
virtual bool AddKey(const CKey &key);
// Check whether a key corresponding to a given address is present in the store.
virtual bool HaveKey(const CKeyID &address) const =0;
@ -33,18 +34,9 @@ public: @@ -33,18 +34,9 @@ public:
virtual bool AddCScript(const CScript& redeemScript) =0;
virtual bool HaveCScript(const CScriptID &hash) const =0;
virtual bool GetCScript(const CScriptID &hash, CScript& redeemScriptOut) const =0;
virtual bool GetSecret(const CKeyID &address, CSecret& vchSecret, bool &fCompressed) const
{
CKey key;
if (!GetKey(address, key))
return false;
vchSecret = key.GetSecret(fCompressed);
return true;
}
};
typedef std::map<CKeyID, std::pair<CSecret, bool> > KeyMap;
typedef std::map<CKeyID, CKey> KeyMap;
typedef std::map<CScriptID, CScript > ScriptMap;
/** Basic key store, that keeps keys in an address->secret map */
@ -55,7 +47,7 @@ protected: @@ -55,7 +47,7 @@ protected:
ScriptMap mapScripts;
public:
bool AddKey(const CKey& key);
bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey);
bool HaveKey(const CKeyID &address) const
{
bool result;
@ -85,8 +77,7 @@ public: @@ -85,8 +77,7 @@ public:
KeyMap::const_iterator mi = mapKeys.find(address);
if (mi != mapKeys.end())
{
keyOut.Reset();
keyOut.SetSecret((*mi).second.first, (*mi).second.second);
keyOut = mi->second;
return true;
}
}
@ -146,7 +137,7 @@ public: @@ -146,7 +137,7 @@ public:
bool Lock();
virtual bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret);
bool AddKey(const CKey& key);
bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey);
bool HaveKey(const CKeyID &address) const
{
{

6
src/qt/signverifymessagedialog.cpp

@ -218,8 +218,8 @@ void SignVerifyMessageDialog::on_verifyMessageButton_VM_clicked() @@ -218,8 +218,8 @@ void SignVerifyMessageDialog::on_verifyMessageButton_VM_clicked()
ss << strMessageMagic;
ss << ui->messageIn_VM->document()->toPlainText().toStdString();
CKey key;
if (!key.SetCompactSignature(Hash(ss.begin(), ss.end()), vchSig))
CPubKey pubkey;
if (!pubkey.RecoverCompact(Hash(ss.begin(), ss.end()), vchSig))
{
ui->signatureIn_VM->setValid(false);
ui->statusLabel_VM->setStyleSheet("QLabel { color: red; }");
@ -227,7 +227,7 @@ void SignVerifyMessageDialog::on_verifyMessageButton_VM_clicked() @@ -227,7 +227,7 @@ void SignVerifyMessageDialog::on_verifyMessageButton_VM_clicked()
return;
}
if (!(CBitcoinAddress(key.GetPubKey().GetID()) == addr))
if (!(CBitcoinAddress(pubkey.GetID()) == addr))
{
ui->statusLabel_VM->setStyleSheet("QLabel { color: red; }");
ui->statusLabel_VM->setText(QString("<nobr>") + tr("Message verification failed.") + QString("</nobr>"));

19
src/rpcdump.cpp

@ -54,20 +54,18 @@ Value importprivkey(const Array& params, bool fHelp) @@ -54,20 +54,18 @@ Value importprivkey(const Array& params, bool fHelp)
if (!fGood) throw JSONRPCError(RPC_INVALID_ADDRESS_OR_KEY, "Invalid private key");
CKey key;
bool fCompressed;
CSecret secret = vchSecret.GetSecret(fCompressed);
key.SetSecret(secret, fCompressed);
CKeyID vchAddress = key.GetPubKey().GetID();
CKey key = vchSecret.GetKey();
CPubKey pubkey = key.GetPubKey();
CKeyID vchAddress = pubkey.GetID();
{
LOCK2(cs_main, pwalletMain->cs_wallet);
pwalletMain->MarkDirty();
pwalletMain->SetAddressBookName(vchAddress, strLabel);
if (!pwalletMain->AddKey(key))
if (!pwalletMain->AddKeyPubKey(key, pubkey))
throw JSONRPCError(RPC_WALLET_ERROR, "Error adding key to wallet");
if (fRescan) {
pwalletMain->ScanForWalletTransactions(pindexGenesisBlock, true);
pwalletMain->ReacceptWalletTransactions();
@ -91,9 +89,8 @@ Value dumpprivkey(const Array& params, bool fHelp) @@ -91,9 +89,8 @@ Value dumpprivkey(const Array& params, bool fHelp)
CKeyID keyID;
if (!address.GetKeyID(keyID))
throw JSONRPCError(RPC_TYPE_ERROR, "Address does not refer to a key");
CSecret vchSecret;
bool fCompressed;
if (!pwalletMain->GetSecret(keyID, vchSecret, fCompressed))
CKey vchSecret;
if (!pwalletMain->GetKey(keyID, vchSecret))
throw JSONRPCError(RPC_WALLET_ERROR, "Private key for address " + strAddress + " is not known");
return CBitcoinSecret(vchSecret, fCompressed).ToString();
return CBitcoinSecret(vchSecret).ToString();
}

