|
|
|
/*
|
|
|
|
* Vanitygen, vanity bitcoin address generator
|
|
|
|
* Copyright (C) 2011 <samr7@cs.washington.edu>
|
|
|
|
*
|
|
|
|
* Vanitygen is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Affero General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* any later version.
|
|
|
|
*
|
|
|
|
* Vanitygen is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Affero General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Affero General Public License
|
|
|
|
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file contains an OpenCL kernel for performing certain parts of
|
|
|
|
* the bitcoin address calculation process.
|
|
|
|
*
|
|
|
|
* Kernel: ec_add_grid
|
|
|
|
*
|
|
|
|
* Inputs:
|
|
|
|
* - Row: Array of (sequential) EC points
|
|
|
|
* - Column: Array of column increment EC points (= rowsize * Pgenerator)
|
|
|
|
*
|
|
|
|
* Steps:
|
|
|
|
* - Compute P = Row[x] + Column[y]
|
|
|
|
* P is computed as numerator/denominator components Pxj, Pyj, Pz
|
|
|
|
* Final values are: Px = Pxj / (Pz^2), Py = Pyj / (Pz^3)
|
|
|
|
*
|
|
|
|
* The modular inverse of Pz is required to compute Px and Py, and
|
|
|
|
* can be computed more efficiently in large batches. This is done in
|
|
|
|
* the next kernel heap_invert.
|
|
|
|
*
|
|
|
|
* - Store Pxj, Pyj to intermediate point buffer
|
|
|
|
* - Store Pz to z_heap
|
|
|
|
*
|
|
|
|
* Outputs:
|
|
|
|
* - Intermediate point buffer
|
|
|
|
* - Denominator buffer (z_heap)
|
|
|
|
*
|
|
|
|
* -------------------------------
|
|
|
|
* Kernel: heap_invert
|
|
|
|
*
|
|
|
|
* Inputs:
|
|
|
|
* - Denominator buffer (z_heap)
|
|
|
|
* - N = Batch size (power of 2)
|
|
|
|
*
|
|
|
|
* Steps:
|
|
|
|
* - Compute the product tree for N values in the denominator buffer
|
|
|
|
* - Compute the modular inverse of the root of the product tree
|
|
|
|
* - Multiply down the tree to compute the modular inverse of each leaf
|
|
|
|
*
|
|
|
|
* Outputs:
|
|
|
|
* - Modular inverse denominator buffer (z_heap)
|
|
|
|
*
|
|
|
|
* -------------------------------
|
|
|
|
* Kernel: hash_ec_point_get
|
|
|
|
*
|
|
|
|
* Inputs:
|
|
|
|
* - Intermediate point buffer
|
|
|
|
* - Modular inverse denominator buffer (z_heap)
|
|
|
|
*
|
|
|
|
* Steps:
|
|
|
|
* - Compute Px = Pxj * (1/Pz)^2
|
|
|
|
* - Compute Py = Pyj * (1/Pz)^3
|
|
|
|
* - Compute H = RIPEMD160(SHA256(0x04 | Px | Py))
|
|
|
|
*
|
|
|
|
* Output:
|
|
|
|
* - Array of 20-byte address hash values
|
|
|
|
*
|
|
|
|
* -------------------------------
|
|
|
|
* Kernel: hash_ec_point_search_prefix
|
|
|
|
*
|
|
|
|
* Like hash_ec_point_get, but instead of storing the complete hash
|
|
|
|
* value to an output buffer, it searches a sorted list of ranges,
|
|
|
|
* and if a match is found, writes a flag to an output buffer.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* Byte-swapping and endianness */
|
|
|
|
#define bswap32(v) \
|
|
|
|
(((v) >> 24) | (((v) >> 8) & 0xff00) | \
|
|
|
|
(((v) << 8) & 0xff0000) | ((v) << 24))
|
|
|
|
|
|
|
|
#if __ENDIAN_LITTLE__ != 1
|
|
|
|
#define load_le32(v) bswap32(v)
|
|
|
|
#define load_be32(v) (v)
|
|
|
|
#else
|
|
|
|
#define load_le32(v) (v)
|
|
|
|
#define load_be32(v) bswap32(v)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Loop unrolling macros
|
|
|
|
*
|
|
|
|
* In most cases, preprocessor unrolling works best.
|
|
|
|
* The exception is NVIDIA's compiler, which seems to take unreasonably
|
|
|
|
* long to compile a loop with a larger iteration count, or a loop with
|
|
|
|
* a body of >50 PTX instructions, with preprocessor unrolling.
|
|
|
|
* However, it does not seem to take as long with pragma unroll, and
|
|
|
|
* produces good output.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Explicit loop unrolling */
|
|
|
|
#define unroll_5(a) do { a(0) a(1) a(2) a(3) a(4) } while (0)
|
|
|
|
#define unroll_8(a) do { a(0) a(1) a(2) a(3) a(4) a(5) a(6) a(7) } while (0)
|
|
|
|
#define unroll_1_7(a) do { a(1) a(2) a(3) a(4) a(5) a(6) a(7) } while (0)
|
|
|
|
#define unroll_7(a) do { a(0) a(1) a(2) a(3) a(4) a(5) a(6) } while (0)
|
|
|
|
#define unroll_7_0(a) do { a(7) a(6) a(5) a(4) a(3) a(2) a(1) a(0) } while (0)
|
|
|
|
#define unroll_7_1(a) do { a(7) a(6) a(5) a(4) a(3) a(2) a(1) } while (0)
|
|
|
|
#define unroll_16(a) do { \
|
|
|
|
a(0) a(1) a(2) a(3) a(4) a(5) a(6) a(7) \
|
|
|
|
a(8) a(9) a(10) a(11) a(12) a(13) a(14) a(15) \
|
|
|
|
} while (0)
|
|
|
|
#define unroll_64(a) do { \
|
|
|
|
a(0) a(1) a(2) a(3) a(4) a(5) a(6) a(7) \
|
|
|
|
a(8) a(9) a(10) a(11) a(12) a(13) a(14) a(15) \
|
|
|
|
a(16) a(17) a(18) a(19) a(20) a(21) a(22) a(23) \
|
|
|
|
a(24) a(25) a(26) a(27) a(28) a(29) a(30) a(31) \
|
|
|
|
a(32) a(33) a(34) a(35) a(36) a(37) a(38) a(39) \
|
|
|
|
a(40) a(41) a(42) a(43) a(44) a(45) a(46) a(47) \
|
|
|
|
a(48) a(49) a(50) a(51) a(52) a(53) a(54) a(55) \
|
|
|
|
a(56) a(57) a(58) a(59) a(60) a(61) a(62) a(63) \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/* Conditional loop unrolling */
|
|
|
|
#if defined(DEEP_PREPROC_UNROLL)
|
|
|
|
#define iter_5(a) unroll_5(a)
|
|
|
|
#define iter_8(a) unroll_8(a)
|
|
|
|
#define iter_16(a) unroll_16(a)
|
|
|
|
#define iter_64(a) unroll_64(a)
|
|
|
|
#else
|
|
|
|
#define iter_5(a) do {int _i; for (_i = 0; _i < 5; _i++) { a(_i) }} while (0)
|
|
|
|
#define iter_8(a) do {int _i; for (_i = 0; _i < 8; _i++) { a(_i) }} while (0)
|
|
|
|
#define iter_16(a) do {int _i; for (_i = 0; _i < 16; _i++) { a(_i) }} while (0)
|
|
|
|
#define iter_64(a) do {int _i; for (_i = 0; _i < 64; _i++) { a(_i) }} while (0)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* BIGNUM mini-library
|
|
|
|
* This module deals with fixed-size 256-bit bignums.
|
|
|
|
* Where modular arithmetic is performed, the SECP256k1 prime
|
|
|
|
* modulus (below) is assumed.
