You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
486 lines
18 KiB
486 lines
18 KiB
//========= Copyright (c) 1996-2002, Valve LLC, All rights reserved. ============ |
|
// |
|
// Purpose: |
|
// |
|
// $NoKeywords: $ |
|
//============================================================================= |
|
|
|
#include "hud.h" |
|
#include "cl_util.h" |
|
#include "const.h" |
|
#include "com_model.h" |
|
#include "studio_util.h" |
|
#include "build.h" |
|
#if XASH_ARMv8 |
|
#define XASH_SIMD_NEON 1 |
|
#include <arm_neon.h> |
|
#include "neon_mathfun.h" |
|
#endif |
|
|
|
/* |
|
==================== |
|
AngleMatrix |
|
|
|
==================== |
|
*/ |
|
#if XASH_SIMD_NEON |
|
static const uint32x4_t AngleMatrix_sign0 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 0); |
|
static const uint32x4_t AngleMatrix_sign1 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 1); |
|
static const uint32x4_t AngleMatrix_sign2 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 2); |
|
#endif |
|
void AngleMatrix( const float *angles, float (*matrix)[4] ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
float32x4x3_t out_reg; |
|
float32x4_t angles_reg = {}; |
|
memcpy(&angles_reg, angles, sizeof(float) * 3); |
|
|
|
float32x4x2_t sp_sy_sr_0_cp_cy_cr_1; |
|
sincos_ps(vmulq_n_f32(angles_reg, (M_PI * 2 / 360)), &sp_sy_sr_0_cp_cy_cr_1.val[0], &sp_sy_sr_0_cp_cy_cr_1.val[1]); |
|
|
|
float32x4x2_t sp_sr_cp_cr_sy_0_cy_1 = vuzpq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_sy_sr_0_cp_cy_cr_1.val[1]); |
|
float32x4x2_t sp_cp_sy_cy_sr_cr_0_1 = vzipq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_sy_sr_0_cp_cy_cr_1.val[1]); |
|
|
|
float32x4_t _0_sr_cr_0 = vextq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_cp_sy_cy_sr_cr_0_1.val[1], 3); |
|
float32x4_t cp_cr_sr_0 = vcombine_f32(vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[0]), vget_high_f32(sp_sy_sr_0_cp_cy_cr_1.val[0])); |
|
float32x4_t cy_sy_sy_0 = vcombine_f32(vrev64_f32(vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[0])), vget_low_f32(sp_sr_cp_cr_sy_0_cy_1.val[1])); |
|
float32x4_t sy_cy_cy_1 = vcombine_f32(vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[0]), vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[1])); |
|
|
|
float32x4_t _0_srsp_crsp_0 = vmulq_laneq_f32(_0_sr_cr_0, sp_sy_sr_0_cp_cy_cr_1.val[0], 0); // *sp |
|
out_reg.val[0] = vmulq_laneq_f32(_0_srsp_crsp_0, sp_sy_sr_0_cp_cy_cr_1.val[1], 1); // *cy |
|
out_reg.val[1] = vmulq_laneq_f32(_0_srsp_crsp_0, sp_sy_sr_0_cp_cy_cr_1.val[0], 1); // *sy |
|
|
|
cy_sy_sy_0 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(cy_sy_sy_0), AngleMatrix_sign1)); |
|
sy_cy_cy_1 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(sy_cy_cy_1), AngleMatrix_sign2)); |
|
out_reg.val[0] = vfmaq_f32(out_reg.val[0], cp_cr_sr_0, cy_sy_sy_0); |
|
out_reg.val[1] = vfmaq_f32(out_reg.val[1], cp_cr_sr_0, sy_cy_cy_1); |
|
|
|
float32x4_t cp_cr_0_1 = vcombine_f32(vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[0]), vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[1])); |
|
float32x4_t _1_cp_cr_0 = vextq_f32(cp_cr_0_1, cp_cr_0_1, 3); |
|
out_reg.val[2] = vmulq_f32(sp_sr_cp_cr_sy_0_cy_1.val[0], _1_cp_cr_0); |
|
out_reg.val[2] = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(out_reg.val[2]), AngleMatrix_sign0)); |