5
src/rpcrawtransaction.cpp

@ -407,10 +407,7 @@ Value signrawtransaction(const Array& params, bool fHelp) @@ -407,10 +407,7 @@ Value signrawtransaction(const Array& params, bool fHelp)
bool fGood = vchSecret.SetString(k.get_str());
if (!fGood)
throw JSONRPCError(RPC_INVALID_ADDRESS_OR_KEY, "Invalid private key");
CKey key;
bool fCompressed;
CSecret secret = vchSecret.GetSecret(fCompressed);
key.SetSecret(secret, fCompressed);
CKey key = vchSecret.GetKey();
tempKeystore.AddKey(key);
}
}

14
src/rpcwallet.cpp

@ -374,11 +374,11 @@ Value verifymessage(const Array& params, bool fHelp) @@ -374,11 +374,11 @@ Value verifymessage(const Array& params, bool fHelp)
ss << strMessageMagic;
ss << strMessage;
CKey key;
if (!key.SetCompactSignature(ss.GetHash(), vchSig))
CPubKey pubkey;
if (!pubkey.RecoverCompact(ss.GetHash(), vchSig))
return false;
return (key.GetPubKey().GetID() == keyID);
return (pubkey.GetID() == keyID);
}
@ -719,7 +719,7 @@ static CScript _createmultisig(const Array& params) @@ -719,7 +719,7 @@ static CScript _createmultisig(const Array& params)
throw runtime_error(
strprintf("not enough keys supplied "
"(got %"PRIszu" keys, but need at least %d to redeem)", keys.size(), nRequired));
std::vector<CKey> pubkeys;
std::vector<CPubKey> pubkeys;
pubkeys.resize(keys.size());
for (unsigned int i = 0; i < keys.size(); i++)
{
@ -737,16 +737,18 @@ static CScript _createmultisig(const Array& params) @@ -737,16 +737,18 @@ static CScript _createmultisig(const Array& params)
if (!pwalletMain->GetPubKey(keyID, vchPubKey))
throw runtime_error(
strprintf("no full public key for address %s",ks.c_str()));
if (!vchPubKey.IsValid() || !pubkeys[i].SetPubKey(vchPubKey))
if (!vchPubKey.IsFullyValid())
throw runtime_error(" Invalid public key: "+ks);
pubkeys[i] = vchPubKey;
}
// Case 2: hex public key
else if (IsHex(ks))
{
CPubKey vchPubKey(ParseHex(ks));
if (!vchPubKey.IsValid() || !pubkeys[i].SetPubKey(vchPubKey))
if (!vchPubKey.IsFullyValid())
throw runtime_error(" Invalid public key: "+ks);
pubkeys[i] = vchPubKey;
}
else
{

