1
0
mirror of https://github.com/PurpleI2P/Boost-for-Android-Prebuilt synced 2025-01-10 14:57:52 +00:00
Boost-for-Android-Prebuilt/boost-1_72_0/include/boost/graph/leda_graph.hpp

951 lines
29 KiB
C++
Raw Normal View History

//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Copyright 2004 The Trustees of Indiana University.
// Copyright 2007 University of Karlsruhe
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek, Douglas Gregor,
// Jens Mueller
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_LEDA_HPP
#define BOOST_GRAPH_LEDA_HPP
#include <boost/config.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <LEDA/graph/graph.h>
#include <LEDA/graph/node_array.h>
#include <LEDA/graph/node_map.h>
// The functions and classes in this file allows the user to
// treat a LEDA GRAPH object as a boost graph "as is". No
// wrapper is needed for the GRAPH object.
// Warning: this implementation relies on partial specialization
// for the graph_traits class (so it won't compile with Visual C++)
// Warning: this implementation is in alpha and has not been tested
namespace boost {
struct leda_graph_traversal_category :
public virtual bidirectional_graph_tag,
public virtual adjacency_graph_tag,
public virtual vertex_list_graph_tag { };
template <class vtype, class etype>
struct graph_traits< leda::GRAPH<vtype,etype> > {
typedef leda::node vertex_descriptor;
typedef leda::edge edge_descriptor;
class adjacency_iterator
: public iterator_facade<adjacency_iterator,
leda::node,
bidirectional_traversal_tag,
leda::node,
const leda::node*>
{
public:
adjacency_iterator(leda::node node = 0,
const leda::GRAPH<vtype, etype>* g = 0)
: base(node), g(g) {}
private:
leda::node dereference() const { return leda::target(base); }
bool equal(const adjacency_iterator& other) const
{ return base == other.base; }
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::GRAPH<vtype, etype>* g;
friend class iterator_core_access;
};
class out_edge_iterator
: public iterator_facade<out_edge_iterator,
leda::edge,
bidirectional_traversal_tag,
const leda::edge&,
const leda::edge*>
{
public:
out_edge_iterator(leda::node node = 0,
const leda::GRAPH<vtype, etype>* g = 0)
: base(node), g(g) {}
private:
const leda::edge& dereference() const { return base; }
bool equal(const out_edge_iterator& other) const
{ return base == other.base; }
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::GRAPH<vtype, etype>* g;
friend class iterator_core_access;
};
class in_edge_iterator
: public iterator_facade<in_edge_iterator,
leda::edge,
bidirectional_traversal_tag,
const leda::edge&,
const leda::edge*>
{
public:
in_edge_iterator(leda::node node = 0,
const leda::GRAPH<vtype, etype>* g = 0)
: base(node), g(g) {}
private:
const leda::edge& dereference() const { return base; }
bool equal(const in_edge_iterator& other) const
{ return base == other.base; }
void increment() { base = g->in_succ(base); }
void decrement() { base = g->in_pred(base); }
leda::edge base;
const leda::GRAPH<vtype, etype>* g;
friend class iterator_core_access;
};
class vertex_iterator
: public iterator_facade<vertex_iterator,
leda::node,
bidirectional_traversal_tag,
const leda::node&,
const leda::node*>
{
public:
vertex_iterator(leda::node node = 0,
const leda::GRAPH<vtype, etype>* g = 0)
: base(node), g(g) {}
private:
const leda::node& dereference() const { return base; }
bool equal(const vertex_iterator& other) const
{ return base == other.base; }
void increment() { base = g->succ_node(base); }
void decrement() { base = g->pred_node(base); }
leda::node base;
const leda::GRAPH<vtype, etype>* g;
friend class iterator_core_access;
};
class edge_iterator
: public iterator_facade<edge_iterator,
leda::edge,
bidirectional_traversal_tag,
const leda::edge&,
const leda::edge*>
{
public:
