You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
950 lines
29 KiB
950 lines
29 KiB
//======================================================================= |
|
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame. |
|
// Copyright 2004 The Trustees of Indiana University. |
|
// Copyright 2007 University of Karlsruhe |
|
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor, |
|
// Jens Mueller |
|
// |
|
// Distributed under the Boost Software License, Version 1.0. (See |
|
// accompanying file LICENSE_1_0.txt or copy at |
|
// http://www.boost.org/LICENSE_1_0.txt) |
|
//======================================================================= |
|
#ifndef BOOST_GRAPH_LEDA_HPP |
|
#define BOOST_GRAPH_LEDA_HPP |
|
|
|
#include <boost/config.hpp> |
|
#include <boost/iterator/iterator_facade.hpp> |
|
#include <boost/graph/graph_traits.hpp> |
|
#include <boost/graph/properties.hpp> |
|
|
|
#include <LEDA/graph/graph.h> |
|
#include <LEDA/graph/node_array.h> |
|
#include <LEDA/graph/node_map.h> |
|
|
|
// The functions and classes in this file allows the user to |
|
// treat a LEDA GRAPH object as a boost graph "as is". No |
|
// wrapper is needed for the GRAPH object. |
|
|
|
// Warning: this implementation relies on partial specialization |
|
// for the graph_traits class (so it won't compile with Visual C++) |
|
|
|
// Warning: this implementation is in alpha and has not been tested |
|
|
|
namespace boost { |
|
|
|
struct leda_graph_traversal_category : |
|
public virtual bidirectional_graph_tag, |
|
public virtual adjacency_graph_tag, |
|
public virtual vertex_list_graph_tag { }; |
|
|
|
template <class vtype, class etype> |
|
struct graph_traits< leda::GRAPH<vtype,etype> > { |
|
typedef leda::node vertex_descriptor; |
|
typedef leda::edge edge_descriptor; |
|
|
|
class adjacency_iterator |
|
: public iterator_facade<adjacency_iterator, |
|
leda::node, |
|
bidirectional_traversal_tag, |
|
leda::node, |
|
const leda::node*> |
|
{ |
|
public: |
|
adjacency_iterator(leda::node node = 0, |
|
const leda::GRAPH<vtype, etype>* g = 0) |
|
: base(node), g(g) {} |
|
private: |
|
leda::node dereference() const { return leda::target(base); } |
|
|
|
bool equal(const adjacency_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->adj_succ(base); } |
|
void decrement() { base = g->adj_pred(base); } |
|
|
|
leda::edge base; |
|
const leda::GRAPH<vtype, etype>* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class out_edge_iterator |
|
: public iterator_facade<out_edge_iterator, |
|
leda::edge, |
|
bidirectional_traversal_tag, |
|
const leda::edge&, |
|
const leda::edge*> |
|
{ |
|
public: |
|
out_edge_iterator(leda::node node = 0, |
|
const leda::GRAPH<vtype, etype>* g = 0) |
|
: base(node), g(g) {} |
|
|
|
private: |
|
const leda::edge& dereference() const { return base; } |
|
|
|
bool equal(const out_edge_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->adj_succ(base); } |
|
void decrement() { base = g->adj_pred(base); } |
|
|
|
leda::edge base; |
|
const leda::GRAPH<vtype, etype>* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class in_edge_iterator |
|
: public iterator_facade<in_edge_iterator, |
|
leda::edge, |
|
bidirectional_traversal_tag, |
|
const leda::edge&, |
|
const leda::edge*> |
|
{ |
|
public: |
|
in_edge_iterator(leda::node node = 0, |
|
const leda::GRAPH<vtype, etype>* g = 0) |
|
: base(node), g(g) {} |
|
|
|
private: |
|
const leda::edge& dereference() const { return base; } |
|
|
|
bool equal(const in_edge_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->in_succ(base); } |
|
void decrement() { base = g->in_pred(base); } |
|
|
|
leda::edge base; |
|
const leda::GRAPH<vtype, etype>* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class vertex_iterator |