|
|
|
|
*
|
|
|
|
* Methods include:
|
|
|
|
* - bn_is_zero/bn_is_one/bn_is_odd/bn_is_even/bn_is_bit_set
|
|
|
|
* - bn_rshift[1]/bn_lshift[1]
|
|
|
|
* - bn_neg
|
|
|
|
* - bn_uadd/bn_uadd_p
|
|
|
|
* - bn_usub/bn_usub_p
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef uint bn_word;
|
|
|
|
#define BN_NBITS 256
|
|
|
|
#define BN_WSHIFT 5
|
|
|
|
#define BN_WBITS (1 << BN_WSHIFT)
|
|
|
|
#define BN_NWORDS ((BN_NBITS/8) / sizeof(bn_word))
|
|
|
|
#define BN_WORDMAX 0xffffffff
|
|
|
|
|
|
|
|
#define MODULUS_BYTES \
|
|
|
|
0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, \
|
|
|
|
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
bn_word d[BN_NWORDS];
|
|
|
|
} bignum;
|
|
|
|
|
|
|
|
__constant bn_word modulus[] = { MODULUS_BYTES };
|
|
|
|
__constant bignum bn_zero;
|
|
|
|
|
|
|
|
__constant bn_word mont_rr[BN_NWORDS] = { 0xe90a1, 0x7a2, 0x1, 0, };
|
|
|
|
__constant bn_word mont_n0[2] = { 0xd2253531, 0xd838091d };
|
|
|
|
|
|
|
|
|
|
|
|
#define bn_is_odd(bn) (bn.d[0] & 1)
|
|
|
|
#define bn_is_even(bn) (!bn_is_odd(bn))
|
|
|
|
#define bn_is_zero(bn) (!bn.d[0] && !bn.d[1] && !bn.d[2] && \
|
|
|
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \
|
|
|
|
!bn.d[6] && !bn.d[7])
|
|
|
|
#define bn_is_one(bn) ((bn.d[0] == 1) && !bn.d[1] && !bn.d[2] && \
|
|
|
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \
|
|
|
|
!bn.d[6] && !bn.d[7])
|
|
|
|
#define bn_is_bit_set(bn, n) \
|
|
|
|
((((bn_word*)&bn)[n >> BN_WSHIFT]) & (1 << (n & (BN_WBITS-1))))
|
|
|
|
|
|
|
|
#define bn_unroll(e) unroll_8(e)
|
|
|
|
#define bn_unroll_sf(e) unroll_1_7(e)
|
|
|
|
#define bn_unroll_sl(e) unroll_7(e)
|
|
|
|
#define bn_unroll_reverse(e) unroll_7_0(e)
|
|
|
|
#define bn_unroll_reverse_sl(e) unroll_7_1(e)
|
|
|
|
|
|
|
|
#define bn_unroll_arg(e, arg) \
|
|
|
|
e(arg, 0) e(arg, 1) e(arg, 2) e(arg, 3) \
|
|
|
|
e(arg, 4) e(arg, 5) e(arg, 6) e(arg, 7)
|
|
|
|
#define bn_unroll_arg_sf(e, arg) \
|
|
|
|
e(arg, 1) e(arg, 2) e(arg, 3) \
|
|
|
|
e(arg, 4) e(arg, 5) e(arg, 6) e(arg, 7)
|
|
|
|
|
|
|
|
#define bn_iter(e) iter_8(e)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bitwise shift
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_lshift1(bignum *bn)
|
|
|
|
{
|
|
|
|
#define bn_lshift1_inner1(i) \
|
|
|
|
bn->d[i] = (bn->d[i] << 1) | (bn->d[i-1] >> 31);
|
|
|
|
bn_unroll_reverse_sl(bn_lshift1_inner1);
|
|
|
|
bn->d[0] <<= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_rshift(bignum *bn, int shift)
|
|
|
|
{
|
|
|
|
int wd, iws, iwr;
|
|
|
|
bn_word ihw, ilw;
|
|
|
|
iws = (shift & (BN_WBITS-1));
|
|
|
|
iwr = BN_WBITS - iws;
|
|
|
|
wd = (shift >> BN_WSHIFT);
|
|
|
|
ihw = (wd < BN_WBITS) ? bn->d[wd] : 0;
|
|
|
|
|
|
|
|
#define bn_rshift_inner1(i) \
|
|
|
|
wd++; \
|
|
|
|
ilw = ihw; \
|
|
|
|
ihw = (wd < BN_WBITS) ? bn->d[wd] : 0; \
|
|
|
|
bn->d[i] = (ilw >> iws) | (ihw << iwr);
|
|
|
|
bn_unroll_sl(bn_rshift_inner1);
|
|
|
|
bn->d[BN_NWORDS-1] = (ihw >> iws);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_rshift1(bignum *bn)
|
|
|
|
{
|
|
|
|
#define bn_rshift1_inner1(i) \
|
|
|
|
bn->d[i] = (bn->d[i+1] << 31) | (bn->d[i] >> 1);
|
|
|
|
bn_unroll_sl(bn_rshift1_inner1);
|
|
|
|
bn->d[BN_NWORDS-1] >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_rshift1_2(bignum *bna, bignum *bnb)
|
|
|
|
{
|
|
|
|
#define bn_rshift1_2_inner1(i) \
|
|
|
|
bna->d[i] = (bna->d[i+1] << 31) | (bna->d[i] >> 1); \
|
|
|
|
bnb->d[i] = (bnb->d[i+1] << 31) | (bnb->d[i] >> 1);
|
|
|
|
bn_unroll_sl(bn_rshift1_2_inner1);
|
|
|
|
bna->d[BN_NWORDS-1] >>= 1;
|
|
|
|
bnb->d[BN_NWORDS-1] >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unsigned comparison
|
|
|
|
*/
|
|
|
|
|
|
|
|
int
|
|
|
|
bn_ucmp_ge(bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
int l = 0, g = 0;
|
|
|
|
|
|
|
|
#define bn_ucmp_ge_inner1(i) \
|
|
|
|
if (a->d[i] < b->d[i]) l |= (1 << i); \
|
|
|
|
if (a->d[i] > b->d[i]) g |= (1 << i);
|
|
|
|
bn_unroll_reverse(bn_ucmp_ge_inner1);
|
|
|
|
return (l > g) ? 0 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
bn_ucmp_ge_c(bignum *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
int l = 0, g = 0;
|
|
|
|
|
|
|
|
#define bn_ucmp_ge_c_inner1(i) \
|
|
|
|
if (a->d[i] < b[i]) l |= (1 << i); \
|
|
|
|
if (a->d[i] > b[i]) g |= (1 << i);
|
|
|
|
bn_unroll_reverse(bn_ucmp_ge_c_inner1);
|
|
|
|
return (l > g) ? 0 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Negate
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_neg(bignum *n)
|
|
|
|
{
|
|
|
|
int c = 1;
|
|
|
|
|
|
|
|
#define bn_neg_inner1(i) \
|
|
|
|
c = (n->d[i] = (~n->d[i]) + c) ? 0 : c;
|
|
|
|
bn_unroll(bn_neg_inner1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add/subtract
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define bn_add_word(r, a, b, t, c) do { \
|
|
|
|
t = a + b; \
|
|
|
|
c = (t < a) ? 1 : 0; \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define bn_addc_word(r, a, b, t, c) do { \
|
|
|
|
t = a + b + c; \
|
|
|
|
c = (t < a) ? 1 : ((c & (t == a)) ? 1 : 0); \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_uadd_words_seq(bn_word *r, bn_word *a, bn_word *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
|
|
|
|
#define bn_uadd_words_seq_inner1(i) \
|
|
|
|
bn_addc_word(r[i], a[i], b[i], t, c);
|
|
|
|
bn_add_word(r[0], a[0], b[0], t, c);
|
|
|
|
bn_unroll_sf(bn_uadd_words_seq_inner1);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_uadd_words_c_seq(bn_word *r, bn_word *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
|
|
|
|
bn_add_word(r[0], a[0], b[0], t, c);
|
|
|
|
bn_unroll_sf(bn_uadd_words_seq_inner1);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define bn_sub_word(r, a, b, t, c) do { \
|
|
|
|
t = a - b; \
|
|
|
|
c = (a < b) ? 1 : 0; \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define bn_subb_word(r, a, b, t, c) do { \
|
|
|
|
t = a - (b + c); \
|
|
|
|
c = (!(a) && c) ? 1 : 0; \
|
|
|
|
c |= (a < b) ? 1 : 0; \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_usub_words_seq(bn_word *r, bn_word *a, bn_word *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
|
|
|
|
#define bn_usub_words_seq_inner1(i) \
|
|
|
|
bn_subb_word(r[i], a[i], b[i], t, c);
|
|
|
|
|
|
|
|
bn_sub_word(r[0], a[0], b[0], t, c);
|
|
|
|
bn_unroll_sf(bn_usub_words_seq_inner1);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_usub_words_c_seq(bn_word *r, bn_word *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