|
|
|
memcpy(matrix, &out_reg, sizeof(float) * 3 * 4); |
|
/* |
|
matrix[0][0] = cp*cy; |
|
matrix[0][1] = sr*sp*cy-cr*sy; |
|
matrix[0][2] = cr*sp*cy+sr*sy; |
|
matrix[0][3] = 0.0; |
|
matrix[1][0] = cp*sy; |
|
matrix[1][1] = sr*sp*sy+cr*cy; |
|
matrix[1][2] = cr*sp*sy-sr*cy; |
|
matrix[1][3] = 0.0; |
|
matrix[2][0] = -sp*1; |
|
matrix[2][1] = sr*cp; |
|
matrix[2][2] = cp*cr; |
|
matrix[2][3] = cr*0; |
|
*/ |
|
#else |
|
float angle; |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
angle = angles[YAW] * ( M_PI_F * 2.0f / 360.0f ); |
|
sy = sin( angle ); |
|
cy = cos( angle ); |
|
angle = angles[PITCH] * ( M_PI_F * 2.0f / 360.0f ); |
|
sp = sin( angle ); |
|
cp = cos( angle ); |
|
angle = angles[ROLL] * ( M_PI_F * 2.0f / 360.0f ); |
|
sr = sin( angle ); |
|
cr = cos( angle ); |
|
|
|
// matrix = (YAW * PITCH) * ROLL |
|
matrix[0][0] = cp * cy; |
|
matrix[1][0] = cp * sy; |
|
matrix[2][0] = -sp; |
|
matrix[0][1] = sr * sp * cy + cr * -sy; |
|
matrix[1][1] = sr * sp * sy + cr * cy; |
|
matrix[2][1] = sr * cp; |
|
matrix[0][2] = (cr * sp * cy + -sr * -sy); |
|
matrix[1][2] = (cr * sp * sy + -sr* cy); |
|
matrix[2][2] = cr * cp; |
|
matrix[0][3] = 0.0f; |
|
matrix[1][3] = 0.0f; |
|
matrix[2][3] = 0.0f; |
|
#endif |
|
} |
|
|
|
/* |
|
==================== |
|
VectorCompare |
|
|
|
==================== |
|
*/ |
|
int VectorCompare( const float *v1, const float *v2 ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
// is this really works? |
|
float32x4_t v1_reg = {}, v2_reg = {}; |
|
memcpy(&v1_reg, v1, sizeof(float) * 3); |
|
memcpy(&v2_reg, v2, sizeof(float) * 3); |
|
return !vaddvq_u32(vceqq_f32(v1_reg, v2_reg)); |
|
#else |
|
int i; |
|
|
|
for( i = 0; i < 3; i++ ) |
|
if( v1[i] != v2[i] ) |
|
return 0; |
|
|
|
return 1; |
|
#endif |
|
} |
|
|
|
/* |
|
==================== |
|
CrossProduct |
|
|
|
==================== |
|
*/ |
|
void CrossProduct( const float *v1, const float *v2, float *cross ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
float32x4_t v1_reg = {}, v2_reg = {}; |
|
memcpy(&v1_reg, v1, sizeof(float) * 3); |
|
memcpy(&v2_reg, v2, sizeof(float) * 3); |
|
|
|
float32x4_t yzxy_a = vextq_f32(vextq_f32(v1_reg, v1_reg, 3), v1_reg, 2); // [aj, ak, ai, aj] |
|
float32x4_t yzxy_b = vextq_f32(vextq_f32(v2_reg, v2_reg, 3), v2_reg, 2); // [bj, bk, bi, bj] |
|
float32x4_t zxyy_a = vextq_f32(yzxy_a, yzxy_a, 1); // [ak, ai, aj, aj] |
|
float32x4_t zxyy_b = vextq_f32(yzxy_b, yzxy_b, 1); // [bk, ai, bj, bj] |
|
float32x4_t cross_reg = vfmsq_f32(vmulq_f32(yzxy_a, zxyy_b), zxyy_a, yzxy_b); // [ajbk-akbj, akbi-aibk, aibj-ajbi, 0] |
|
|
|
memcpy(cross, &cross_reg, sizeof(float) * 3); |
|
#else |
|
cross[0] = v1[1] * v2[2] - v1[2] * v2[1]; |
|
cross[1] = v1[2] * v2[0] - v1[0] * v2[2]; |
|
cross[2] = v1[0] * v2[1] - v1[1] * v2[0]; |
|
#endif |
|
} |
|
|
|
/* |
|
==================== |
|
VectorTransform |
|
|
|
==================== |
|
*/ |
|
void VectorTransform( const float *in1, float in2[3][4], float *out ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
float32x4_t in1_reg = {}; |
|
memcpy(&in1_reg, &in1, sizeof(float) * 3); |
|
|
|
float32x4x4_t in_t; |
|
memcpy(&in_t, &in2, sizeof(float) * 3 * 4); |
|
//memset(&in_t.val[3], 0, sizeof(in_t.val[3])); |
|
in_t = vld4q_f32((const float*)&in_t); |