|
: public iterator_facade<vertex_iterator, |
|
leda::node, |
|
bidirectional_traversal_tag, |
|
const leda::node&, |
|
const leda::node*> |
|
{ |
|
public: |
|
vertex_iterator(leda::node node = 0, |
|
const leda::GRAPH<vtype, etype>* g = 0) |
|
: base(node), g(g) {} |
|
|
|
private: |
|
const leda::node& dereference() const { return base; } |
|
|
|
bool equal(const vertex_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->succ_node(base); } |
|
void decrement() { base = g->pred_node(base); } |
|
|
|
leda::node base; |
|
const leda::GRAPH<vtype, etype>* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class edge_iterator |
|
: public iterator_facade<edge_iterator, |
|
leda::edge, |
|
bidirectional_traversal_tag, |
|
const leda::edge&, |
|
const leda::edge*> |
|
{ |
|
public: |
|
edge_iterator(leda::edge edge = 0, |
|
const leda::GRAPH<vtype, etype>* g = 0) |
|
: base(edge), g(g) {} |
|
|
|
private: |
|
const leda::edge& dereference() const { return base; } |
|
|
|
bool equal(const edge_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->succ_edge(base); } |
|
void decrement() { base = g->pred_edge(base); } |
|
|
|
leda::node base; |
|
const leda::GRAPH<vtype, etype>* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
typedef directed_tag directed_category; |
|
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here |
|
typedef leda_graph_traversal_category traversal_category; |
|
typedef int vertices_size_type; |
|
typedef int edges_size_type; |
|
typedef int degree_size_type; |
|
}; |
|
|
|
|
|
|
|
template<> |
|
struct graph_traits<leda::graph> { |
|
typedef leda::node vertex_descriptor; |
|
typedef leda::edge edge_descriptor; |
|
|
|
class adjacency_iterator |
|
: public iterator_facade<adjacency_iterator, |
|
leda::node, |
|
bidirectional_traversal_tag, |
|
leda::node, |
|
const leda::node*> |
|
{ |
|
public: |
|
adjacency_iterator(leda::edge edge = 0, |
|
const leda::graph* g = 0) |
|
: base(edge), g(g) {} |
|
|
|
private: |
|
leda::node dereference() const { return leda::target(base); } |
|
|
|
bool equal(const adjacency_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->adj_succ(base); } |
|
void decrement() { base = g->adj_pred(base); } |
|
|
|
leda::edge base; |
|
const leda::graph* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class out_edge_iterator |
|
: public iterator_facade<out_edge_iterator, |
|
leda::edge, |
|
bidirectional_traversal_tag, |
|
const leda::edge&, |
|
const leda::edge*> |
|
{ |
|
public: |
|
out_edge_iterator(leda::edge edge = 0, |
|
const leda::graph* g = 0) |
|
: base(edge), g(g) {} |
|
|
|
private: |
|
const leda::edge& dereference() const { return base; } |
|
|
|
bool equal(const out_edge_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->adj_succ(base); } |
|
void decrement() { base = g->adj_pred(base); } |
|
|
|
leda::edge base; |
|
const leda::graph* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class in_edge_iterator |
|
: public iterator_facade<in_edge_iterator, |
|
leda::edge, |
|
bidirectional_traversal_tag, |
|
const leda::edge&, |
|
const leda::edge*> |
|
{ |
|
public: |
|
in_edge_iterator(leda::edge edge = 0, |
|
const leda::graph* g = 0) |
|
: base(edge), g(g) {} |
|
|
|
private: |
|
const leda::edge& dereference() const { return base; } |
|
|
|
bool equal(const in_edge_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->in_succ(base); } |
|
void decrement() { base = g->in_pred(base); } |
|
|
|
leda::edge base; |
|
const leda::graph* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class vertex_iterator |
|
: public iterator_facade<vertex_iterator, |
|
leda::node, |
|
bidirectional_traversal_tag, |
|
const leda::node&, |
|
const leda::node*> |
|
{ |
|
public: |
|