33
src/script.cpp

@ -1100,11 +1100,7 @@ bool CheckSig(vector<unsigned char> vchSig, vector<unsigned char> vchPubKey, CSc @@ -1100,11 +1100,7 @@ bool CheckSig(vector<unsigned char> vchSig, vector<unsigned char> vchPubKey, CSc
if (signatureCache.Get(sighash, vchSig, vchPubKey))
return true;
CKey key;
if (!key.SetPubKey(vchPubKey))
return false;
if (!key.Verify(sighash, vchSig))
if (!CPubKey(vchPubKey).Verify(sighash, vchSig))
return false;
if (!(flags & SCRIPT_VERIFY_NOCACHE))
@ -1770,13 +1766,13 @@ void CScript::SetDestination(const CTxDestination& dest) @@ -1770,13 +1766,13 @@ void CScript::SetDestination(const CTxDestination& dest)
boost::apply_visitor(CScriptVisitor(this), dest);
}
void CScript::SetMultisig(int nRequired, const std::vector<CKey>& keys)
void CScript::SetMultisig(int nRequired, const std::vector<CPubKey>& keys)
{
this->clear();
*this << EncodeOP_N(nRequired);
BOOST_FOREACH(const CKey& key, keys)
*this << key.GetPubKey();
BOOST_FOREACH(const CPubKey& key, keys)
*this << key;
*this << EncodeOP_N(keys.size()) << OP_CHECKMULTISIG;
}
@ -1801,20 +1797,17 @@ bool CScriptCompressor::IsToScriptID(CScriptID &hash) const @@ -1801,20 +1797,17 @@ bool CScriptCompressor::IsToScriptID(CScriptID &hash) const
return false;
}
bool CScriptCompressor::IsToPubKey(std::vector<unsigned char> &pubkey) const
bool CScriptCompressor::IsToPubKey(CPubKey &pubkey) const
{
if (script.size() == 35 && script[0] == 33 && script[34] == OP_CHECKSIG
&& (script[1] == 0x02 || script[1] == 0x03)) {
pubkey.resize(33);
memcpy(&pubkey[0], &script[1], 33);
pubkey.Set(&script[1], &script[34]);
return true;
}
if (script.size() == 67 && script[0] == 65 && script[66] == OP_CHECKSIG
&& script[1] == 0x04) {
pubkey.resize(65);
memcpy(&pubkey[0], &script[1], 65);
CKey key;
return (key.SetPubKey(CPubKey(pubkey))); // SetPubKey fails if this is not a valid public key, a case that would not be compressible
pubkey.Set(&script[1], &script[66]);
return pubkey.IsFullyValid(); // if not fully valid, a case that would not be compressible
}
return false;
}
@ -1835,7 +1828,7 @@ bool CScriptCompressor::Compress(std::vector<unsigned char> &out) const @@ -1835,7 +1828,7 @@ bool CScriptCompressor::Compress(std::vector<unsigned char> &out) const
memcpy(&out[1], &scriptID, 20);
return true;
}
std::vector<unsigned char> pubkey;
CPubKey pubkey;
if (IsToPubKey(pubkey)) {
out.resize(33);
memcpy(&out[1], &pubkey[1], 32);
@ -1888,14 +1881,12 @@ bool CScriptCompressor::Decompress(unsigned int nSize, const std::vector<unsigne @@ -1888,14 +1881,12 @@ bool CScriptCompressor::Decompress(unsigned int nSize, const std::vector<unsigne
return true;
case 0x04:
case 0x05:
std::vector<unsigned char> vch(33, 0x00);
unsigned char vch[33] = {};
vch[0] = nSize - 2;
memcpy(&vch[1], &in[0], 32);
CKey key;
if (!key.SetPubKey(CPubKey(vch)))
CPubKey pubkey(&vch[0], &vch[33]);
if (!pubkey.Decompress())
return false;
key.SetCompressedPubKey(false); // Decompress public key
const CPubKey pubkey = key.GetPubKey();
assert(pubkey.size() == 65);
script.resize(67);
script[0] = 65;

4
src/script.h

@ -550,7 +550,7 @@ public: @@ -550,7 +550,7 @@ public:
void SetDestination(const CTxDestination& address);
void SetMultisig(int nRequired, const std::vector<CKey>& keys);
void SetMultisig(int nRequired, const std::vector<CPubKey>& keys);
void PrintHex() const
@ -621,7 +621,7 @@ protected: @@ -621,7 +621,7 @@ protected:
// form).
bool IsToKeyID(CKeyID &hash) const;
bool IsToScriptID(CScriptID &hash) const;
bool IsToPubKey(std::vector<unsigned char> &pubkey) const;
bool IsToPubKey(CPubKey &pubkey) const;
bool Compress(std::vector<unsigned char> &out) const;
unsigned int GetSpecialSize(unsigned int nSize) const;