|
|
|
float32x4_t out_reg = in_t.val[3]; |
|
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[0], in1_reg, 0); |
|
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[1], in1_reg, 1); |
|
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[2], in1_reg, 2); |
|
|
|
memcpy(out, &out_reg, sizeof(float) * 3); |
|
#else |
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3]; |
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3]; |
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3]; |
|
#endif |
|
} |
|
|
|
/* |
|
================ |
|
ConcatTransforms |
|
|
|
================ |
|
*/ |
|
void ConcatTransforms( float in1[3][4], float in2[3][4], float out[3][4] ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
float32x4x3_t in1_reg, in2_reg; |
|
memcpy(&in1_reg, in1, sizeof(float) * 3 * 4); |
|
memcpy(&in2_reg, in2, sizeof(float) * 3 * 4); |
|
float32x4x3_t out_reg = {}; |
|
|
|
out_reg.val[0] = vcopyq_laneq_f32(out_reg.val[0], 3, in1_reg.val[0], 3); // out[0][3] = in[0][3] |
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[0], in1_reg.val[0], 0); // out[0][n] += in2[0][n] * in1[0][0] |
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[1], in1_reg.val[0], 1); // out[0][n] += in2[1][n] * in1[0][1] |
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[2], in1_reg.val[0], 2); // out[0][n] += in2[2][n] * in1[0][2] |
|
|
|
out_reg.val[1] = vcopyq_laneq_f32(out_reg.val[1], 3, in1_reg.val[1], 3); |
|
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[0], in1_reg.val[1], 0); |
|
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[1], in1_reg.val[1], 1); |
|
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[2], in1_reg.val[1], 2); |
|
|
|
out_reg.val[2] = vcopyq_laneq_f32(out_reg.val[2], 3, in1_reg.val[2], 3); |
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[0], in1_reg.val[2], 0); |
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[1], in1_reg.val[2], 1); |
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[2], in1_reg.val[2], 2); |
|
|
|
memcpy(out, &out_reg, sizeof(float) * 3 * 4); |
|
#else |
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + |
|
in1[0][2] * in2[2][0]; |
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + |
|
in1[0][2] * in2[2][1]; |
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + |
|
in1[0][2] * in2[2][2]; |
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + |
|
in1[0][2] * in2[2][3] + in1[0][3]; |
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + |
|
in1[1][2] * in2[2][0]; |
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + |
|
in1[1][2] * in2[2][1]; |
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + |
|
in1[1][2] * in2[2][2]; |
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + |
|
in1[1][2] * in2[2][3] + in1[1][3]; |
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + |
|
in1[2][2] * in2[2][0]; |
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + |
|
in1[2][2] * in2[2][1]; |
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + |
|
in1[2][2] * in2[2][2]; |
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + |
|
in1[2][2] * in2[2][3] + in1[2][3]; |
|
#endif |
|
} |
|
|
|
// angles index are not the same as ROLL, PITCH, YAW |
|
|
|
/* |
|
==================== |
|
AngleQuaternion |
|
|
|
==================== |
|
*/ |
|