vertex_iterator(leda::node node = 0, |
|
const leda::graph* g = 0) |
|
: base(node), g(g) {} |
|
|
|
private: |
|
const leda::node& dereference() const { return base; } |
|
|
|
bool equal(const vertex_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->succ_node(base); } |
|
void decrement() { base = g->pred_node(base); } |
|
|
|
leda::node base; |
|
const leda::graph* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
class edge_iterator |
|
: public iterator_facade<edge_iterator, |
|
leda::edge, |
|
bidirectional_traversal_tag, |
|
const leda::edge&, |
|
const leda::edge*> |
|
{ |
|
public: |
|
edge_iterator(leda::edge edge = 0, |
|
const leda::graph* g = 0) |
|
: base(edge), g(g) {} |
|
|
|
private: |
|
const leda::edge& dereference() const { return base; } |
|
|
|
bool equal(const edge_iterator& other) const |
|
{ return base == other.base; } |
|
|
|
void increment() { base = g->succ_edge(base); } |
|
void decrement() { base = g->pred_edge(base); } |
|
|
|
leda::edge base; |
|
const leda::graph* g; |
|
|
|
friend class iterator_core_access; |
|
}; |
|
|
|
typedef directed_tag directed_category; |
|
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here |
|
typedef leda_graph_traversal_category traversal_category; |
|
typedef int vertices_size_type; |
|
typedef int edges_size_type; |
|
typedef int degree_size_type; |
|
}; |
|
|
|
} // namespace boost |
|
|
|
namespace boost { |
|
|
|
//=========================================================================== |
|
// functions for GRAPH<vtype,etype> |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return source(e); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return target(e); |
|
} |
|
|
|
template <class vtype, class etype> |
|
inline std::pair< |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator > |
|
vertices(const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator |
|
Iter; |
|
return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) ); |
|
} |
|
|
|
template <class vtype, class etype> |
|
inline std::pair< |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator > |
|
edges(const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator |
|
Iter; |
|
return std::make_pair( Iter(g.first_edge(),&g), Iter(0,&g) ); |
|
} |
|
|
|
template <class vtype, class etype> |
|
inline std::pair< |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator > |
|
out_edges( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> > |
|
::out_edge_iterator Iter; |
|
return std::make_pair( Iter(g.first_adj_edge(u,0),&g), Iter(0,&g) ); |
|
} |
|
|
|
template <class vtype, class etype> |
|
inline std::pair< |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator > |
|
in_edges( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> > |
|
::in_edge_iterator Iter; |
|
return std::make_pair( Iter(g.first_adj_edge(u,1),&g), Iter(0,&g) ); |
|
} |
|
|
|
template <class vtype, class etype> |
|
inline std::pair< |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator > |
|
adjacent_vertices( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
typedef typename graph_traits< leda::GRAPH<vtype,etype> > |
|
::adjacency_iterator Iter; |
|
return std::make_pair( Iter(g.first_adj_edge(u,0),&g), Iter(0,&g) ); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type |
|
num_vertices(const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return g.number_of_nodes(); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type |
|
num_edges(const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return g.number_of_edges(); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type |
|
out_degree( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return g.outdeg(u); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type |