10
src/test/base58_tests.cpp

@ -133,9 +133,8 @@ BOOST_AUTO_TEST_CASE(base58_keys_valid_parse) @@ -133,9 +133,8 @@ BOOST_AUTO_TEST_CASE(base58_keys_valid_parse)
// Note: CBitcoinSecret::SetString tests isValid, whereas CBitcoinAddress does not!
BOOST_CHECK_MESSAGE(secret.SetString(exp_base58string), "!SetString:"+ strTest);
BOOST_CHECK_MESSAGE(secret.IsValid(), "!IsValid:" + strTest);
bool fCompressedOut = false;
CSecret privkey = secret.GetSecret(fCompressedOut);
BOOST_CHECK_MESSAGE(fCompressedOut == isCompressed, "compressed mismatch:" + strTest);
CKey privkey = secret.GetKey();
BOOST_CHECK_MESSAGE(privkey.IsCompressed() == isCompressed, "compressed mismatch:" + strTest);
BOOST_CHECK_MESSAGE(privkey.size() == exp_payload.size() && std::equal(privkey.begin(), privkey.end(), exp_payload.begin()), "key mismatch:" + strTest);
// Private key must be invalid public key
@ -187,8 +186,11 @@ BOOST_AUTO_TEST_CASE(base58_keys_valid_gen) @@ -187,8 +186,11 @@ BOOST_AUTO_TEST_CASE(base58_keys_valid_gen)
if(isPrivkey)
{
bool isCompressed = find_value(metadata, "isCompressed").get_bool();
CKey key;
key.Set(exp_payload.begin(), exp_payload.end(), isCompressed);
assert(key.IsValid());
CBitcoinSecret secret;
secret.SetSecret(CSecret(exp_payload.begin(), exp_payload.end()), isCompressed);
secret.SetKey(key);
BOOST_CHECK_MESSAGE(secret.ToString() == exp_base58string, "result mismatch: " + strTest);
}
else

11
src/test/bloom_tests.cpp

@ -73,14 +73,13 @@ BOOST_AUTO_TEST_CASE(bloom_create_insert_key) @@ -73,14 +73,13 @@ BOOST_AUTO_TEST_CASE(bloom_create_insert_key)
CBitcoinSecret vchSecret;
BOOST_CHECK(vchSecret.SetString(strSecret));
CKey key;
bool fCompressed;
CSecret secret = vchSecret.GetSecret(fCompressed);
key.SetSecret(secret, fCompressed);
CKey key = vchSecret.GetKey();
CPubKey pubkey = key.GetPubKey();
vector<unsigned char> vchPubKey(pubkey.begin(), pubkey.end());
CBloomFilter filter(2, 0.001, 0, BLOOM_UPDATE_ALL);
filter.insert(key.GetPubKey().Raw());
uint160 hash = key.GetPubKey().GetID();
filter.insert(vchPubKey);
uint160 hash = pubkey.GetID();
filter.insert(vector<unsigned char>(hash.begin(), hash.end()));
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);