|
|
|
|
bn_sub_word(r[0], a[0], b[0], t, c);
|
|
|
|
bn_unroll_sf(bn_usub_words_seq_inner1);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add/subtract better suited for AMD's VLIW architecture
|
|
|
|
*/
|
|
|
|
bn_word
|
|
|
|
bn_uadd_words_vliw(bn_word *r, bn_word *a, bn_word *b)
|
|
|
|
{
|
|
|
|
bignum x;
|
|
|
|
bn_word c = 0, cp = 0;
|
|
|
|
|
|
|
|
#define bn_uadd_words_vliw_inner1(i) \
|
|
|
|
x.d[i] = a[i] + b[i];
|
|
|
|
|
|
|
|
#define bn_uadd_words_vliw_inner2(i) \
|
|
|
|
c |= (a[i] > x.d[i]) ? (1 << i) : 0; \
|
|
|
|
cp |= (!~x.d[i]) ? (1 << i) : 0;
|
|
|
|
|
|
|
|
#define bn_uadd_words_vliw_inner3(i) \
|
|
|
|
r[i] = x.d[i] + ((c >> i) & 1);
|
|
|
|
|
|
|
|
bn_unroll(bn_uadd_words_vliw_inner1);
|
|
|
|
bn_unroll(bn_uadd_words_vliw_inner2);
|
|
|
|
c = ((cp + (c << 1)) ^ cp);
|
|
|
|
r[0] = x.d[0];
|
|
|
|
bn_unroll_sf(bn_uadd_words_vliw_inner3);
|
|
|
|
return c >> BN_NWORDS;
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_uadd_words_c_vliw(bn_word *r, bn_word *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
bignum x;
|
|
|
|
bn_word c = 0, cp = 0;
|
|
|
|
|
|
|
|
bn_unroll(bn_uadd_words_vliw_inner1);
|
|
|
|
bn_unroll(bn_uadd_words_vliw_inner2);
|
|
|
|
c = ((cp + (c << 1)) ^ cp);
|
|
|
|
r[0] = x.d[0];
|
|
|
|
bn_unroll_sf(bn_uadd_words_vliw_inner3);
|
|
|
|
return c >> BN_NWORDS;
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_usub_words_vliw(bn_word *r, bn_word *a, bn_word *b)
|
|
|
|
{
|
|
|
|
bignum x;
|
|
|
|
bn_word c = 0, cp = 0;
|
|
|
|
|
|
|
|
#define bn_usub_words_vliw_inner1(i) \
|
|
|
|
x.d[i] = a[i] - b[i];
|
|
|
|
|
|
|
|
#define bn_usub_words_vliw_inner2(i) \
|
|
|
|
c |= (a[i] < b[i]) ? (1 << i) : 0; \
|
|
|
|
cp |= (!x.d[i]) ? (1 << i) : 0;
|
|
|
|
|
|
|
|
#define bn_usub_words_vliw_inner3(i) \
|
|
|
|
r[i] = x.d[i] - ((c >> i) & 1);
|
|
|
|
|
|
|
|
bn_unroll(bn_usub_words_vliw_inner1);
|
|
|
|
bn_unroll(bn_usub_words_vliw_inner2);
|
|
|
|
c = ((cp + (c << 1)) ^ cp);
|
|
|
|
r[0] = x.d[0];
|
|
|
|
bn_unroll_sf(bn_usub_words_vliw_inner3);
|
|
|
|
return c >> BN_NWORDS;
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_usub_words_c_vliw(bn_word *r, bn_word *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
bignum x;
|
|
|
|
bn_word c = 0, cp = 0;
|
|
|
|
|
|
|
|
bn_unroll(bn_usub_words_vliw_inner1);
|
|
|
|
bn_unroll(bn_usub_words_vliw_inner2);
|
|
|
|
c = ((cp + (c << 1)) ^ cp);
|
|
|
|
r[0] = x.d[0];
|
|
|
|
bn_unroll_sf(bn_usub_words_vliw_inner3);
|
|
|
|
return c >> BN_NWORDS;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(DEEP_VLIW)
|
|
|
|
#define bn_uadd_words bn_uadd_words_vliw
|
|
|
|
#define bn_uadd_words_c bn_uadd_words_c_vliw
|
|
|
|
#define bn_usub_words bn_usub_words_vliw
|
|
|
|
#define bn_usub_words_c bn_usub_words_c_vliw
|
|
|
|
#else
|
|
|
|
#define bn_uadd_words bn_uadd_words_seq
|
|
|
|
#define bn_uadd_words_c bn_uadd_words_c_seq
|
|
|
|
#define bn_usub_words bn_usub_words_seq
|
|
|
|
#define bn_usub_words_c bn_usub_words_c_seq
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define bn_uadd(r, a, b) bn_uadd_words((r)->d, (a)->d, (b)->d)
|
|
|
|
#define bn_uadd_c(r, a, b) bn_uadd_words_c((r)->d, (a)->d, b)
|
|
|
|
#define bn_usub(r, a, b) bn_usub_words((r)->d, (a)->d, (b)->d)
|
|
|
|
#define bn_usub_c(r, a, b) bn_usub_words_c((r)->d, (a)->d, b)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Modular add/sub
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_add(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
if (bn_uadd(r, a, b) ||
|
|
|
|
(bn_ucmp_ge_c(r, modulus)))
|
|
|
|
bn_usub_c(r, r, modulus);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_sub(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
if (bn_usub(r, a, b))
|
|
|
|
bn_uadd_c(r, r, modulus);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_lshift1(bignum *bn)
|
|
|
|
{
|
|
|
|
bn_word c = (bn->d[BN_NWORDS-1] & 0x80000000);
|
|
|
|
bn_lshift1(bn);
|
|
|
|
if (c || (bn_ucmp_ge_c(bn, modulus)))
|
|
|
|
bn_usub_c(bn, bn, modulus);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Montgomery multiplication
|
|
|
|
*
|
|
|
|
* This includes normal multiplication of two "Montgomeryized"
|
|
|
|
* bignums, and bn_from_mont for de-Montgomeryizing a bignum.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define bn_mul_word(r, a, w, c, p, s) do { \
|
|
|
|
r = (a * w) + c; \
|
|
|
|
p = mul_hi(a, w); \
|
|
|
|
c = (r < c) ? p + 1 : p; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define bn_mul_add_word(r, a, w, c, p, s) do { \
|
|
|
|
s = r + c; \
|
|
|
|
p = mul_hi(a, w); \
|
|
|
|
r = (a * w) + s; \
|
|
|
|
c = (s < c) ? p + 1 : p; \
|
|
|
|
if (r < s) c++; \
|
|
|
|
} while (0)
|
|
|
|
void
|
|
|
|
bn_mul_mont(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
bignum t;
|
|
|
|
bn_word tea, teb, c, p, s, m;
|
|
|
|
|
|
|
|
#if !defined(VERY_EXPENSIVE_BRANCHES)
|
|
|
|
int q;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
c = 0;
|
|
|
|
#define bn_mul_mont_inner1(j) \
|
|
|
|
bn_mul_word(t.d[j], a->d[j], b->d[0], c, p, s);
|
|
|
|
bn_unroll(bn_mul_mont_inner1);
|
|
|
|
tea = c;
|
|
|
|
teb = 0;
|
|
|
|
|
|
|
|
c = 0;
|
|
|
|
m = t.d[0] * mont_n0[0];
|
|
|
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s);
|
|
|
|
#define bn_mul_mont_inner2(j) \
|
|
|
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); \
|
|
|
|
t.d[j-1] = t.d[j];
|
|
|
|
bn_unroll_sf(bn_mul_mont_inner2);
|
|
|
|
t.d[BN_NWORDS-1] = tea + c;
|
|
|
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0);
|
|
|
|
|
|
|
|
#define bn_mul_mont_inner3_1(i, j) \
|
|
|
|
bn_mul_add_word(t.d[j], a->d[j], b->d[i], c, p, s);
|
|
|
|
#define bn_mul_mont_inner3_2(i, j) \
|
|
|
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); \
|
|
|
|
t.d[j-1] = t.d[j];
|
|
|
|
#define bn_mul_mont_inner3(i) \
|
|
|
|
c = 0; \
|
|
|
|
bn_unroll_arg(bn_mul_mont_inner3_1, i); \
|
|
|
|
tea += c; \
|
|
|
|
teb = ((tea < c) ? 1 : 0); \
|
|
|
|
c = 0; \
|
|
|
|
m = t.d[0] * mont_n0[0]; \
|
|
|
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s); \
|
|
|
|
bn_unroll_arg_sf(bn_mul_mont_inner3_2, i); \
|
|
|
|
t.d[BN_NWORDS-1] = tea + c; \
|
|
|
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The outer loop here is quite long, and we won't unroll it
|
|
|
|
* unless VERY_EXPENSIVE_BRANCHES is set.