|
in_degree( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return g.indeg(u); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type |
|
degree( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
const leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return g.outdeg(u) + g.indeg(u); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
add_vertex(leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return g.new_node(); |
|
} |
|
|
|
template <class vtype, class etype> |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor |
|
add_vertex(const vtype& vp, leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return g.new_node(vp); |
|
} |
|
|
|
template <class vtype, class etype> |
|
void clear_vertex( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
leda::GRAPH<vtype,etype>& g) |
|
{ |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator ei, ei_end; |
|
for (boost::tie(ei, ei_end)=out_edges(u,g); ei!=ei_end; ei++) |
|
remove_edge(*ei); |
|
|
|
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator iei, iei_end; |
|
for (boost::tie(iei, iei_end)=in_edges(u,g); iei!=iei_end; iei++) |
|
remove_edge(*iei); |
|
} |
|
|
|
template <class vtype, class etype> |
|
void remove_vertex( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
leda::GRAPH<vtype,etype>& g) |
|
{ |
|
g.del_node(u); |
|
} |
|
|
|
template <class vtype, class etype> |
|
std::pair< |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor, |
|
bool> |
|
add_edge( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, |
|
leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return std::make_pair(g.new_edge(u, v), true); |
|
} |
|
|
|
template <class vtype, class etype> |
|
std::pair< |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor, |
|
bool> |
|
add_edge( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, |
|
const etype& et, |
|
leda::GRAPH<vtype,etype>& g) |
|
{ |
|
return std::make_pair(g.new_edge(u, v, et), true); |
|
} |
|
|
|
template <class vtype, class etype> |
|
void |
|
remove_edge( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u, |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v, |
|
leda::GRAPH<vtype,etype>& g) |
|
{ |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator |
|
i,iend; |
|
for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i) |
|
if (target(*i,g) == v) |
|
g.del_edge(*i); |
|
} |
|
|
|
template <class vtype, class etype> |
|
void |
|
remove_edge( |
|
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e, |
|
leda::GRAPH<vtype,etype>& g) |
|
{ |
|
g.del_edge(e); |
|
} |
|
|
|
//=========================================================================== |
|
// functions for graph (non-templated version) |
|
|
|
graph_traits<leda::graph>::vertex_descriptor |
|
source(graph_traits<leda::graph>::edge_descriptor e, |
|
const leda::graph& g) |
|
{ |
|
return source(e); |
|
} |
|
|
|
graph_traits<leda::graph>::vertex_descriptor |
|
target(graph_traits<leda::graph>::edge_descriptor e, |
|
const leda::graph& g) |
|
{ |
|
return target(e); |
|
} |
|
|
|
inline std::pair< |
|
graph_traits<leda::graph>::vertex_iterator, |
|
graph_traits<leda::graph>::vertex_iterator > |
|
vertices(const leda::graph& g) |
|
{ |
|
typedef graph_traits<leda::graph>::vertex_iterator |
|
Iter; |
|
return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) ); |
|
} |
|
|
|
inline std::pair< |
|
graph_traits<leda::graph>::edge_iterator, |
|
graph_traits<leda::graph>::edge_iterator > |
|
edges(const leda::graph& g) |
|
{ |
|
typedef graph_traits<leda::graph>::edge_iterator |
|
Iter; |
|
return std::make_pair( Iter(g.first_edge(),&g), Iter(0,&g) ); |
|
} |
|
|
|
inline std::pair< |
|
graph_traits<leda::graph>::out_edge_iterator, |
|