#if XASH_SIMD_NEON |
|
static const uint32x4_t AngleQuaternion_sign2 = vzipq_u32(vdupq_n_u32(0x80000000), vdupq_n_u32(0x00000000)).val[0]; // { 0x80000000, 0x00000000, 0x80000000, 0x00000000 }; |
|
#endif |
|
void AngleQuaternion( float *angles, vec4_t quaternion ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
float32x4_t angles_reg = {}; |
|
memcpy(&angles_reg, angles, sizeof(float) * 3); |
|
float32x4x2_t sr_sp_sy_0_cr_cp_cy_1; |
|
sincos_ps(vmulq_n_f32(angles_reg, 0.5), &sr_sp_sy_0_cr_cp_cy_1.val[0], &sr_sp_sy_0_cr_cp_cy_1.val[1]); |
|
|
|
float32x4x2_t sr_sy_cr_cy_sp_0_cp_1 = vuzpq_f32(sr_sp_sy_0_cr_cp_cy_1.val[0], sr_sp_sy_0_cr_cp_cy_1.val[1]); |
|
float32x4_t cp_cp_cp_cp = vdupq_laneq_f32(sr_sp_sy_0_cr_cp_cy_1.val[1], 1); |
|
float32x4_t sp_sp_sp_sp = vdupq_laneq_f32(sr_sp_sy_0_cr_cp_cy_1.val[0], 1); |
|
|
|
float32x4_t sr_sy_cr_cy = sr_sy_cr_cy_sp_0_cp_1.val[0]; |
|
float32x4_t sy_cr_cy_sr = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 1); |
|
float32x4_t cr_cy_sr_sy = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 2); |
|
float32x4_t cy_sr_sy_cr = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 3); |
|
float32x4_t sp_sp_sp_sp_signed = veorq_u32(vreinterpretq_u32_f32(sp_sp_sp_sp), AngleQuaternion_sign2); |
|
|
|
float32x4_t left = vmulq_f32(vmulq_f32(sr_sy_cr_cy, cp_cp_cp_cp), cy_sr_sy_cr); |
|
|
|
float32x4_t out_reg = vfmaq_f32(left, vmulq_f32(cr_cy_sr_sy, sp_sp_sp_sp_signed), sy_cr_cy_sr); |
|
memcpy(quaternion, &out_reg, sizeof(float) * 4); |
|
//quaternion[0] = sr * cp * cy - cr * sp * sy; // X |
|
//quaternion[1] = sy * cp * sr + cy * sp * cr; // Y |
|
//quaternion[2] = cr * cp * sy - sr * sp * cy; // Z |
|
//quaternion[3] = cy * cp * cr + sy * sp * sr; // W |
|
#else |
|
float angle; |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
// FIXME: rescale the inputs to 1/2 angle |
|
angle = angles[2] * 0.5f; |
|
sy = sin( angle ); |
|
cy = cos( angle ); |
|
angle = angles[1] * 0.5f; |
|
sp = sin( angle ); |
|
cp = cos( angle ); |
|
angle = angles[0] * 0.5f; |
|
sr = sin( angle ); |
|
cr = cos( angle ); |
|
|
|
quaternion[0] = sr * cp * cy - cr * sp * sy; // X |
|
quaternion[1] = cr * sp * cy + sr * cp * sy; // Y |
|
quaternion[2] = cr * cp * sy - sr * sp * cy; // Z |
|
quaternion[3] = cr * cp * cy + sr * sp * sy; // W |
|
#endif |
|
} |
|
|
|
/* |
|
==================== |
|
QuaternionSlerp |
|
|
|
==================== |
|
*/ |
|
void QuaternionSlerp( vec4_t p, vec4_t q, float t, vec4_t qt ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
float32x4_t p_reg = {}, q_reg = {}; |
|
memcpy(&p_reg, p, sizeof(float) * 4); |
|
memcpy(&q_reg, q, sizeof(float) * 4); |
|
|
|
// q = (cos(a/2), xsin(a/2), ysin(a/2), zsin(a/2)) |
|
// cos(a-b) = cosacosb+sinasinb |
|
const uint32x4_t signmask = vdupq_n_u32(0x80000000); |
|
const float32x4_t one_minus_epsilon = vdupq_n_f32(1.0f - 0.00001f); |
|
|
|
float32x4_t vcosom = vdupq_n_f32(DotProduct(p, q)); |
|
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(vcosom), signmask); |
|
q_reg = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(p_reg), sign)); |
|
vcosom = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(vcosom), sign)); |
|
|
|
float x[4] = {(1.0f - t), t, 1, 0}; // cosom -> 1, sinom -> 0, sinx ~ x |
|
float32x4_t x_reg; |
|