|
|
|
|
*/
|
|
|
|
#if defined(VERY_EXPENSIVE_BRANCHES)
|
|
|
|
bn_unroll_sf(bn_mul_mont_inner3);
|
|
|
|
c = tea | !bn_usub_c(r, &t, modulus);
|
|
|
|
if (!c)
|
|
|
|
*r = t;
|
|
|
|
|
|
|
|
#else
|
|
|
|
for (q = 1; q < BN_NWORDS; q++) {
|
|
|
|
bn_mul_mont_inner3(q);
|
|
|
|
}
|
|
|
|
c = tea || (t.d[BN_NWORDS-1] >= modulus[BN_NWORDS-1]);
|
|
|
|
if (c) {
|
|
|
|
c = tea | !bn_usub_c(r, &t, modulus);
|
|
|
|
if (c)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
*r = t;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_from_mont(bignum *rb, bignum *b)
|
|
|
|
{
|
|
|
|
#define WORKSIZE ((2*BN_NWORDS) + 1)
|
|
|
|
bn_word r[WORKSIZE];
|
|
|
|
bn_word m, c, p, s;
|
|
|
|
#if defined(PRAGMA_UNROLL)
|
|
|
|
int i;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Copy the input to the working area */
|
|
|
|
/* Zero the upper words */
|
|
|
|
#define bn_from_mont_inner1(i) \
|
|
|
|
r[i] = b->d[i];
|
|
|
|
#define bn_from_mont_inner2(i) \
|
|
|
|
r[BN_NWORDS+i] = 0;
|
|
|
|
|
|
|
|
bn_unroll(bn_from_mont_inner1);
|
|
|
|
bn_unroll(bn_from_mont_inner2);
|
|
|
|
r[WORKSIZE-1] = 0;
|
|
|
|
|
|
|
|
/* Multiply (long) by modulus */
|
|
|
|
#define bn_from_mont_inner3_1(i, j) \
|
|
|
|
bn_mul_add_word(r[i+j], modulus[j], m, c, p, s);
|
|
|
|
|
|
|
|
#if !defined(VERY_EXPENSIVE_BRANCHES)
|
|
|
|
#define bn_from_mont_inner3_2(i) \
|
|
|
|
if (r[BN_NWORDS + i] < c) \
|
|
|
|
r[BN_NWORDS + i + 1] += 1;
|
|
|
|
#else
|
|
|
|
#define bn_from_mont_inner3_2(i) \
|
|
|
|
r[BN_NWORDS + i + 1] += (r[BN_NWORDS + i] < c) ? 1 : 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define bn_from_mont_inner3(i) \
|
|
|
|
m = r[i] * mont_n0[0]; \
|
|
|
|
c = 0; \
|
|
|
|
bn_unroll_arg(bn_from_mont_inner3_1, i); \
|
|
|
|
r[BN_NWORDS + i] += c; \
|
|
|
|
bn_from_mont_inner3_2(i)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The outer loop here is not very long, so we will unroll
|
|
|
|
* it by default. However, it's just complicated enough to
|
|
|
|
* cause NVIDIA's compiler to take unreasonably long to compile
|
|
|
|
* it, unless we use pragma unroll.
|
|
|
|
*/
|
|
|
|
#if !defined(PRAGMA_UNROLL)
|
|
|
|
bn_iter(bn_from_mont_inner3);
|
|
|
|
#else
|
|
|
|
#pragma unroll 8
|
|
|
|
for (i = 0; i < BN_NWORDS; i++) { bn_from_mont_inner3(i) }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Make sure the result is less than the modulus.
|
|
|
|
* Subtracting is not much more expensive than compare, so
|
|
|
|
* subtract always and assign based on the carry out value.
|
|
|
|
*/
|
|
|
|
c = bn_usub_words_c(rb->d, &r[BN_NWORDS], modulus);
|
|
|
|
if (c) {
|
|
|
|
#define bn_from_mont_inner4(i) \
|
|
|
|
rb->d[i] = r[BN_NWORDS + i];
|
|
|
|
bn_unroll(bn_from_mont_inner4);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Modular inversion
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_inverse(bignum *r, bignum *n)
|
|
|
|
{
|
|
|
|
bignum a, b, x, y;
|
|
|
|
int shift;
|
|
|
|
bn_word xc, yc;
|
|
|
|
for (shift = 0; shift < BN_NWORDS; shift++) {
|
|
|
|
a.d[shift] = modulus[shift];
|
|
|
|
x.d[shift] = 0;
|
|
|
|
y.d[shift] = 0;
|
|
|
|
}
|
|
|
|
b = *n;
|
|
|
|
x.d[0] = 1;
|
|
|
|
xc = 0;
|
|
|
|
yc = 0;
|
|
|
|
while (!bn_is_zero(b)) {
|
|
|
|
shift = 0;
|
|
|
|
while (!bn_is_odd(b)) {
|
|
|
|
if (bn_is_odd(x))
|
|
|
|
xc += bn_uadd_c(&x, &x, modulus);
|
|
|
|
bn_rshift1_2(&x, &b);
|
|
|
|
x.d[7] |= (xc << 31);
|
|
|
|
xc >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (!bn_is_odd(a)) {
|
|
|
|
if (bn_is_odd(y))
|
|
|
|
yc += bn_uadd_c(&y, &y, modulus);
|
|
|
|
bn_rshift1_2(&y, &a);
|
|
|
|
y.d[7] |= (yc << 31);
|
|
|
|
yc >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bn_ucmp_ge(&b, &a)) {
|
|
|
|
xc += yc + bn_uadd(&x, &x, &y);
|
|
|
|
bn_usub(&b, &b, &a);
|
|
|
|
} else {
|
|
|
|
yc += xc + bn_uadd(&y, &y, &x);
|
|
|
|
bn_usub(&a, &a, &b);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!bn_is_one(a)) {
|
|
|
|
/* no modular inverse */
|
|
|
|
*r = bn_zero;
|
|
|
|
} else {
|
|
|
|
/* Compute y % m as cheaply as possible */
|
|
|
|
while (yc < 0x80000000)
|
|
|
|
yc -= bn_usub_c(&y, &y, modulus);
|
|
|
|
bn_neg(&y);
|
|
|
|
*r = y;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HASH FUNCTIONS
|
|
|
|
*
|
|
|
|
* BYTE ORDER NOTE: None of the hash functions below deal with byte
|
|
|
|
* order. The caller is expected to be aware of this when it stuffs
|
|
|
|
* data into in the native integer.