edge_iterator(leda::edge edge = 0,
const leda::GRAPH<vtype, etype>* g = 0)
: base(edge), g(g) {}
private:
const leda::edge& dereference() const { return base; }
bool equal(const edge_iterator& other) const
{ return base == other.base; }
void increment() { base = g->succ_edge(base); }
void decrement() { base = g->pred_edge(base); }
leda::node base;
const leda::GRAPH<vtype, etype>* g;
friend class iterator_core_access;
};
typedef directed_tag directed_category;
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
typedef leda_graph_traversal_category traversal_category;
typedef int vertices_size_type;
typedef int edges_size_type;
typedef int degree_size_type;
};
template<>
struct graph_traits<leda::graph> {
typedef leda::node vertex_descriptor;
typedef leda::edge edge_descriptor;
class adjacency_iterator
: public iterator_facade<adjacency_iterator,
leda::node,
bidirectional_traversal_tag,
leda::node,
const leda::node*>
{
public:
adjacency_iterator(leda::edge edge = 0,
const leda::graph* g = 0)
: base(edge), g(g) {}
private:
leda::node dereference() const { return leda::target(base); }
bool equal(const adjacency_iterator& other) const
{ return base == other.base; }
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
class out_edge_iterator
: public iterator_facade<out_edge_iterator,
leda::edge,
bidirectional_traversal_tag,
const leda::edge&,
const leda::edge*>
{
public:
out_edge_iterator(leda::edge edge = 0,
const leda::graph* g = 0)
: base(edge), g(g) {}
private:
const leda::edge& dereference() const { return base; }
bool equal(const out_edge_iterator& other) const
{ return base == other.base; }
void increment() { base = g->adj_succ(base); }
void decrement() { base = g->adj_pred(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
class in_edge_iterator
: public iterator_facade<in_edge_iterator,
leda::edge,
bidirectional_traversal_tag,
const leda::edge&,
const leda::edge*>
{
public:
in_edge_iterator(leda::edge edge = 0,
const leda::graph* g = 0)
: base(edge), g(g) {}
private:
const leda::edge& dereference() const { return base; }
bool equal(const in_edge_iterator& other) const
{ return base == other.base; }
void increment() { base = g->in_succ(base); }
void decrement() { base = g->in_pred(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
class vertex_iterator
: public iterator_facade<vertex_iterator,
leda::node,
bidirectional_traversal_tag,
const leda::node&,
const leda::node*>
{
public:
vertex_iterator(leda::node node = 0,
const leda::graph* g = 0)
: base(node), g(g) {}
private:
const leda::node& dereference() const { return base; }
bool equal(const vertex_iterator& other) const
{ return base == other.base; }
void increment() { base = g->succ_node(base); }
void decrement() { base = g->pred_node(base); }
leda::node base;
const leda::graph* g;
friend class iterator_core_access;
};
class edge_iterator
: public iterator_facade<edge_iterator,
leda::edge,
bidirectional_traversal_tag,
const leda::edge&,
const leda::edge*>
{
public:
edge_iterator(leda::edge edge = 0,
const leda::graph* g = 0)
: base(edge), g(g) {}
private:
const leda::edge& dereference() const { return base; }
bool equal(const edge_iterator& other) const
{ return base == other.base; }
void increment() { base = g->succ_edge(base); }
void decrement() { base = g->pred_edge(base); }
leda::edge base;
const leda::graph* g;
friend class iterator_core_access;
};
typedef directed_tag directed_category;
typedef allow_parallel_edge_tag edge_parallel_category; // not sure here
typedef leda_graph_traversal_category traversal_category;
typedef int vertices_size_type;
typedef int edges_size_type;
typedef int degree_size_type;
};
} // namespace boost
namespace boost {
//===========================================================================
// functions for GRAPH<vtype,etype>