memcpy(&x_reg, x, sizeof(float) * 4); |
|
|
|
// if ((1.0 - cosom) > 0.000001) x = sin(x * omega) |
|
uint32x4_t cosom_less_then_one = vcltq_f32(vcosom, one_minus_epsilon); |
|
float32x4_t vomega = acos_ps(vcosom); |
|
x_reg = vbslq_f32(cosom_less_then_one, x_reg, sin_ps(vmulq_f32(x_reg, vomega))); |
|
|
|
// qt = (x[0] * p + x[1] * q) / x[2]; |
|
float32x4_t qt_reg = vmulq_laneq_f32(p_reg, x_reg, 0); |
|
qt_reg = vfmaq_laneq_f32(qt_reg, q_reg, x_reg, 1); |
|
qt_reg = vdivq_f32(qt_reg, vdupq_laneq_f32(x_reg, 2)); // vdivq_laneq_f32 ? |
|
|
|
memcpy(qt, &qt_reg, sizeof(float) * 4); |
|
#else |
|
int i; |
|
float omega, cosom, sinom, sclp, sclq; |
|
|
|
// decide if one of the quaternions is backwards |
|
float a = 0; |
|
float b = 0; |
|
|
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
a += ( p[i] - q[i] ) * ( p[i] - q[i] ); |
|
b += ( p[i] + q[i] ) * ( p[i] + q[i] ); |
|
} |
|
if(a > b) |
|
{ |
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
q[i] = -q[i]; |
|
} |
|
} |
|
|
|
cosom = p[0] * q[0] + p[1] * q[1] + p[2] * q[2] + p[3] * q[3]; |
|
|
|
if( ( 1.0f + cosom ) > 0.000001f ) |
|
{ |
|
if( ( 1.0f - cosom ) > 0.000001f ) |
|
{ |
|
omega = acos( cosom ); |
|
sinom = sin( omega ); |
|
sclp = sin( ( 1.0f - t ) * omega ) / sinom; |
|
sclq = sin( t * omega ) / sinom; |
|
} |
|
else |
|
{ |
|
sclp = 1.0f - t; |
|
sclq = t; |
|
} |
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
qt[i] = sclp * p[i] + sclq * q[i]; |
|
} |
|
} |
|
else |
|
{ |
|
qt[0] = -q[1]; |
|
qt[1] = q[0]; |
|
qt[2] = -q[3]; |
|
qt[3] = q[2]; |
|
sclp = sin( ( 1.0f - t ) * ( 0.5f * M_PI_F ) ); |
|
sclq = sin( t * ( 0.5f * M_PI_F ) ); |
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
qt[i] = sclp * p[i] + sclq * qt[i]; |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
==================== |
|
QuaternionMatrix |
|
|
|
==================== |
|
*/ |
|
#if XASH_SIMD_NEON |
|
static const uint32x4_t QuaternionMatrix_sign1 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0x00000000), 0); // { 0x80000000, 0x00000000, 0x00000000, 0x00000000 }; |
|
static const uint32x4_t QuaternionMatrix_sign2 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0x00000000), 1); // { 0x00000000, 0x80000000, 0x00000000, 0x00000000 }; |
|
static const uint32x4_t QuaternionMatrix_sign3 = vsetq_lane_u32(0x00000000, vdupq_n_u32(0x80000000), 2); // { 0x80000000, 0x80000000, 0x00000000, 0x80000000 }; |
|
static const float32x4_t matrix3x4_identity_0 = vsetq_lane_f32(1, vdupq_n_f32(0), 0); // { 1, 0, 0, 0 } |
|
static const float32x4_t matrix3x4_identity_1 = vsetq_lane_f32(1, vdupq_n_f32(0), 1); // { 0, 1, 0, 0 } |
|
static const float32x4_t matrix3x4_identity_2 = vsetq_lane_f32(1, vdupq_n_f32(0), 2); // { 0, 0, 1, 0 } |
|
#endif |
|
|
|
void QuaternionMatrix( vec4_t quaternion, float (*matrix)[4] ) |
|
{ |
|
#if XASH_SIMD_NEON |
|
float32x4_t quaternion_reg; |
|
memcpy(&quaternion_reg, quaternion, sizeof(float) * 4); |
|
|
|
float32x4_t q1032 = vrev64q_f32(quaternion_reg); |
|
float32x4_t q1032_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q1032), QuaternionMatrix_sign1)); |
|
float32x4_t q2301 = vextq_f32(quaternion_reg, quaternion_reg, 2); |
|
float32x4_t q2301_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q2301), QuaternionMatrix_sign3)); |
|
float32x4_t q3210 = vrev64q_f32(q2301); |