|
|
|
|
*
|
|
|
|
* NOTE #2: Endianness of the OpenCL device makes no difference here.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define hash256_unroll(a) unroll_8(a)
|
|
|
|
#define hash160_unroll(a) unroll_5(a)
|
|
|
|
#define hash256_iter(a) iter_8(a)
|
|
|
|
#define hash160_iter(a) iter_5(a)
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SHA-2 256
|
|
|
|
*
|
|
|
|
* CAUTION: Input buffer will be overwritten/mangled.
|
|
|
|
* Data expected in big-endian format.
|
|
|
|
* This implementation is designed for space efficiency more than
|
|
|
|
* raw speed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
__constant uint sha2_init[8] = {
|
|
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
|
|
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
|
|
|
};
|
|
|
|
|
|
|
|
__constant uint sha2_k[64] = {
|
|
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
|
|
};
|
|
|
|
|
|
|
|
void
|
|
|
|
sha2_256_init(uint *out)
|
|
|
|
{
|
|
|
|
#define sha2_256_init_inner_1(i) \
|
|
|
|
out[i] = sha2_init[i];
|
|
|
|
|
|
|
|
hash256_unroll(sha2_256_init_inner_1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The state variable remapping is really contorted */
|
|
|
|
#define sha2_stvar(vals, i, v) vals[(64+v-i) % 8]
|
|
|
|
#define sha2_s0(a) (rotate(a, 30U) ^ rotate(a, 19U) ^ rotate(a, 10U))
|
|
|
|
#define sha2_s1(a) (rotate(a, 26U) ^ rotate(a, 21U) ^ rotate(a, 7U))
|
|
|
|
#if defined(AMD_BFI_INT)
|
|
|
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable
|
|
|
|
#define sha2_ch(a, b, c) amd_bytealign(a, b, c)
|
|
|
|
#define sha2_ma(a, b, c) amd_bytealign((a^c), b, a)
|
|
|
|
#else
|
|
|
|
#define sha2_ch(a, b, c) (c ^ (a & (b ^ c)))
|
|
|
|
#define sha2_ma(a, b, c) ((a & c) | (b & (a | c)))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void
|
|
|
|
sha2_256_block(uint *out, uint *in)
|
|
|
|
{
|
|
|
|
uint state[8], t1, t2;
|
|
|
|
#if defined(PRAGMA_UNROLL)
|
|
|
|
int i;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define sha2_256_block_inner_1(i) \
|
|
|
|
state[i] = out[i];
|
|
|
|
hash256_unroll(sha2_256_block_inner_1);
|
|
|
|
|
|
|
|
#define sha2_256_block_inner_2(i) \
|
|
|
|
if (i >= 16) { \
|
|
|
|
t1 = in[(i + 1) % 16]; \
|
|
|
|
t2 = in[(i + 14) % 16]; \
|
|
|
|
in[i % 16] += (in[(i + 9) % 16] + \
|
|
|
|
(rotate(t1, 25U) ^ rotate(t1, 14U) ^ (t1 >> 3)) + \
|
|
|
|
(rotate(t2, 15U) ^ rotate(t2, 13U) ^ (t2 >> 10))); \
|
|
|
|
} \
|
|
|
|
t1 = (sha2_stvar(state, i, 7) + \
|
|
|
|
sha2_s1(sha2_stvar(state, i, 4)) + \
|
|
|
|
sha2_ch(sha2_stvar(state, i, 4), \
|
|
|
|
sha2_stvar(state, i, 5), \
|
|
|
|
sha2_stvar(state, i, 6)) + \
|
|
|
|
sha2_k[i] + \
|
|
|
|
in[i % 16]); \
|
|
|
|
t2 = (sha2_s0(sha2_stvar(state, i, 0)) + \
|
|
|
|
sha2_ma(sha2_stvar(state, i, 0), \
|
|
|
|
sha2_stvar(state, i, 1), \
|
|
|
|
sha2_stvar(state, i, 2))); \
|
|
|
|
sha2_stvar(state, i, 3) += t1; \
|
|
|
|
sha2_stvar(state, i, 7) = t1 + t2; \
|
|
|
|
|
|
|
|
#if !defined(PRAGMA_UNROLL)
|
|
|
|
iter_64(sha2_256_block_inner_2);
|
|
|
|
#else
|
|
|
|
#pragma unroll 64
|
|
|
|
for (i = 0; i < 64; i++) { sha2_256_block_inner_2(i) }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define sha2_256_block_inner_3(i) \
|
|
|
|
out[i] += state[i];
|
|
|
|
|
|
|
|
hash256_unroll(sha2_256_block_inner_3);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RIPEMD160
|
|
|
|
*
|
|
|
|
* Data expected in little-endian format.
|
|
|
|
*/
|
|
|
|
|
|
|
|
__constant uint ripemd160_iv[] = {
|
|
|
|
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 };
|
|
|
|
__constant uint ripemd160_k[] = {
|
|
|
|
0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E };
|
|
|
|
__constant uint ripemd160_kp[] = {
|
|
|
|
0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000 };
|
|
|
|
__constant uchar ripemd160_ws[] = {
|
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
|
|
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
|
|
|
|
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
|
|
|
|
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
|
|
|
|
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13,
|
|
|
|
};
|
|
|
|
__constant uchar ripemd160_wsp[] = {
|
|
|
|
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
|
|
|
|
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
|
|
|
|
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
|
|
|
|
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
|
|
|
|
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
|
|
|
|
};
|
|
|
|
__constant uchar ripemd160_rl[] = {
|
|
|
|
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
|
|
|
|
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
|
|
|
|
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
|
|
|
|
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
|
|
|
|
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6,
|
|
|
|
};
|
|
|
|
__constant uchar ripemd160_rlp[] = {
|
|
|
|
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
|
|
|
|
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
|
|
|
|
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
|
|
|
|
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
|
|
|
|
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
|
|
|
|
};
|
|
|
|
|
|
|
|
#define ripemd160_val(v, i, n) (v)[(80+(n)-(i)) % 5]
|
|
|
|
#define ripemd160_valp(v, i, n) (v)[5 + ((80+(n)-(i)) % 5)]
|
|
|
|
#if defined(AMD_BFI_INT)
|
|
|
|
#define ripemd160_f0(x, y, z) (x ^ y ^ z)
|
|
|
|
#define ripemd160_f1(x, y, z) amd_bytealign(x, y, z)
|
|
|
|
#define ripemd160_f2(x, y, z) (z ^ (x | ~y))
|
|
|
|
#define ripemd160_f3(x, y, z) amd_bytealign(z, x, y)
|
|
|
|
#define ripemd160_f4(x, y, z) (x ^ (y | ~z))
|
|
|
|
#else
|
|
|
|
#define ripemd160_f0(x, y, z) (x ^ y ^ z)
|
|
|
|
#define ripemd160_f1(x, y, z) ((x & y) | (~x & z))
|
|
|
|
#define ripemd160_f2(x, y, z) (z ^ (x | ~y))
|
|
|
|
#define ripemd160_f3(x, y, z) ((x & z) | (y & ~z))
|
|
|
|
#define ripemd160_f4(x, y, z) (x ^ (y | ~z))
|
|
|
|
#endif
|
|
|
|