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
source(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
const leda::GRAPH<vtype,etype>& g)
{
return source(e);
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
target(typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
const leda::GRAPH<vtype,etype>& g)
{
return target(e);
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator >
vertices(const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_iterator
Iter;
return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) );
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator >
edges(const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >::edge_iterator
Iter;
return std::make_pair( Iter(g.first_edge(),&g), Iter(0,&g) );
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator >
out_edges(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
::out_edge_iterator Iter;
return std::make_pair( Iter(g.first_adj_edge(u,0),&g), Iter(0,&g) );
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator >
in_edges(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
::in_edge_iterator Iter;
return std::make_pair( Iter(g.first_adj_edge(u,1),&g), Iter(0,&g) );
}
template <class vtype, class etype>
inline std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator,
typename graph_traits< leda::GRAPH<vtype,etype> >::adjacency_iterator >
adjacent_vertices(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
typedef typename graph_traits< leda::GRAPH<vtype,etype> >
::adjacency_iterator Iter;
return std::make_pair( Iter(g.first_adj_edge(u,0),&g), Iter(0,&g) );
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertices_size_type
num_vertices(const leda::GRAPH<vtype,etype>& g)
{
return g.number_of_nodes();
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::edges_size_type
num_edges(const leda::GRAPH<vtype,etype>& g)
{
return g.number_of_edges();
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
out_degree(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
return g.outdeg(u);
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
in_degree(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
return g.indeg(u);
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::degree_size_type
degree(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
const leda::GRAPH<vtype,etype>& g)
{
return g.outdeg(u) + g.indeg(u);
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
add_vertex(leda::GRAPH<vtype,etype>& g)
{
return g.new_node();
}
template <class vtype, class etype>
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor
add_vertex(const vtype& vp, leda::GRAPH<vtype,etype>& g)
{
return g.new_node(vp);
}
template <class vtype, class etype>
void clear_vertex(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
leda::GRAPH<vtype,etype>& g)
{
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end)=out_edges(u,g); ei!=ei_end; ei++)
remove_edge(*ei);
typename graph_traits< leda::GRAPH<vtype,etype> >::in_edge_iterator iei, iei_end;
for (boost::tie(iei, iei_end)=in_edges(u,g); iei!=iei_end; iei++)
remove_edge(*iei);
}
template <class vtype, class etype>
void remove_vertex(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
leda::GRAPH<vtype,etype>& g)
{
g.del_node(u);
}
template <class vtype, class etype>
std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor,
bool>
add_edge(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
leda::GRAPH<vtype,etype>& g)
{
return std::make_pair(g.new_edge(u, v), true);
}
template <class vtype, class etype>
std::pair<
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor,
bool>
add_edge(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
const etype& et,
leda::GRAPH<vtype,etype>& g)
{
return std::make_pair(g.new_edge(u, v, et), true);
}
template <class vtype, class etype>