96
src/test/key_tests.cpp

@ -26,8 +26,8 @@ static const string strAddressBad("1HV9Lc3sNHZxwj4Zk6fB38tEmBryq2cBiF"); @@ -26,8 +26,8 @@ static const string strAddressBad("1HV9Lc3sNHZxwj4Zk6fB38tEmBryq2cBiF");
#ifdef KEY_TESTS_DUMPINFO
void dumpKeyInfo(uint256 privkey)
{
CSecret secret;
secret.resize(32);
CKey key;
key.resize(32);
memcpy(&secret[0], &privkey, 32);
vector<unsigned char> sec;
sec.resize(32);
@ -62,29 +62,24 @@ BOOST_AUTO_TEST_CASE(key_test1) @@ -62,29 +62,24 @@ BOOST_AUTO_TEST_CASE(key_test1)
BOOST_CHECK( bsecret2C.SetString(strSecret2C));
BOOST_CHECK(!baddress1.SetString(strAddressBad));
bool fCompressed;
CSecret secret1 = bsecret1.GetSecret (fCompressed);
BOOST_CHECK(fCompressed == false);
CSecret secret2 = bsecret2.GetSecret (fCompressed);
BOOST_CHECK(fCompressed == false);
CSecret secret1C = bsecret1C.GetSecret(fCompressed);
BOOST_CHECK(fCompressed == true);
CSecret secret2C = bsecret2C.GetSecret(fCompressed);
BOOST_CHECK(fCompressed == true);
BOOST_CHECK(secret1 == secret1C);
BOOST_CHECK(secret2 == secret2C);
CKey key1, key2, key1C, key2C;
key1.SetSecret(secret1, false);
key2.SetSecret(secret2, false);
key1C.SetSecret(secret1, true);
key2C.SetSecret(secret2, true);
BOOST_CHECK(addr1.Get() == CTxDestination(key1.GetPubKey().GetID()));
BOOST_CHECK(addr2.Get() == CTxDestination(key2.GetPubKey().GetID()));
BOOST_CHECK(addr1C.Get() == CTxDestination(key1C.GetPubKey().GetID()));
BOOST_CHECK(addr2C.Get() == CTxDestination(key2C.GetPubKey().GetID()));
CKey key1 = bsecret1.GetKey();
BOOST_CHECK(key1.IsCompressed() == false);
CKey key2 = bsecret2.GetKey();
BOOST_CHECK(key2.IsCompressed() == false);
CKey key1C = bsecret1C.GetKey();
BOOST_CHECK(key1C.IsCompressed() == true);
CKey key2C = bsecret2C.GetKey();
BOOST_CHECK(key1C.IsCompressed() == true);
CPubKey pubkey1 = key1. GetPubKey();
CPubKey pubkey2 = key2. GetPubKey();
CPubKey pubkey1C = key1C.GetPubKey();
CPubKey pubkey2C = key2C.GetPubKey();
BOOST_CHECK(addr1.Get() == CTxDestination(pubkey1.GetID()));
BOOST_CHECK(addr2.Get() == CTxDestination(pubkey2.GetID()));
BOOST_CHECK(addr1C.Get() == CTxDestination(pubkey1C.GetID()));
BOOST_CHECK(addr2C.Get() == CTxDestination(pubkey2C.GetID()));
for (int n=0; n<16; n++)
{
@ -100,25 +95,25 @@ BOOST_AUTO_TEST_CASE(key_test1) @@ -100,25 +95,25 @@ BOOST_AUTO_TEST_CASE(key_test1)
BOOST_CHECK(key1C.Sign(hashMsg, sign1C));
BOOST_CHECK(key2C.Sign(hashMsg, sign2C));
BOOST_CHECK( key1.Verify(hashMsg, sign1));
BOOST_CHECK(!key1.Verify(hashMsg, sign2));
BOOST_CHECK( key1.Verify(hashMsg, sign1C));
BOOST_CHECK(!key1.Verify(hashMsg, sign2C));
BOOST_CHECK( pubkey1.Verify(hashMsg, sign1));
BOOST_CHECK(!pubkey1.Verify(hashMsg, sign2));
BOOST_CHECK( pubkey1.Verify(hashMsg, sign1C));
BOOST_CHECK(!pubkey1.Verify(hashMsg, sign2C));
BOOST_CHECK(!key2.Verify(hashMsg, sign1));
BOOST_CHECK( key2.Verify(hashMsg, sign2));
BOOST_CHECK(!key2.Verify(hashMsg, sign1C));
BOOST_CHECK( key2.Verify(hashMsg, sign2C));
BOOST_CHECK(!pubkey2.Verify(hashMsg, sign1));
BOOST_CHECK( pubkey2.Verify(hashMsg, sign2));
BOOST_CHECK(!pubkey2.Verify(hashMsg, sign1C));
BOOST_CHECK( pubkey2.Verify(hashMsg, sign2C));
BOOST_CHECK( key1C.Verify(hashMsg, sign1));
BOOST_CHECK(!key1C.Verify(hashMsg, sign2));
BOOST_CHECK( key1C.Verify(hashMsg, sign1C));
BOOST_CHECK(!key1C.Verify(hashMsg, sign2C));
BOOST_CHECK( pubkey1C.Verify(hashMsg, sign1));
BOOST_CHECK(!pubkey1C.Verify(hashMsg, sign2));
BOOST_CHECK( pubkey1C.Verify(hashMsg, sign1C));
BOOST_CHECK(!pubkey1C.Verify(hashMsg, sign2C));
BOOST_CHECK(!key2C.Verify(hashMsg, sign1));
BOOST_CHECK( key2C.Verify(hashMsg, sign2));
BOOST_CHECK(!key2C.Verify(hashMsg, sign1C));
BOOST_CHECK( key2C.Verify(hashMsg, sign2C));
BOOST_CHECK(!pubkey2C.Verify(hashMsg, sign1));
BOOST_CHECK( pubkey2C.Verify(hashMsg, sign2));
BOOST_CHECK(!pubkey2C.Verify(hashMsg, sign1C));
BOOST_CHECK( pubkey2C.Verify(hashMsg, sign2C));
// compact signatures (with key recovery)
@ -129,18 +124,17 @@ BOOST_AUTO_TEST_CASE(key_test1) @@ -129,18 +124,17 @@ BOOST_AUTO_TEST_CASE(key_test1)
BOOST_CHECK(key1C.SignCompact(hashMsg, csign1C));
BOOST_CHECK(key2C.SignCompact(hashMsg, csign2C));
CKey rkey1, rkey2, rkey1C, rkey2C;
CPubKey rkey1, rkey2, rkey1C, rkey2C;
BOOST_CHECK(rkey1.SetCompactSignature (hashMsg, csign1));
BOOST_CHECK(rkey2.SetCompactSignature (hashMsg, csign2));
BOOST_CHECK(rkey1C.SetCompactSignature(hashMsg, csign1C));
BOOST_CHECK(rkey2C.SetCompactSignature(hashMsg, csign2C));
BOOST_CHECK(rkey1.RecoverCompact (hashMsg, csign1));
BOOST_CHECK(rkey2.RecoverCompact (hashMsg, csign2));
BOOST_CHECK(rkey1C.RecoverCompact(hashMsg, csign1C));
BOOST_CHECK(rkey2C.RecoverCompact(hashMsg, csign2C));
BOOST_CHECK(rkey1.GetPubKey() == key1.GetPubKey());
BOOST_CHECK(rkey2.GetPubKey() == key2.GetPubKey());
BOOST_CHECK(rkey1C.GetPubKey() == key1C.GetPubKey());
BOOST_CHECK(rkey2C.GetPubKey() == key2C.GetPubKey());
BOOST_CHECK(rkey1 == pubkey1);
BOOST_CHECK(rkey2 == pubkey2);
BOOST_CHECK(rkey1C == pubkey1C);
BOOST_CHECK(rkey2C == pubkey2C);
}
}