#define ripemd160_round(i, in, vals, f, fp, t) do { \
|
|
|
|
ripemd160_val(vals, i, 0) = \
|
|
|
|
rotate(ripemd160_val(vals, i, 0) + \
|
|
|
|
f(ripemd160_val(vals, i, 1), \
|
|
|
|
ripemd160_val(vals, i, 2), \
|
|
|
|
ripemd160_val(vals, i, 3)) + \
|
|
|
|
in[ripemd160_ws[i]] + \
|
|
|
|
ripemd160_k[i / 16], \
|
|
|
|
(uint)ripemd160_rl[i]) + \
|
|
|
|
ripemd160_val(vals, i, 4); \
|
|
|
|
ripemd160_val(vals, i, 2) = \
|
|
|
|
rotate(ripemd160_val(vals, i, 2), 10U); \
|
|
|
|
ripemd160_valp(vals, i, 0) = \
|
|
|
|
rotate(ripemd160_valp(vals, i, 0) + \
|
|
|
|
fp(ripemd160_valp(vals, i, 1), \
|
|
|
|
ripemd160_valp(vals, i, 2), \
|
|
|
|
ripemd160_valp(vals, i, 3)) + \
|
|
|
|
in[ripemd160_wsp[i]] + \
|
|
|
|
ripemd160_kp[i / 16], \
|
|
|
|
(uint)ripemd160_rlp[i]) + \
|
|
|
|
ripemd160_valp(vals, i, 4); \
|
|
|
|
ripemd160_valp(vals, i, 2) = \
|
|
|
|
rotate(ripemd160_valp(vals, i, 2), 10U); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
void
|
|
|
|
ripemd160_init(uint *out)
|
|
|
|
{
|
|
|
|
#define ripemd160_init_inner_1(i) \
|
|
|
|
out[i] = ripemd160_iv[i];
|
|
|
|
|
|
|
|
hash160_unroll(ripemd160_init_inner_1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
ripemd160_block(uint *out, uint *in)
|
|
|
|
{
|
|
|
|
uint vals[10], t;
|
|
|
|
#if defined(PRAGMA_UNROLL)
|
|
|
|
int i;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define ripemd160_block_inner_1(i) \
|
|
|
|
vals[i] = vals[i + 5] = out[i];
|
|
|
|
|
|
|
|
hash160_unroll(ripemd160_block_inner_1);
|
|
|
|
|
|
|
|
#define ripemd160_block_inner_p0(i) \
|
|
|
|
ripemd160_round(i, in, vals, \
|
|
|
|
ripemd160_f0, ripemd160_f4, t);
|
|
|
|
#define ripemd160_block_inner_p1(i) \
|
|
|
|
ripemd160_round((16 + i), in, vals, \
|
|
|
|
ripemd160_f1, ripemd160_f3, t);
|
|
|
|
#define ripemd160_block_inner_p2(i) \
|
|
|
|
ripemd160_round((32 + i), in, vals, \
|
|
|
|
ripemd160_f2, ripemd160_f2, t);
|
|
|
|
#define ripemd160_block_inner_p3(i) \
|
|
|
|
ripemd160_round((48 + i), in, vals, \
|
|
|
|
ripemd160_f3, ripemd160_f1, t);
|
|
|
|
#define ripemd160_block_inner_p4(i) \
|
|
|
|
ripemd160_round((64 + i), in, vals, \
|
|
|
|
ripemd160_f4, ripemd160_f0, t);
|
|
|
|
|
|
|
|
#if !defined(PRAGMA_UNROLL)
|
|
|
|
iter_16(ripemd160_block_inner_p0);
|
|
|
|
iter_16(ripemd160_block_inner_p1);
|
|
|
|
iter_16(ripemd160_block_inner_p2);
|
|
|
|
iter_16(ripemd160_block_inner_p3);
|
|
|
|
iter_16(ripemd160_block_inner_p4);
|
|
|
|
#else
|
|
|
|
#pragma unroll 16
|
|
|
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p0(i); }
|
|
|
|
#pragma unroll 16
|
|
|
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p1(i); }
|
|
|
|
#pragma unroll 16
|
|
|
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p2(i); }
|
|
|
|
#pragma unroll 16
|
|
|
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p3(i); }
|
|
|
|
#pragma unroll 16
|
|
|
|
for (i = 0; i < 16; i++) { ripemd160_block_inner_p4(i); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
t = out[1] + vals[2] + vals[8];
|
|
|
|
out[1] = out[2] + vals[3] + vals[9];
|
|
|
|
out[2] = out[3] + vals[4] + vals[5];
|
|
|
|
out[3] = out[4] + vals[0] + vals[6];
|
|
|
|
out[4] = out[0] + vals[1] + vals[7];
|
|
|
|
out[0] = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef TEST_KERNELS
|
|
|
|
/*
|
|
|
|
* Test kernels
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Montgomery multiplication test kernel */
|
|
|
|
__kernel void
|
|
|
|
test_mul_mont(__global bignum *products_out, __global bignum *nums_in)
|
|
|
|
{
|
|
|
|
bignum a, b, c;
|
|
|
|
int o;
|
|
|
|
o = get_global_id(0);
|
|
|
|
nums_in += (2*o);
|
|
|
|
|
|
|
|
a = nums_in[0];
|
|
|
|
b = nums_in[1];
|
|
|
|
bn_mul_mont(&c, &a, &b);
|
|
|
|
products_out[o] = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* modular inversion test kernel */
|
|
|
|
__kernel void
|
|
|
|
test_mod_inverse(__global bignum *inv_out, __global bignum *nums_in,
|
|
|
|
int count)
|
|
|
|
{
|
|
|
|
bignum x, xp;
|
|
|
|
int i, o;
|
|
|
|
o = get_global_id(0) * count;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
x = nums_in[o];
|
|
|
|
bn_mod_inverse(&xp, &x);
|
|
|
|
inv_out[o++] = xp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* TEST_KERNELS */
|
|
|
|
|
|
|
|
|
|
|
|
#define ACCESS_BUNDLE 1024
|
|
|
|
#define ACCESS_STRIDE (ACCESS_BUNDLE/BN_NWORDS)
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
ec_add_grid(__global bn_word *points_out, __global bn_word *z_heap,
|
|
|
|
__global bn_word *row_in, __global bignum *col_in)
|
|
|
|
{
|
|
|
|
bignum rx, ry;
|
|
|
|
bignum x1, y1, a, b, c, d, e, z;
|
|
|
|
bn_word cy;
|
|
|
|
int i, cell, start;
|
|
|
|
|
|
|
|
/* Load the row increment point */
|
|
|
|
i = 2 * get_global_id(1);
|
|
|
|
rx = col_in[i];
|
|
|
|
ry = col_in[i+1];
|
|
|
|
|
|
|
|
cell = get_global_id(0);
|
|
|
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(cell % (ACCESS_STRIDE/2)));
|
|
|
|
|
|
|
|
#define ec_add_grid_inner_1(i) \
|
|
|
|
x1.d[i] = row_in[start + (i*ACCESS_STRIDE)];
|
|
|
|
|
|
|
|
bn_unroll(ec_add_grid_inner_1);
|
|
|
|
start += (ACCESS_STRIDE/2);
|
|
|
|
|
|
|
|
#define ec_add_grid_inner_2(i) \
|
|
|
|
y1.d[i] = row_in[start + (i*ACCESS_STRIDE)];
|
|
|
|
|
|
|
|
bn_unroll(ec_add_grid_inner_2);
|
|
|
|
|
|
|
|
bn_mod_sub(&z, &x1, &rx);
|
|
|
|
|
|
|
|
cell += (get_global_id(1) * get_global_size(0));
|
|
|
|
start = (((cell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(cell % ACCESS_STRIDE));
|
|
|
|
|
|
|
|
#define ec_add_grid_inner_3(i) \
|
|
|
|
z_heap[start + (i*ACCESS_STRIDE)] = z.d[i];
|
|
|
|
|
|
|
|
bn_unroll(ec_add_grid_inner_3);
|
|
|
|
|
|
|
|
bn_mod_sub(&b, &y1, &ry);
|
|
|
|
bn_mod_add(&c, &x1, &rx);
|
|
|
|
bn_mod_add(&d, &y1, &ry);
|
|
|
|
bn_mul_mont(&y1, &b, &b);
|
|
|
|
bn_mul_mont(&x1, &z, &z);
|
|
|
|
bn_mul_mont(&e, &c, &x1);
|
|
|
|
bn_mod_sub(&y1, &y1, &e);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This disgusting code caters to the global memory unit on
|
|
|
|
* various GPUs, by giving it a nice contiguous patch to write
|
|
|
|
* per warp/wavefront.