void
remove_edge(
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor u,
typename graph_traits< leda::GRAPH<vtype,etype> >::vertex_descriptor v,
leda::GRAPH<vtype,etype>& g)
{
typename graph_traits< leda::GRAPH<vtype,etype> >::out_edge_iterator
i,iend;
for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i)
if (target(*i,g) == v)
g.del_edge(*i);
}
template <class vtype, class etype>
void
remove_edge(
typename graph_traits< leda::GRAPH<vtype,etype> >::edge_descriptor e,
leda::GRAPH<vtype,etype>& g)
{
g.del_edge(e);
}
//===========================================================================
// functions for graph (non-templated version)
graph_traits<leda::graph>::vertex_descriptor
source(graph_traits<leda::graph>::edge_descriptor e,
const leda::graph& g)
{
return source(e);
}
graph_traits<leda::graph>::vertex_descriptor
target(graph_traits<leda::graph>::edge_descriptor e,
const leda::graph& g)
{
return target(e);
}
inline std::pair<
graph_traits<leda::graph>::vertex_iterator,
graph_traits<leda::graph>::vertex_iterator >
vertices(const leda::graph& g)
{
typedef graph_traits<leda::graph>::vertex_iterator
Iter;
return std::make_pair( Iter(g.first_node(),&g), Iter(0,&g) );
}
inline std::pair<
graph_traits<leda::graph>::edge_iterator,
graph_traits<leda::graph>::edge_iterator >
edges(const leda::graph& g)
{
typedef graph_traits<leda::graph>::edge_iterator
Iter;
return std::make_pair( Iter(g.first_edge(),&g), Iter(0,&g) );
}
inline std::pair<
graph_traits<leda::graph>::out_edge_iterator,
graph_traits<leda::graph>::out_edge_iterator >
out_edges(
graph_traits<leda::graph>::vertex_descriptor u, const leda::graph& g)
{
typedef graph_traits<leda::graph>::out_edge_iterator Iter;
return std::make_pair( Iter(g.first_adj_edge(u),&g), Iter(0,&g) );
}
inline std::pair<
graph_traits<leda::graph>::in_edge_iterator,
graph_traits<leda::graph>::in_edge_iterator >
in_edges(
graph_traits<leda::graph>::vertex_descriptor u,
const leda::graph& g)
{
typedef graph_traits<leda::graph>
::in_edge_iterator Iter;
return std::make_pair( Iter(g.first_in_edge(u),&g), Iter(0,&g) );
}
inline std::pair<
graph_traits<leda::graph>::adjacency_iterator,
graph_traits<leda::graph>::adjacency_iterator >
adjacent_vertices(
graph_traits<leda::graph>::vertex_descriptor u,
const leda::graph& g)
{
typedef graph_traits<leda::graph>
::adjacency_iterator Iter;
return std::make_pair( Iter(g.first_adj_edge(u),&g), Iter(0,&g) );
}
graph_traits<leda::graph>::vertices_size_type
num_vertices(const leda::graph& g)
{
return g.number_of_nodes();
}
graph_traits<leda::graph>::edges_size_type
num_edges(const leda::graph& g)
{
return g.number_of_edges();
}
graph_traits<leda::graph>::degree_size_type
out_degree(
graph_traits<leda::graph>::vertex_descriptor u,
const leda::graph& g)
{
return g.outdeg(u);
}
graph_traits<leda::graph>::degree_size_type
in_degree(
graph_traits<leda::graph>::vertex_descriptor u,
const leda::graph& g)
{
return g.indeg(u);
}
graph_traits<leda::graph>::degree_size_type
degree(
graph_traits<leda::graph>::vertex_descriptor u,
const leda::graph& g)
{
return g.outdeg(u) + g.indeg(u);
}
graph_traits<leda::graph>::vertex_descriptor
add_vertex(leda::graph& g)
{
return g.new_node();
}
void
remove_edge(
graph_traits<leda::graph>::vertex_descriptor u,
graph_traits<leda::graph>::vertex_descriptor v,
leda::graph& g)
{
graph_traits<leda::graph>::out_edge_iterator
i,iend;
for (boost::tie(i,iend) = out_edges(u,g); i != iend; ++i)
if (target(*i,g) == v)
g.del_edge(*i);
}
void
remove_edge(
graph_traits<leda::graph>::edge_descriptor e,
leda::graph& g)
{
g.del_edge(e);
}
void clear_vertex(
graph_traits<leda::graph>::vertex_descriptor u,
leda::graph& g)
{
graph_traits<leda::graph>::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end)=out_edges(u,g); ei!=ei_end; ei++)