graph_traits<leda::graph>::out_edge_iterator > |
|
out_edges( |
|
graph_traits<leda::graph>::vertex_descriptor u, const leda::graph& g) |
|
{ |
|
typedef graph_traits<leda::graph>::out_edge_iterator Iter; |
|
return std::make_pair( Iter(g.first_adj_edge(u),&g), Iter(0,&g) ); |
|
} |
|
|
|
inline std::pair< |
|
graph_traits<leda::graph>::in_edge_iterator, |
|
graph_traits<leda::graph>::in_edge_iterator > |
|
in_edges( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
const leda::graph& g) |
|
{ |
|
typedef graph_traits<leda::graph> |
|
::in_edge_iterator Iter; |
|
return std::make_pair( Iter(g.first_in_edge(u),&g), Iter(0,&g) ); |
|
} |
|
|
|
inline std::pair< |
|
graph_traits<leda::graph>::adjacency_iterator, |
|
graph_traits<leda::graph>::adjacency_iterator > |
|
adjacent_vertices( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
const leda::graph& g) |
|
{ |
|
typedef graph_traits<leda::graph> |
|
::adjacency_iterator Iter; |
|
return std::make_pair( Iter(g.first_adj_edge(u),&g), Iter(0,&g) ); |
|
} |
|
|
|
graph_traits<leda::graph>::vertices_size_type |
|
num_vertices(const leda::graph& g) |
|
{ |
|
return g.number_of_nodes(); |
|
} |
|
|
|
graph_traits<leda::graph>::edges_size_type |
|
num_edges(const leda::graph& g) |
|
{ |
|
return g.number_of_edges(); |
|
} |
|
|
|
graph_traits<leda::graph>::degree_size_type |
|
out_degree( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
const leda::graph& g) |
|
{ |
|
return g.outdeg(u); |
|
} |
|
|
|
graph_traits<leda::graph>::degree_size_type |
|
in_degree( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
const leda::graph& g) |
|
{ |
|
return g.indeg(u); |
|
} |
|
|
|
graph_traits<leda::graph>::degree_size_type |
|
degree( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
const leda::graph& g) |
|
{ |
|
return g.outdeg(u) + g.indeg(u); |
|
} |
|
|
|
graph_traits<leda::graph>::vertex_descriptor |
|
add_vertex(leda::graph& g) |
|
{ |
|
return g.new_node(); |
|
} |
|
|
|
void |
|
remove_edge( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
graph_traits<leda::graph>::vertex_descriptor v, |
|
leda::graph& g) |
|
{ |
|
graph_traits<leda::graph>::out_edge_iterator |
|
i,iend; |
|
for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i) |
|
if (target(*i,g) == v) |
|
g.del_edge(*i); |
|
} |
|
|
|
void |
|
remove_edge( |
|
graph_traits<leda::graph>::edge_descriptor e, |
|
leda::graph& g) |
|
{ |
|
g.del_edge(e); |
|
} |
|
|
|
void clear_vertex( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
leda::graph& g) |
|
{ |
|
graph_traits<leda::graph>::out_edge_iterator ei, ei_end; |
|
for (boost::tie(ei, ei_end)=out_edges(u,g); ei!=ei_end; ei++) |
|
remove_edge(*ei, g); |
|
|
|
graph_traits<leda::graph>::in_edge_iterator iei, iei_end; |
|
for (boost::tie(iei, iei_end)=in_edges(u,g); iei!=iei_end; iei++) |
|
remove_edge(*iei, g); |
|
} |
|
|
|
void remove_vertex( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
leda::graph& g) |
|
{ |
|
g.del_node(u); |
|
} |
|
|
|
std::pair< |
|
graph_traits<leda::graph>::edge_descriptor, |
|
bool> |
|
add_edge( |
|
graph_traits<leda::graph>::vertex_descriptor u, |
|
graph_traits<leda::graph>::vertex_descriptor v, |
|
leda::graph& g) |
|
{ |
|
return std::make_pair(g.new_edge(u, v), true); |
|
} |
|
|
|
|
|
//=========================================================================== |
|
// property maps for GRAPH<vtype,etype> |
|
|
|
class leda_graph_id_map |
|
: public put_get_helper<int, leda_graph_id_map> |
|
{ |
|
public: |
|
typedef readable_property_map_tag category; |
|
typedef int value_type; |
|
typedef int reference; |
|
typedef leda::node key_type; |
|
leda_graph_id_map() { } |
|
template <class T> |
|
long operator[](T x) const { return x->id(); } |
|
}; |
|