2
src/test/multisig_tests.cpp

@ -30,7 +30,7 @@ sign_multisig(CScript scriptPubKey, vector<CKey> keys, CTransaction transaction, @@ -30,7 +30,7 @@ sign_multisig(CScript scriptPubKey, vector<CKey> keys, CTransaction transaction,
CScript result;
result << OP_0; // CHECKMULTISIG bug workaround
BOOST_FOREACH(CKey key, keys)
BOOST_FOREACH(const CKey &key, keys)
{
vector<unsigned char> vchSig;
BOOST_CHECK(key.Sign(hash, vchSig));

14
src/test/script_P2SH_tests.cpp

@ -145,19 +145,19 @@ BOOST_AUTO_TEST_CASE(set) @@ -145,19 +145,19 @@ BOOST_AUTO_TEST_CASE(set)
// Test the CScript::Set* methods
CBasicKeyStore keystore;
CKey key[4];
std::vector<CKey> keys;
std::vector<CPubKey> keys;
for (int i = 0; i < 4; i++)
{
key[i].MakeNewKey(true);
keystore.AddKey(key[i]);
keys.push_back(key[i]);
keys.push_back(key[i].GetPubKey());
}
CScript inner[4];
inner[0].SetDestination(key[0].GetPubKey().GetID());
inner[1].SetMultisig(2, std::vector<CKey>(keys.begin(), keys.begin()+2));
inner[2].SetMultisig(1, std::vector<CKey>(keys.begin(), keys.begin()+2));
inner[3].SetMultisig(2, std::vector<CKey>(keys.begin(), keys.begin()+3));
inner[1].SetMultisig(2, std::vector<CPubKey>(keys.begin(), keys.begin()+2));
inner[2].SetMultisig(1, std::vector<CPubKey>(keys.begin(), keys.begin()+2));
inner[3].SetMultisig(2, std::vector<CPubKey>(keys.begin(), keys.begin()+3));
CScript outer[4];
for (int i = 0; i < 4; i++)
@ -248,12 +248,12 @@ BOOST_AUTO_TEST_CASE(AreInputsStandard) @@ -248,12 +248,12 @@ BOOST_AUTO_TEST_CASE(AreInputsStandard)
CCoinsViewCache coins(coinsDummy);
CBasicKeyStore keystore;
CKey key[3];
vector<CKey> keys;
vector<CPubKey> keys;
for (int i = 0; i < 3; i++)
{
key[i].MakeNewKey(true);
keystore.AddKey(key[i]);
keys.push_back(key[i]);
keys.push_back(key[i].GetPubKey());
}
CTransaction txFrom;