remove_edge(*ei, g);
graph_traits<leda::graph>::in_edge_iterator iei, iei_end;
for (boost::tie(iei, iei_end)=in_edges(u,g); iei!=iei_end; iei++)
remove_edge(*iei, g);
}
void remove_vertex(
graph_traits<leda::graph>::vertex_descriptor u,
leda::graph& g)
{
g.del_node(u);
}
std::pair<
graph_traits<leda::graph>::edge_descriptor,
bool>
add_edge(
graph_traits<leda::graph>::vertex_descriptor u,
graph_traits<leda::graph>::vertex_descriptor v,
leda::graph& g)
{
return std::make_pair(g.new_edge(u, v), true);
}
//===========================================================================
// property maps for GRAPH<vtype,etype>
class leda_graph_id_map
: public put_get_helper<int, leda_graph_id_map>
{
public:
typedef readable_property_map_tag category;
typedef int value_type;
typedef int reference;
typedef leda::node key_type;
leda_graph_id_map() { }
template <class T>
long operator[](T x) const { return x->id(); }
};
template <class vtype, class etype>
inline leda_graph_id_map
get(vertex_index_t, const leda::GRAPH<vtype, etype>& g) {
return leda_graph_id_map();
}
template <class vtype, class etype>
inline leda_graph_id_map
get(edge_index_t, const leda::GRAPH<vtype, etype>& g) {
return leda_graph_id_map();
}
template <class Tag>
struct leda_property_map { };
template <>
struct leda_property_map<vertex_index_t> {
template <class vtype, class etype>
struct bind_ {
typedef leda_graph_id_map type;
typedef leda_graph_id_map const_type;
};
};
template <>
struct leda_property_map<edge_index_t> {
template <class vtype, class etype>
struct bind_ {
typedef leda_graph_id_map type;
typedef leda_graph_id_map const_type;
};
};
template <class Data, class DataRef, class GraphPtr>
class leda_graph_data_map
: public put_get_helper<DataRef,
leda_graph_data_map<Data,DataRef,GraphPtr> >
{
public:
typedef Data value_type;
typedef DataRef reference;
typedef void key_type;
typedef lvalue_property_map_tag category;
leda_graph_data_map(GraphPtr g) : m_g(g) { }
template <class NodeOrEdge>
DataRef operator[](NodeOrEdge x) const { return (*m_g)[x]; }
protected:
GraphPtr m_g;
};
template <>
struct leda_property_map<vertex_all_t> {
template <class vtype, class etype>
struct bind_ {
typedef leda_graph_data_map<vtype, vtype&, leda::GRAPH<vtype, etype>*> type;
typedef leda_graph_data_map<vtype, const vtype&,
const leda::GRAPH<vtype, etype>*> const_type;
};
};
template <class vtype, class etype >
inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type
get(vertex_all_t, leda::GRAPH<vtype, etype>& g) {
typedef typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::type
pmap_type;
return pmap_type(&g);
}
template <class vtype, class etype >
inline typename property_map< leda::GRAPH<vtype, etype>, vertex_all_t>::const_type
get(vertex_all_t, const leda::GRAPH<vtype, etype>& g) {
typedef typename property_map< leda::GRAPH<vtype, etype>,
vertex_all_t>::const_type pmap_type;
return pmap_type(&g);
}
template <>
struct leda_property_map<edge_all_t> {
template <class vtype, class etype>
struct bind_ {
typedef leda_graph_data_map<etype, etype&, leda::GRAPH<vtype, etype>*> type;
typedef leda_graph_data_map<etype, const etype&,
const leda::GRAPH<vtype, etype>*> const_type;
};
};
template <class vtype, class etype >
inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type
get(edge_all_t, leda::GRAPH<vtype, etype>& g) {
typedef typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::type
pmap_type;
return pmap_type(&g);
}
template <class vtype, class etype >
inline typename property_map< leda::GRAPH<vtype, etype>, edge_all_t>::const_type
get(edge_all_t, const leda::GRAPH<vtype, etype>& g) {
typedef typename property_map< leda::GRAPH<vtype, etype>,
edge_all_t>::const_type pmap_type;
return pmap_type(&g);
}
// property map interface to the LEDA node_array class