template <class vtype, class etype> |
|
inline leda_graph_id_map |
|
get(vertex_index_t, const leda::GRAPH<vtype, etype>& g) { |
|
return leda_graph_id_map(); |
|
} |
|
template <class vtype, class etype> |
|
inline leda_graph_id_map |
|
get(edge_index_t, const leda::GRAPH<vtype, etype>& g) { |
|
return leda_graph_id_map(); |
|
} |
|
|
|
template <class Tag> |
|
struct leda_property_map { }; |
|
|
|
template <> |
|
struct leda_property_map<vertex_index_t> { |
|
template <class vtype, class etype> |
|
struct bind_ { |
|
typedef leda_graph_id_map type; |
|
typedef leda_graph_id_map const_type; |
|
}; |
|
}; |
|
template <> |
|
struct leda_property_map<edge_index_t> { |
|
template <class vtype, class etype> |
|
struct bind_ { |
|
typedef leda_graph_id_map type; |
|
typedef leda_graph_id_map const_type; |
|
}; |
|
}; |
|
|
|
|
|
template <class Data, class DataRef, class GraphPtr> |
|
class leda_graph_data_map |
|
: public put_get_helper<DataRef, |
|
leda_graph_data_map<Data,DataRef,GraphPtr> > |
|
{ |
|
public: |
|
typedef Data value_type; |
|
typedef DataRef reference; |
|
typedef void key_type; |
|
typedef lvalue_property_map_tag category; |
|
leda_graph_data_map(GraphPtr g) : m_g(g) { } |
|
template <class NodeOrEdge> |
|
DataRef operator[](NodeOrEdge x) const { return (*m_g)[x]; } |
|
protected: |
|
GraphPtr m_g; |
|
}; |
|
|
|
template <> |
|
struct leda_property_map<vertex_all_t> { |
|
template <class vtype, class etype> |
|
struct bind_ { |
|
typedef leda_graph_data_map<vtype, vtype&, leda::GRAPH<vtype, etype>*> type; |
|
typedef leda_graph_data_map<vtype, const vtype&, |
|
const leda::GRAPH<vtype, etype>*> const_type; |
|
}; |
|
}; |
|
template <class vtype, class etype > |
|
inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type |
|
get(vertex_all_t, leda::GRAPH<vtype, etype>& g) { |
|
typedef typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type |
|
pmap_type; |
|
return pmap_type(&g); |
|
} |
|
template <class vtype, class etype > |
|
inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::const_type |
|
get(vertex_all_t, const leda::GRAPH<vtype, etype>& g) { |
|
typedef typename property_map< leda::GRAPH<vtype, etype>, |
|
vertex_all_t>::const_type pmap_type; |
|
return pmap_type(&g); |
|
} |
|
|
|
template <> |
|
struct leda_property_map<edge_all_t> { |
|
template <class vtype, class etype> |
|
struct bind_ { |
|
typedef leda_graph_data_map<etype, etype&, leda::GRAPH<vtype, etype>*> type; |
|
typedef leda_graph_data_map<etype, const etype&, |
|
const leda::GRAPH<vtype, etype>*> const_type; |
|
}; |
|
}; |
|
template <class vtype, class etype > |
|
inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type |
|
get(edge_all_t, leda::GRAPH<vtype, etype>& g) { |
|
typedef typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type |
|
pmap_type; |
|
return pmap_type(&g); |
|
} |
|
template <class vtype, class etype > |
|
inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::const_type |
|
get(edge_all_t, const leda::GRAPH<vtype, etype>& g) { |
|
typedef typename property_map< leda::GRAPH<vtype, etype>, |
|
edge_all_t>::const_type pmap_type; |
|
return pmap_type(&g); |
|
} |
|
|
|
// property map interface to the LEDA node_array class |
|
|
|
template <class E, class ERef, class NodeMapPtr> |
|
class leda_node_property_map |
|
: public put_get_helper<ERef, leda_node_property_map<E, ERef, NodeMapPtr> > |
|
{ |
|
public: |
|
typedef E value_type; |
|
typedef ERef reference; |
|
typedef leda::node key_type; |
|
typedef lvalue_property_map_tag category; |
|
leda_node_property_map(NodeMapPtr a) : m_array(a) { } |
|
ERef operator[](leda::node n) const { return (*m_array)[n]; } |
|
protected: |
|
NodeMapPtr m_array; |
|
}; |
|
template <class E> |
|