8
src/test/script_tests.cpp

@ -211,7 +211,7 @@ sign_multisig(CScript scriptPubKey, std::vector<CKey> keys, CTransaction transac @@ -211,7 +211,7 @@ sign_multisig(CScript scriptPubKey, std::vector<CKey> keys, CTransaction transac
// and vice-versa)
//
result << OP_0;
BOOST_FOREACH(CKey key, keys)
BOOST_FOREACH(const CKey &key, keys)
{
vector<unsigned char> vchSig;
BOOST_CHECK(key.Sign(hash, vchSig));
@ -221,7 +221,7 @@ sign_multisig(CScript scriptPubKey, std::vector<CKey> keys, CTransaction transac @@ -221,7 +221,7 @@ sign_multisig(CScript scriptPubKey, std::vector<CKey> keys, CTransaction transac
return result;
}
CScript
sign_multisig(CScript scriptPubKey, CKey key, CTransaction transaction)
sign_multisig(CScript scriptPubKey, const CKey &key, CTransaction transaction)
{
std::vector<CKey> keys;
keys.push_back(key);
@ -333,11 +333,13 @@ BOOST_AUTO_TEST_CASE(script_combineSigs) @@ -333,11 +333,13 @@ BOOST_AUTO_TEST_CASE(script_combineSigs)
// Test the CombineSignatures function
CBasicKeyStore keystore;
vector<CKey> keys;
vector<CPubKey> pubkeys;
for (int i = 0; i < 3; i++)
{
CKey key;
key.MakeNewKey(i%2 == 1);
keys.push_back(key);
pubkeys.push_back(key.GetPubKey());
keystore.AddKey(key);
}
@ -390,7 +392,7 @@ BOOST_AUTO_TEST_CASE(script_combineSigs) @@ -390,7 +392,7 @@ BOOST_AUTO_TEST_CASE(script_combineSigs)
BOOST_CHECK(combined == scriptSig);
// Hardest case: Multisig 2-of-3
scriptPubKey.SetMultisig(2, keys);
scriptPubKey.SetMultisig(2, pubkeys);
keystore.AddCScript(scriptPubKey);
SignSignature(keystore, txFrom, txTo, 0);
combined = CombineSignatures(scriptPubKey, txTo, 0, scriptSig, empty);

4
src/test/sigopcount_tests.cpp

@ -37,12 +37,12 @@ BOOST_AUTO_TEST_CASE(GetSigOpCount) @@ -37,12 +37,12 @@ BOOST_AUTO_TEST_CASE(GetSigOpCount)
scriptSig << OP_0 << Serialize(s1);
BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(scriptSig), 3U);
std::vector<CKey> keys;
std::vector<CPubKey> keys;
for (int i = 0; i < 3; i++)
{
CKey k;
k.MakeNewKey(true);
keys.push_back(k);
keys.push_back(k.GetPubKey());
}
CScript s2;
s2.SetMultisig(1, keys);

18
src/wallet.cpp

@ -32,26 +32,28 @@ CPubKey CWallet::GenerateNewKey() @@ -32,26 +32,28 @@ CPubKey CWallet::GenerateNewKey()
bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets
RandAddSeedPerfmon();
CKey key;
key.MakeNewKey(fCompressed);
CKey secret;
secret.MakeNewKey(fCompressed);
// Compressed public keys were introduced in version 0.6.0
if (fCompressed)
SetMinVersion(FEATURE_COMPRPUBKEY);
if (!AddKey(key))
CPubKey pubkey = secret.GetPubKey();
if (!AddKeyPubKey(secret, pubkey))
throw std::runtime_error("CWallet::GenerateNewKey() : AddKey failed");
return key.GetPubKey();
return pubkey;
}
bool CWallet::AddKey(const CKey& key)
bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey)
{
if (!CCryptoKeyStore::AddKey(key))
if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey))
return false;
if (!fFileBacked)
return true;
if (!IsCrypted())
return CWalletDB(strWalletFile).WriteKey(key.GetPubKey(), key.GetPrivKey());
if (!IsCrypted()) {
return CWalletDB(strWalletFile).WriteKey(pubkey, secret.GetPrivKey());
}
return true;
}