|
|
|
|
*/
|
|
|
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(cell % (ACCESS_STRIDE/2)));
|
|
|
|
|
|
|
|
#define ec_add_grid_inner_4(i) \
|
|
|
|
points_out[start + (i*ACCESS_STRIDE)] = y1.d[i];
|
|
|
|
|
|
|
|
bn_unroll(ec_add_grid_inner_4);
|
|
|
|
|
|
|
|
bn_mod_lshift1(&y1);
|
|
|
|
bn_mod_sub(&y1, &e, &y1);
|
|
|
|
bn_mul_mont(&y1, &y1, &b);
|
|
|
|
bn_mul_mont(&a, &x1, &z);
|
|
|
|
bn_mul_mont(&c, &d, &a);
|
|
|
|
bn_mod_sub(&y1, &y1, &c);
|
|
|
|
cy = 0;
|
|
|
|
if (bn_is_odd(y1))
|
|
|
|
cy = bn_uadd_c(&y1, &y1, modulus);
|
|
|
|
bn_rshift1(&y1);
|
|
|
|
y1.d[BN_NWORDS-1] |= (cy ? 0x80000000 : 0);
|
|
|
|
|
|
|
|
start += (ACCESS_STRIDE/2);
|
|
|
|
|
|
|
|
bn_unroll(ec_add_grid_inner_4);
|
|
|
|
}
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
heap_invert(__global bn_word *z_heap, int batch)
|
|
|
|
{
|
|
|
|
bignum a, b, c, z;
|
|
|
|
int i, off, lcell, hcell, start;
|
|
|
|
|
|
|
|
#define heap_invert_inner_load_a(j) \
|
|
|
|
a.d[j] = z_heap[start + j*ACCESS_STRIDE];
|
|
|
|
#define heap_invert_inner_load_b(j) \
|
|
|
|
b.d[j] = z_heap[start + j*ACCESS_STRIDE];
|
|
|
|
#define heap_invert_inner_load_z(j) \
|
|
|
|
z.d[j] = z_heap[start + j*ACCESS_STRIDE];
|
|
|
|
#define heap_invert_inner_store_z(j) \
|
|
|
|
z_heap[start + j*ACCESS_STRIDE] = z.d[j];
|
|
|
|
#define heap_invert_inner_store_c(j) \
|
|
|
|
z_heap[start + j*ACCESS_STRIDE] = c.d[j];
|
|
|
|
|
|
|
|
off = get_global_size(0);
|
|
|
|
lcell = get_global_id(0);
|
|
|
|
hcell = (off * batch) + lcell;
|
|
|
|
for (i = 0; i < (batch-1); i++) {
|
|
|
|
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
|
|
|
|
bn_unroll(heap_invert_inner_load_a);
|
|
|
|
|
|
|
|
lcell += off;
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
|
|
|
|
bn_unroll(heap_invert_inner_load_b);
|
|
|
|
|
|
|
|
bn_mul_mont(&z, &a, &b);
|
|
|
|
|
|
|
|
start = (((hcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(hcell % ACCESS_STRIDE));
|
|
|
|
|
|
|
|
bn_unroll(heap_invert_inner_store_z);
|
|
|
|
|
|
|
|
lcell += off;
|
|
|
|
hcell += off;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Invert the root, fix up 1/ZR -> R/Z */
|
|
|
|
bn_mod_inverse(&z, &z);
|
|
|
|
|
|
|
|
#define heap_invert_inner_1(i) \
|
|
|
|
a.d[i] = mont_rr[i];
|
|
|
|
|
|
|
|
bn_unroll(heap_invert_inner_1);
|
|
|
|
|
|
|
|
bn_mul_mont(&z, &z, &a);
|
|
|
|
bn_mul_mont(&z, &z, &a);
|
|
|
|
|
|
|
|
/* Unroll the first iteration to avoid a load/store on the root */
|
|
|
|
lcell -= (off << 1);
|
|
|
|
hcell -= (off << 1);
|
|
|
|
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
bn_unroll(heap_invert_inner_load_a);
|
|
|
|
|
|
|
|
lcell += off;
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
bn_unroll(heap_invert_inner_load_b);
|
|
|
|
|
|
|
|
bn_mul_mont(&c, &a, &z);
|
|
|
|
|
|
|
|
bn_unroll(heap_invert_inner_store_c);
|
|
|
|
|
|
|
|
bn_mul_mont(&c, &b, &z);
|
|
|
|
|
|
|
|
lcell -= off;
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
bn_unroll(heap_invert_inner_store_c);
|
|
|
|
|
|
|
|
lcell -= (off << 1);
|
|
|
|
|
|
|
|
for (i = 0; i < (batch-2); i++) {
|
|
|
|
start = (((hcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(hcell % ACCESS_STRIDE));
|
|
|
|
bn_unroll(heap_invert_inner_load_z);
|
|
|
|
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
bn_unroll(heap_invert_inner_load_a);
|
|
|
|
|
|
|
|
lcell += off;
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
bn_unroll(heap_invert_inner_load_b);
|
|
|
|
|
|
|
|
bn_mul_mont(&c, &a, &z);
|
|
|
|
|
|
|
|
bn_unroll(heap_invert_inner_store_c);
|
|
|
|
|
|
|
|
bn_mul_mont(&c, &b, &z);
|
|
|
|
|
|
|
|
lcell -= off;
|
|
|
|
start = (((lcell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(lcell % ACCESS_STRIDE));
|
|
|
|
bn_unroll(heap_invert_inner_store_c);
|
|
|
|
|
|
|
|
lcell -= (off << 1);
|
|
|
|
hcell -= off;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
hash_ec_point(uint *hash_out, __global bn_word *xy, __global bn_word *zip)
|
|
|
|
{
|
|
|
|
uint hash1[16], hash2[16];
|
|
|
|
bignum c, zi, zzi;
|
|
|
|
bn_word wh, wl;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Multiply the coordinates by the inverted Z values.
|
|
|
|
* Stash the coordinates in the hash buffer.
|
|
|
|
* SHA-2 requires big endian, and our intended hash input
|
|
|
|
* is big-endian, so swapping is unnecessary, but
|
|
|
|
* inserting the format byte in front causes a headache.