leda_node_property_map<E, const E&, const leda::node_array<E>*> |
|
make_leda_node_property_map(const leda::node_array<E>& a) |
|
{ |
|
typedef leda_node_property_map<E, const E&, const leda::node_array<E>*> |
|
pmap_type; |
|
return pmap_type(&a); |
|
} |
|
template <class E> |
|
leda_node_property_map<E, E&, leda::node_array<E>*> |
|
make_leda_node_property_map(leda::node_array<E>& a) |
|
{ |
|
typedef leda_node_property_map<E, E&, leda::node_array<E>*> pmap_type; |
|
return pmap_type(&a); |
|
} |
|
|
|
template <class E> |
|
leda_node_property_map<E, const E&, const leda::node_map<E>*> |
|
make_leda_node_property_map(const leda::node_map<E>& a) |
|
{ |
|
typedef leda_node_property_map<E,const E&,const leda::node_map<E>*> |
|
pmap_type; |
|
return pmap_type(&a); |
|
} |
|
template <class E> |
|
leda_node_property_map<E, E&, leda::node_map<E>*> |
|
make_leda_node_property_map(leda::node_map<E>& a) |
|
{ |
|
typedef leda_node_property_map<E, E&, leda::node_map<E>*> pmap_type; |
|
return pmap_type(&a); |
|
} |
|
|
|
// g++ 'enumeral_type' in template unification not implemented workaround |
|
template <class vtype, class etype, class Tag> |
|
struct property_map<leda::GRAPH<vtype, etype>, Tag> { |
|
typedef typename |
|
leda_property_map<Tag>::template bind_<vtype, etype> map_gen; |
|
typedef typename map_gen::type type; |
|
typedef typename map_gen::const_type const_type; |
|
}; |
|
|
|
template <class vtype, class etype, class PropertyTag, class Key> |
|
inline |
|
typename boost::property_traits< |
|
typename boost::property_map<leda::GRAPH<vtype, etype>,PropertyTag>::const_type |
|
>::value_type |
|
get(PropertyTag p, const leda::GRAPH<vtype, etype>& g, const Key& key) { |
|
return get(get(p, g), key); |
|
} |
|
|
|
template <class vtype, class etype, class PropertyTag, class Key,class Value> |
|
inline void |
|
put(PropertyTag p, leda::GRAPH<vtype, etype>& g, |
|
const Key& key, const Value& value) |
|
{ |
|
typedef typename property_map<leda::GRAPH<vtype, etype>, PropertyTag>::type Map; |
|
Map pmap = get(p, g); |
|
put(pmap, key, value); |
|
} |
|
|
|
// property map interface to the LEDA edge_array class |
|
|
|
template <class E, class ERef, class EdgeMapPtr> |
|
class leda_edge_property_map |
|
: public put_get_helper<ERef, leda_edge_property_map<E, ERef, EdgeMapPtr> > |
|
{ |
|
public: |
|
typedef E value_type; |
|
typedef ERef reference; |
|
typedef leda::edge key_type; |
|
typedef lvalue_property_map_tag category; |
|
leda_edge_property_map(EdgeMapPtr a) : m_array(a) { } |
|
ERef operator[](leda::edge n) const { return (*m_array)[n]; } |
|
protected: |
|
EdgeMapPtr m_array; |
|
}; |
|
template <class E> |
|
leda_edge_property_map<E, const E&, const leda::edge_array<E>*> |
|
make_leda_node_property_map(const leda::node_array<E>& a) |
|
{ |
|
typedef leda_edge_property_map<E, const E&, const leda::node_array<E>*> |
|
pmap_type; |
|
return pmap_type(&a); |
|
} |
|
template <class E> |
|
leda_edge_property_map<E, E&, leda::edge_array<E>*> |
|
make_leda_edge_property_map(leda::edge_array<E>& a) |
|
{ |
|
typedef leda_edge_property_map<E, E&, leda::edge_array<E>*> pmap_type; |
|
return pmap_type(&a); |
|
} |
|
|
|
template <class E> |
|
leda_edge_property_map<E, const E&, const leda::edge_map<E>*> |
|
make_leda_edge_property_map(const leda::edge_map<E>& a) |
|
{ |
|
typedef leda_edge_property_map<E,const E&,const leda::edge_map<E>*> |
|
pmap_type; |
|
return pmap_type(&a); |
|
} |
|
template <class E> |
|
leda_edge_property_map<E, E&, leda::edge_map<E>*> |
|
make_leda_edge_property_map(leda::edge_map<E>& a) |
|
{ |
|
typedef leda_edge_property_map<E, E&, leda::edge_map<E>*> pmap_type; |
|
return pmap_type(&a); |
|
} |
|
|
|
} // namespace boost |
|
|
|
#endif // BOOST_GRAPH_LEDA_HPP
|
|
|