4
src/wallet.h

@ -136,9 +136,9 @@ public: @@ -136,9 +136,9 @@ public:
// Generate a new key
CPubKey GenerateNewKey();
// Adds a key to the store, and saves it to disk.
bool AddKey(const CKey& key);
bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey);
// Adds a key to the store, without saving it to disk (used by LoadWallet)
bool LoadKey(const CKey& key) { return CCryptoKeyStore::AddKey(key); }
bool LoadKey(const CKey& key, const CPubKey &pubkey) { return CCryptoKeyStore::AddKeyPubKey(key, pubkey); }
bool LoadMinVersion(int nVersion) { nWalletVersion = nVersion; nWalletMaxVersion = std::max(nWalletMaxVersion, nVersion); return true; }

59
src/walletdb.cpp

@ -262,52 +262,33 @@ ReadKeyValue(CWallet* pwallet, CDataStream& ssKey, CDataStream& ssValue, @@ -262,52 +262,33 @@ ReadKeyValue(CWallet* pwallet, CDataStream& ssKey, CDataStream& ssValue,
}
else if (strType == "key" || strType == "wkey")
{
vector<unsigned char> vchPubKey;
CPubKey vchPubKey;
ssKey >> vchPubKey;
if (!vchPubKey.IsValid())
{
strErr = "Error reading wallet database: CPubKey corrupt";
return false;
}
CKey key;
CPrivKey pkey;
if (strType == "key")
{
CPrivKey pkey;
ssValue >> pkey;
key.SetPubKey(vchPubKey);
if (!key.SetPrivKey(pkey))
{
strErr = "Error reading wallet database: CPrivKey corrupt";
return false;
}
if (key.GetPubKey() != vchPubKey)
{
strErr = "Error reading wallet database: CPrivKey pubkey inconsistency";
return false;
}
if (!key.IsValid())
{
strErr = "Error reading wallet database: invalid CPrivKey";
return false;
}
}
else
{
else {
CWalletKey wkey;
ssValue >> wkey;
key.SetPubKey(vchPubKey);
if (!key.SetPrivKey(wkey.vchPrivKey))
{
strErr = "Error reading wallet database: CPrivKey corrupt";
return false;
}
if (key.GetPubKey() != vchPubKey)
{
strErr = "Error reading wallet database: CWalletKey pubkey inconsistency";
return false;
}
if (!key.IsValid())
{
strErr = "Error reading wallet database: invalid CWalletKey";
return false;
}
pkey = wkey.vchPrivKey;
}
if (!key.SetPrivKey(pkey, vchPubKey.IsCompressed()))
{
strErr = "Error reading wallet database: CPrivKey corrupt";
return false;
}
if (key.GetPubKey() != vchPubKey)
{
strErr = "Error reading wallet database: CPrivKey pubkey inconsistency";
return false;
}
if (!pwallet->LoadKey(key))
if (!pwallet->LoadKey(key, vchPubKey))
{
strErr = "Error reading wallet database: LoadKey failed";
return false;

10
src/walletdb.h

@ -53,18 +53,18 @@ public: @@ -53,18 +53,18 @@ public:
bool WriteKey(const CPubKey& vchPubKey, const CPrivKey& vchPrivKey)
{
nWalletDBUpdated++;
return Write(std::make_pair(std::string("key"), vchPubKey.Raw()), vchPrivKey, false);
return Write(std::make_pair(std::string("key"), vchPubKey), vchPrivKey, false);
}
bool WriteCryptedKey(const CPubKey& vchPubKey, const std::vector<unsigned char>& vchCryptedSecret, bool fEraseUnencryptedKey = true)
{
nWalletDBUpdated++;
if (!Write(std::make_pair(std::string("ckey"), vchPubKey.Raw()), vchCryptedSecret, false))
if (!Write(std::make_pair(std::string("ckey"), vchPubKey), vchCryptedSecret, false))
return false;
if (fEraseUnencryptedKey)
{
Erase(std::make_pair(std::string("key"), vchPubKey.Raw()));
Erase(std::make_pair(std::string("wkey"), vchPubKey.Raw()));
Erase(std::make_pair(std::string("key"), vchPubKey));
Erase(std::make_pair(std::string("wkey"), vchPubKey));
}
return true;
}
@ -101,7 +101,7 @@ public: @@ -101,7 +101,7 @@ public:
bool WriteDefaultKey(const CPubKey& vchPubKey)
{
nWalletDBUpdated++;
return Write(std::string("defaultkey"), vchPubKey.Raw());
return Write(std::string("defaultkey"), vchPubKey);
}
bool ReadPool(int64 nPool, CKeyPool& keypool)

Loading…
Cancel
Save