472 lines
10 KiB
C
Raw Normal View History

/*
img_quant.c - image quantizer. based on Antony Dekker original code
Copyright (C) 2011 Uncle Mike
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*/
#include "imagelib.h"
#define netsize 256 // number of colours used
#define prime1 499
#define prime2 491
#define prime3 487
#define prime4 503
#define minpicturebytes (3*prime4) // minimum size for input image
#define maxnetpos (netsize-1)
#define netbiasshift 4 // bias for colour values
#define ncycles 100 // no. of learning cycles
// defs for freq and bias
#define intbiasshift 16 // bias for fractions
#define intbias (1<<intbiasshift)
#define gammashift 10 // gamma = 1024
#define gamma (1<<gammashift)
#define betashift 10
#define beta (intbias>>betashift) // beta = 1 / 1024
#define betagamma (intbias<<(gammashift - betashift))
// defs for decreasing radius factor
#define initrad (netsize>>3) // for 256 cols, radius starts
#define radiusbiasshift 6 // at 32.0 biased by 6 bits
#define radiusbias (1<<radiusbiasshift)
#define initradius (initrad * radiusbias) // and decreases by a
#define radiusdec 30 // factor of 1/30 each cycle
// defs for decreasing alpha factor
#define alphabiasshift 10 // alpha starts at 1.0
#define initalpha (1<<alphabiasshift)
int alphadec; // biased by 10 bits
// radbias and alpharadbias used for radpower calculation
#define radbiasshift 8
#define radbias (1<<radbiasshift)
#define alpharadbshift (alphabiasshift+radbiasshift)
#define alpharadbias (1<<alpharadbshift)
// types and global variables
static byte *thepicture; // the input image itself
static int lengthcount; // lengthcount = H*W*3
static int samplefac; // sampling factor 1..30
static int network[netsize][4]; // the network itself
static int netindex[256]; // for network lookup - really 256
static int bias[netsize]; // bias and freq arrays for learning
static int freq[netsize];
static int radpower[initrad]; // radpower for precomputation
void initnet( byte *thepic, int len, int sample )
{
register int i, *p;
thepicture = thepic;
lengthcount = len;
samplefac = sample;
for( i = 0; i < netsize; i++ )
{
p = network[i];
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
freq[i] = intbias / netsize; // 1 / netsize
bias[i] = 0;
}
}
// Unbias network to give byte values 0..255 and record position i to prepare for sort
void unbiasnet( void )
{
int i, j, temp;
for( i = 0; i < netsize; i++ )
{
for( j = 0; j < 3; j++ )
{
// OLD CODE: network[i][j] >>= netbiasshift;
// Fix based on bug report by Juergen Weigert jw@suse.de
temp = (network[i][j] + (1 << (netbiasshift - 1))) >> netbiasshift;
if( temp > 255 ) temp = 255;
network[i][j] = temp;
}
network[i][3] = i; // record colour num
}
}
// Insertion sort of network and building of netindex[0..255] (to do after unbias)
void inxbuild( void )
{
register int *p, *q;
register int i, j, smallpos, smallval;
int previouscol, startpos;
previouscol = 0;
startpos = 0;
for( i = 0; i < netsize; i++ )
{
p = network[i];
smallpos = i;
smallval = p[1]; // index on g
// find smallest in i..netsize-1
for( j = i + 1; j < netsize; j++ )
{
q = network[j];
if( q[1] < smallval )
{
// index on g
smallpos = j;
smallval = q[1]; // index on g
}
}
q = network[smallpos];
// swap p (i) and q (smallpos) entries
if( i != smallpos )
{
j = q[0]; q[0] = p[0]; p[0] = j;
j = q[1]; q[1] = p[1]; p[1] = j;
j = q[2]; q[2] = p[2]; p[2] = j;
j = q[3]; q[3] = p[3]; p[3] = j;
}
// smallval entry is now in position i
if( smallval != previouscol )
{
netindex[previouscol] = (startpos+i) >> 1;
for( j = previouscol + 1; j < smallval; j++ )
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos + maxnetpos)>>1;
for( j = previouscol + 1; j < 256; j++ )
netindex[j] = maxnetpos; // really 256
}
// Search for BGR values 0..255 (after net is unbiased) and return colour index
int inxsearch( int r, int g, int b )
{
register int i, j, dist, a, bestd;
register int *p;
int best;
bestd = 1000; // biggest possible dist is 256 * 3
best = -1;
i = netindex[g]; // index on g
j = i - 1; // start at netindex[g] and work outwards
while(( i < netsize ) || ( j >= 0 ))
{
if( i < netsize )
{
p = network[i];
dist = p[1] - g; // inx key
if( dist >= bestd )
{
i = netsize; // stop iter
}
else
{
i++;
if( dist < 0 ) dist = -dist;
a = p[2] - b;
if( a < 0 ) a = -a;
dist += a;
if( dist < bestd )
{
a = p[0] - r;
if( a < 0 ) a = -a;
dist += a;
if( dist < bestd )
{
bestd = dist;
best = p[3];
}
}
}
}
if( j >= 0 )
{
p = network[j];
dist = g - p[1]; // inx key - reverse dif
if( dist >= bestd )
{
j = -1; // stop iter
}
else
{
j--;
if( dist < 0 ) dist = -dist;