|
float32x4_t q3210_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q3210), QuaternionMatrix_sign2)); |
|
|
|
float32x4x3_t out_reg; |
|
|
|
out_reg.val[0] = vmulq_laneq_f32(q2301_signed, quaternion_reg, 2); |
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], q1032_signed, quaternion_reg, 1); |
|
out_reg.val[0] = vfmaq_n_f32(matrix3x4_identity_0, out_reg.val[0], 2.0f); |
|
|
|
out_reg.val[1] = vmulq_laneq_f32(q3210_signed, quaternion_reg, 2); |
|
out_reg.val[1] = vfmsq_laneq_f32(out_reg.val[1], q1032_signed, quaternion_reg, 0); |
|
out_reg.val[1] = vfmaq_n_f32(matrix3x4_identity_1, out_reg.val[1], 2.0f); |
|
|
|
out_reg.val[2] = vmulq_laneq_f32(q3210_signed, quaternion_reg, 1); |
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], q2301_signed, quaternion_reg, 0); |
|
out_reg.val[2] = vfmsq_n_f32(matrix3x4_identity_2, out_reg.val[2], 2.0f); |
|
|
|
memcpy(matrix, &out_reg, sizeof(float) * 3 * 4); |
|
/* |
|
matrix[0][0] = 1.0 + 2.0 * ( quaternion[1] * -quaternion[1] + -quaternion[2] * quaternion[2] ); |
|
matrix[0][1] = 0.0 + 2.0 * ( quaternion[1] * quaternion[0] + -quaternion[3] * quaternion[2] ); |
|
matrix[0][2] = 0.0 + 2.0 * ( quaternion[1] * quaternion[3] + quaternion[0] * quaternion[2] ); |
|
matrix[0][3] = 0.0 + 2.0 * ( quaternion[1] * quaternion[2] + -quaternion[1] * quaternion[2] ); |
|
|
|
matrix[1][0] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[1] + quaternion[3] * quaternion[2] ); |
|
matrix[1][1] = 1.0 + 2.0 * ( -quaternion[0] * quaternion[0] + -quaternion[2] * quaternion[2] ); |
|
matrix[1][2] = 0.0 + 2.0 * ( -quaternion[0] * quaternion[3] + quaternion[1] * quaternion[2] ); |
|
matrix[1][3] = 0.0 + 2.0 * ( -quaternion[0] * quaternion[2] + quaternion[0] * quaternion[2] ); |
|
|
|
matrix[2][0] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[2] + -quaternion[3] * quaternion[1] ); |
|
matrix[2][1] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[3] + quaternion[2] * quaternion[1] ); |
|
matrix[2][2] = 1.0 + 2.0 * ( -quaternion[0] * quaternion[0] + -quaternion[1] * quaternion[1] ); |
|
matrix[2][3] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[1] + -quaternion[0] * quaternion[1] ); |
|
*/ |
|
#else |
|
matrix[0][0] = 1.0f - 2.0f * quaternion[1] * quaternion[1] - 2.0f * quaternion[2] * quaternion[2]; |
|
matrix[1][0] = 2.0f * quaternion[0] * quaternion[1] + 2.0f * quaternion[3] * quaternion[2]; |
|
matrix[2][0] = 2.0f * quaternion[0] * quaternion[2] - 2.0f * quaternion[3] * quaternion[1]; |
|
|
|
matrix[0][1] = 2.0f * quaternion[0] * quaternion[1] - 2.0f * quaternion[3] * quaternion[2]; |
|
matrix[1][1] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[2] * quaternion[2]; |
|
matrix[2][1] = 2.0f * quaternion[1] * quaternion[2] + 2.0f * quaternion[3] * quaternion[0]; |
|
|
|
matrix[0][2] = 2.0f * quaternion[0] * quaternion[2] + 2.0f * quaternion[3] * quaternion[1]; |
|
matrix[1][2] = 2.0f * quaternion[1] * quaternion[2] - 2.0f * quaternion[3] * quaternion[0]; |
|
matrix[2][2] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[1] * quaternion[1]; |
|
#endif |
|
} |
|
|
|
/* |
|
==================== |
|
MatrixCopy |
|
|
|
==================== |
|
*/ |
|
void MatrixCopy( float in[3][4], float out[3][4] ) |
|
{ |
|
memcpy( out, in, sizeof( float ) * 3 * 4 ); |
|
}
|
|
|