template <class E, class ERef, class NodeMapPtr>
class leda_node_property_map
: public put_get_helper<ERef, leda_node_property_map<E, ERef, NodeMapPtr> >
{
public:
typedef E value_type;
typedef ERef reference;
typedef leda::node key_type;
typedef lvalue_property_map_tag category;
leda_node_property_map(NodeMapPtr a) : m_array(a) { }
ERef operator[](leda::node n) const { return (*m_array)[n]; }
protected:
NodeMapPtr m_array;
};
template <class E>
leda_node_property_map<E, const E&, const leda::node_array<E>*>
make_leda_node_property_map(const leda::node_array<E>& a)
{
typedef leda_node_property_map<E, const E&, const leda::node_array<E>*>
pmap_type;
return pmap_type(&a);
}
template <class E>
leda_node_property_map<E, E&, leda::node_array<E>*>
make_leda_node_property_map(leda::node_array<E>& a)
{
typedef leda_node_property_map<E, E&, leda::node_array<E>*> pmap_type;
return pmap_type(&a);
}
template <class E>
leda_node_property_map<E, const E&, const leda::node_map<E>*>
make_leda_node_property_map(const leda::node_map<E>& a)
{
typedef leda_node_property_map<E,const E&,const leda::node_map<E>*>
pmap_type;
return pmap_type(&a);
}
template <class E>
leda_node_property_map<E, E&, leda::node_map<E>*>
make_leda_node_property_map(leda::node_map<E>& a)
{
typedef leda_node_property_map<E, E&, leda::node_map<E>*> pmap_type;
return pmap_type(&a);
}
// g++ 'enumeral_type' in template unification not implemented workaround
template <class vtype, class etype, class Tag>
struct property_map<leda::GRAPH<vtype, etype>, Tag> {
typedef typename
leda_property_map<Tag>::template bind_<vtype, etype> map_gen;
typedef typename map_gen::type type;
typedef typename map_gen::const_type const_type;
};
template <class vtype, class etype, class PropertyTag, class Key>
inline
typename boost::property_traits<
typename boost::property_map<leda::GRAPH<vtype, etype>,PropertyTag>::const_type
>::value_type
get(PropertyTag p, const leda::GRAPH<vtype, etype>& g, const Key& key) {
return get(get(p, g), key);
}
template <class vtype, class etype, class PropertyTag, class Key,class Value>
inline void
put(PropertyTag p, leda::GRAPH<vtype, etype>& g,
const Key& key, const Value& value)
{
typedef typename property_map<leda::GRAPH<vtype, etype>, PropertyTag>::type Map;
Map pmap = get(p, g);
put(pmap, key, value);
}
// property map interface to the LEDA edge_array class
template <class E, class ERef, class EdgeMapPtr>
class leda_edge_property_map
: public put_get_helper<ERef, leda_edge_property_map<E, ERef, EdgeMapPtr> >
{
public:
typedef E value_type;
typedef ERef reference;
typedef leda::edge key_type;
typedef lvalue_property_map_tag category;
leda_edge_property_map(EdgeMapPtr a) : m_array(a) { }
ERef operator[](leda::edge n) const { return (*m_array)[n]; }
protected:
EdgeMapPtr m_array;
};
template <class E>
leda_edge_property_map<E, const E&, const leda::edge_array<E>*>
make_leda_node_property_map(const leda::node_array<E>& a)
{
typedef leda_edge_property_map<E, const E&, const leda::node_array<E>*>
pmap_type;
return pmap_type(&a);
}
template <class E>
leda_edge_property_map<E, E&, leda::edge_array<E>*>
make_leda_edge_property_map(leda::edge_array<E>& a)
{
typedef leda_edge_property_map<E, E&, leda::edge_array<E>*> pmap_type;
return pmap_type(&a);
}
template <class E>
leda_edge_property_map<E, const E&, const leda::edge_map<E>*>
make_leda_edge_property_map(const leda::edge_map<E>& a)
{
typedef leda_edge_property_map<E,const E&,const leda::edge_map<E>*>
pmap_type;
return pmap_type(&a);
}
template <class E>
leda_edge_property_map<E, E&, leda::edge_map<E>*>
make_leda_edge_property_map(leda::edge_map<E>& a)
{
typedef leda_edge_property_map<E, E&, leda::edge_map<E>*> pmap_type;
return pmap_type(&a);
}
} // namespace boost
#endif // BOOST_GRAPH_LEDA_HPP