a = p[2] - b;
if( a < 0 ) a = -a;
dist += a;
if( dist < bestd )
{
a = p[0] - r;
if( a < 0 ) a = -a;
dist += a;
if( dist < bestd )
{
bestd = dist;
best = p[3];
}
}
}
}
}
return best;
}
// Search for biased BGR values
int contest( int r, int g, int b )
{
register int *p, *f, *n;
register int i, dist, a, biasdist, betafreq;
int bestpos, bestbiaspos, bestd, bestbiasd;
2018-10-04 13:08:48 +07:00
// finds closest neuron (min dist) and updates freq
// finds best neuron (min dist-bias) and returns position
// for frequently chosen neurons, freq[i] is high and bias[i] is negative
// bias[i] = gamma * ((1 / netsize) - freq[i])
bestd = ~(1<<31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
p = bias;
f = freq;
for( i = 0; i < netsize; i++ )
{
n = network[i];
dist = n[2] - b;
if( dist < 0 ) dist = -dist;
a = n[1] - g;
if( a < 0 ) a = -a;
dist += a;
a = n[0] - r;
if( a < 0 ) a = -a;
dist += a;
if( dist < bestd )
{
bestd = dist;
bestpos = i;
}
biasdist = dist - ((*p) >> (intbiasshift - netbiasshift));
if( biasdist < bestbiasd )
{
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (*f >> betashift);
*f++ -= betafreq;
*p++ += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return bestbiaspos;
}
// Move neuron i towards biased (b,g,r) by factor alpha
void altersingle( int alpha, int i, int r, int g, int b )
{
register int *n;
n = network[i]; // alter hit neuron
*n -= (alpha * (*n - r)) / initalpha;
n++;
*n -= (alpha * (*n - g)) / initalpha;
n++;
*n -= (alpha * (*n - b)) / initalpha;
}
// Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
void alterneigh( int rad, int i, int r, int g, int b )
{
register int j, k, lo, hi, a;
register int *p, *q;
lo = i - rad;
if( lo < -1 ) lo = -1;
hi = i + rad;
if( hi > netsize ) hi = netsize;
j = i + 1;
k = i - 1;
q = radpower;
while(( j < hi ) || ( k > lo ))
{
a = (*(++q));
if( j < hi )
{
p = network[j];
*p -= (a * (*p - r)) / alpharadbias;
p++;
*p -= (a * (*p - g)) / alpharadbias;
p++;
*p -= (a * (*p - b)) / alpharadbias;
j++;
}
if( k > lo )
{
p = network[k];
*p -= (a * (*p - r)) / alpharadbias;
p++;
*p -= (a * (*p - g)) / alpharadbias;
p++;
*p -= (a * (*p - b)) / alpharadbias;
k--;
}
}
}
// Main Learning Loop
void learn( void )
{
register byte *p;
register int i, j, r, g, b;
int radius, rad, alpha, step;
int delta, samplepixels;
byte *lim;
alphadec = 30 + ((samplefac - 1) / 3);
p = thepicture;
lim = thepicture + lengthcount;
samplepixels = lengthcount / (image.bpp * samplefac);
delta = samplepixels / ncycles;
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if( rad <= 1 ) rad = 0;
for( i = 0; i < rad; i++ )
radpower[i] = alpha * ((( rad * rad - i * i ) * radbias ) / ( rad * rad ));
if( delta <= 0 ) return;
if(( lengthcount % prime1 ) != 0 )
{
step = prime1 * image.bpp;
}
else if(( lengthcount % prime2 ) != 0 )
{
step = prime2 * image.bpp;
}
else if(( lengthcount % prime3 ) != 0 )
{
step = prime3 * image.bpp;
}
else
{
step = prime4 * image.bpp;
}
i = 0;
while( i < samplepixels )
{
r = p[0] << netbiasshift;
g = p[1] << netbiasshift;
b = p[2] << netbiasshift;
j = contest( r, g, b );
altersingle( alpha, j, r, g, b );
if( rad ) alterneigh( rad, j, r, g, b ); // alter neighbours
p += step;
if( p >= lim ) p -= lengthcount;
i++;
if( i % delta == 0 )
{
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if( rad <= 1 ) rad = 0;
for( j = 0; j < rad; j++ )
radpower[j] = alpha * ((( rad * rad - j * j ) * radbias ) / ( rad * rad ));
}
}
}
// returns the actual number of palette entries.
rgbdata_t *Image_Quantize( rgbdata_t *pic )
{
int i;
// quick case to reject unneeded conversions
if( pic->type == PF_INDEXED_24 || pic->type == PF_INDEXED_32 )
return pic;
Image_CopyParms( pic );
image.size = image.width * image.height;
image.bpp = PFDesc[pic->type].bpp;
image.ptr = 0;
// allocate 8-bit buffer
image.tempbuffer = Mem_Realloc( host.imagepool, image.tempbuffer, image.size );
initnet( pic->buffer, pic->size, 10 );
learn();
unbiasnet();
2018-06-09 01:28:35 +03:00
pic->palette = Mem_Malloc( host.imagepool, netsize * 3 );
for( i = 0; i < netsize; i++ )
{
pic->palette[i*3+0] = network[i][0]; // red
pic->palette[i*3+1] = network[i][1]; // green
pic->palette[i*3+2] = network[i][2]; // blue
}
inxbuild();
for( i = 0; i < image.width * image.height; i++ )
{
image.tempbuffer[i] = inxsearch( pic->buffer[i*image.bpp+0], pic->buffer[i*image.bpp+1], pic->buffer[i*image.bpp+2] );
}
pic->buffer = Mem_Realloc( host.imagepool, pic->buffer, image.size );
memcpy( pic->buffer, image.tempbuffer, image.size );
pic->type = PF_INDEXED_24;
pic->size = image.size;
return pic;
}