|
|
|
|
*/
|
|
|
|
#define hash_ec_point_inner_1(i) \
|
|
|
|
zi.d[i] = zip[i*ACCESS_STRIDE];
|
|
|
|
|
|
|
|
bn_unroll(hash_ec_point_inner_1);
|
|
|
|
|
|
|
|
bn_mul_mont(&zzi, &zi, &zi); /* 1 / Z^2 */
|
|
|
|
|
|
|
|
#define hash_ec_point_inner_2(i) \
|
|
|
|
c.d[i] = xy[i*ACCESS_STRIDE];
|
|
|
|
|
|
|
|
bn_unroll(hash_ec_point_inner_2);
|
|
|
|
|
|
|
|
bn_mul_mont(&c, &c, &zzi); /* X / Z^2 */
|
|
|
|
bn_from_mont(&c, &c);
|
|
|
|
|
|
|
|
wh = 0x00000004; /* POINT_CONVERSION_UNCOMPRESSED */
|
|
|
|
|
|
|
|
#define hash_ec_point_inner_3(i) \
|
|
|
|
wl = wh; \
|
|
|
|
wh = c.d[(BN_NWORDS - 1) - i]; \
|
|
|
|
hash1[i] = (wl << 24) | (wh >> 8);
|
|
|
|
|
|
|
|
bn_unroll(hash_ec_point_inner_3);
|
|
|
|
|
|
|
|
bn_mul_mont(&zzi, &zzi, &zi); /* 1 / Z^3 */
|
|
|
|
|
|
|
|
#define hash_ec_point_inner_4(i) \
|
|
|
|
c.d[i] = xy[(ACCESS_STRIDE/2) + i*ACCESS_STRIDE];
|
|
|
|
|
|
|
|
bn_unroll(hash_ec_point_inner_4);
|
|
|
|
|
|
|
|
bn_mul_mont(&c, &c, &zzi); /* Y / Z^3 */
|
|
|
|
bn_from_mont(&c, &c);
|
|
|
|
|
|
|
|
#define hash_ec_point_inner_5(i) \
|
|
|
|
wl = wh; \
|
|
|
|
wh = c.d[(BN_NWORDS - 1) - i]; \
|
|
|
|
hash1[BN_NWORDS + i] = (wl << 24) | (wh >> 8);
|
|
|
|
|
|
|
|
bn_unroll(hash_ec_point_inner_5);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the first 64 bytes of the buffer
|
|
|
|
*/
|
|
|
|
sha2_256_init(hash2);
|
|
|
|
sha2_256_block(hash2, hash1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the last byte of the buffer + SHA-2 padding
|
|
|
|
*/
|
|
|
|
hash1[0] = wh << 24 | 0x800000;
|
|
|
|
hash1[1] = 0;
|
|
|
|
hash1[2] = 0;
|
|
|
|
hash1[3] = 0;
|
|
|
|
hash1[4] = 0;
|
|
|
|
hash1[5] = 0;
|
|
|
|
hash1[6] = 0;
|
|
|
|
hash1[7] = 0;
|
|
|
|
hash1[8] = 0;
|
|
|
|
hash1[9] = 0;
|
|
|
|
hash1[10] = 0;
|
|
|
|
hash1[11] = 0;
|
|
|
|
hash1[12] = 0;
|
|
|
|
hash1[13] = 0;
|
|
|
|
hash1[14] = 0;
|
|
|
|
hash1[15] = 65 * 8;
|
|
|
|
sha2_256_block(hash2, hash1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the SHA-2 result with RIPEMD160
|
|
|
|
* Unfortunately, SHA-2 outputs big-endian, but
|
|
|
|
* RIPEMD160 expects little-endian. Need to swap!
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define hash_ec_point_inner_6(i) \
|
|
|
|
hash2[i] = bswap32(hash2[i]);
|
|
|
|
|
|
|
|
hash256_unroll(hash_ec_point_inner_6);
|
|
|
|
|
|
|
|
hash2[8] = bswap32(0x80000000);
|
|
|
|
hash2[9] = 0;
|
|
|
|
hash2[10] = 0;
|
|
|
|
hash2[11] = 0;
|
|
|
|
hash2[12] = 0;
|
|
|
|
hash2[13] = 0;
|
|
|
|
hash2[14] = 32 * 8;
|
|
|
|
hash2[15] = 0;
|
|
|
|
ripemd160_init(hash_out);
|
|
|
|
ripemd160_block(hash_out, hash2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
hash_ec_point_get(__global uint *hashes_out,
|
|
|
|
__global bn_word *points_in, __global bn_word *z_heap)
|
|
|
|
{
|
|
|
|
uint hash[5];
|
|
|
|
int i, p, cell, start;
|
|
|
|
|
|
|
|
cell = ((get_global_id(1) * get_global_size(0)) + get_global_id(0));
|
|
|
|
start = (((cell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(cell % ACCESS_STRIDE));
|
|
|
|
z_heap += start;
|
|
|
|
|
|
|
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(cell % (ACCESS_STRIDE/2)));
|
|
|
|
points_in += start;
|
|
|
|
|
|
|
|
/* Complete the coordinates and hash */
|
|
|
|
hash_ec_point(hash, points_in, z_heap);
|
|
|
|
|
|
|
|
p = get_global_size(0);
|
|
|
|
i = p * get_global_id(1);
|
|
|
|
hashes_out += 5 * (i + get_global_id(0));
|
|
|
|
|
|
|
|
/* Output the hash in proper byte-order */
|
|
|
|
#define hash_ec_point_get_inner_1(i) \
|
|
|
|
hashes_out[i] = load_le32(hash[i]);
|
|
|
|
|
|
|
|
hash160_unroll(hash_ec_point_get_inner_1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Normally this would be one function that compared two hash160s.
|
|
|
|
* This one compares a hash160 with an upper and lower bound in one
|
|
|
|
* function to work around a problem with AMD's OpenCL compiler.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
hash160_ucmp_g(uint *a, __global uint *bound)
|
|
|
|
{
|
|
|
|
uint gv;
|
|
|
|
|
|
|
|
#define hash160_ucmp_g_inner_1(i) \
|
|
|
|
gv = load_be32(bound[i]); \
|
|
|
|
if (a[i] < gv) return -1; \
|
|
|
|
if (a[i] > gv) break;
|
|
|
|
|
|
|
|
hash160_iter(hash160_ucmp_g_inner_1);
|
|
|
|
|
|
|
|
#define hash160_ucmp_g_inner_2(i) \
|
|
|
|
gv = load_be32(bound[5+i]); \
|
|
|
|
if (a[i] < gv) return 0; \
|
|
|
|
if (a[i] > gv) return 1;
|
|
|
|
|
|
|
|
hash160_iter(hash160_ucmp_g_inner_2);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
hash_ec_point_search_prefix(__global uint *found,
|
|
|
|
__global bn_word *points_in,
|
|
|
|
__global bn_word *z_heap,
|
|
|
|
__global uint *target_table, int ntargets)
|
|
|
|
{
|
|
|
|
uint hash[5];
|
|
|
|
int i, high, low, p, cell, start;
|
|
|
|
|
|
|
|
cell = ((get_global_id(1) * get_global_size(0)) + get_global_id(0));
|
|
|
|
start = (((cell / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(cell % ACCESS_STRIDE));
|
|
|
|
z_heap += start;
|
|
|
|
|
|
|
|
start = ((((2 * cell) / ACCESS_STRIDE) * ACCESS_BUNDLE) +
|
|
|
|
(cell % (ACCESS_STRIDE/2)));
|
|
|
|
points_in += start;
|
|
|
|
|
|
|
|
/* Complete the coordinates and hash */
|
|
|
|
hash_ec_point(hash, points_in, z_heap);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unconditionally byteswap the hash result, because:
|
|
|
|
* - The byte-level convention of RIPEMD160 is little-endian
|
|
|
|
* - We are comparing it in big-endian order
|
|
|
|
*/
|
|
|
|
#define hash_ec_point_search_prefix_inner_1(i) \
|
|
|
|
hash[i] = bswap32(hash[i]);
|
|
|
|
|
|
|
|
hash160_unroll(hash_ec_point_search_prefix_inner_1);
|
|
|
|
|
|
|
|
/* Binary-search the target table for the hash we just computed */
|
|
|
|
for (high = ntargets - 1, low = 0, i = high >> 1;
|
|
|
|
high >= low;
|
|
|
|
i = low + ((high - low) >> 1)) {
|
|
|
|
p = hash160_ucmp_g(hash, &target_table[10*i]);
|
|
|
|
low = (p > 0) ? (i + 1) : low;
|
|
|
|
high = (p < 0) ? (i - 1) : high;
|
|
|
|
if (p == 0) {
|
|
|
|
/* For debugging purposes, write the hash value */
|
|
|
|
found[0] = ((get_global_id(1) * get_global_size(0)) +
|
|
|
|
get_global_id(0));
|
|
|
|
found[1] = i;
|
|
|
|
|
|
|
|
#define hash_ec_point_search_prefix_inner_2(i) \
|
|
|
|
found[i+2] = load_be32(hash[i]);
|
|
|
|
|
|
|
|
hash160_unroll(hash_ec_point_search_prefix_inner_2);
|
|
|
|
high = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|