|
|
|
/*
|
|
|
|
* Vanitygen, vanity bitcoin address generator
|
|
|
|
* Copyright (C) 2011 <samr7@cs.washington.edu>
|
|
|
|
*
|
|
|
|
* Vanitygen is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU Affero General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* any later version.
|
|
|
|
*
|
|
|
|
* Vanitygen is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU Affero General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Affero General Public License
|
|
|
|
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file contains an OpenCL kernel for performing certain parts of
|
|
|
|
* the bitcoin address calculation process.
|
|
|
|
*
|
|
|
|
* Kernel: calc_addrs
|
|
|
|
*
|
|
|
|
* Inputs:
|
|
|
|
* - Row of (sequential) EC points
|
|
|
|
* - Array of column increment EC points (= rowsize * Pgenerator)
|
|
|
|
*
|
|
|
|
* Steps:
|
|
|
|
* - For each row increment value C:
|
|
|
|
* - For each row point P:
|
|
|
|
* - Compute P + C
|
|
|
|
* - Normalize and hash with SHA256 and RIPEMD160
|
|
|
|
* - Store hash value in output array
|
|
|
|
*
|
|
|
|
* Output:
|
|
|
|
* - Array of 20-byte address hash values
|
|
|
|
*
|
|
|
|
* Each instance of the kernel computes one full row. With a typical
|
|
|
|
* row size of 256 points, this makes each kernel instance very heavy.
|
|
|
|
* This tradeoff is chosen in favor of batched modular inversion, which
|
|
|
|
* substantially reduces the cost of performing modular inversion.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
/* Byte-swapping and endianness */
|
|
|
|
#define bswap32(v) \
|
|
|
|
(((v) >> 24) | (((v) >> 8) & 0xff00) | \
|
|
|
|
(((v) << 8) & 0xff0000) | ((v) << 24))
|
|
|
|
|
|
|
|
#if __ENDIAN_LITTLE__ != 1
|
|
|
|
#define load_le32(v) bswap32(v)
|
|
|
|
#define load_be32(v) (v)
|
|
|
|
#else
|
|
|
|
#define load_le32(v) (v)
|
|
|
|
#define load_be32(v) bswap32(v)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* BIGNUM mini-library
|
|
|
|
* This module deals with fixed-size 256-bit bignums.
|
|
|
|
* Where modular arithmetic is performed, the SECP256k1 prime
|
|
|
|
* modulus (below) is assumed.
|
|
|
|
*
|
|
|
|
* Methods include:
|
|
|
|
* - bn_is_zero/bn_is_one/bn_is_odd/bn_is_even/bn_is_bit_set
|
|
|
|
* - bn_rshift[1]/bn_lshift[1]
|
|
|
|
* - bn_neg
|
|
|
|
* - bn_uadd/bn_uadd_p
|
|
|
|
* - bn_usub/bn_usub_p
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef uint bn_word;
|
|
|
|
#define BN_NBITS 256
|
|
|
|
#define BN_WSHIFT 5
|
|
|
|
#define BN_WBITS (1 << BN_WSHIFT)
|
|
|
|
#define BN_NWORDS ((BN_NBITS/8) / sizeof(bn_word))
|
|
|
|
#define BN_WORDMAX 0xffffffff
|
|
|
|
|
|
|
|
#define MODULUS_BYTES \
|
|
|
|
0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, \
|
|
|
|
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
bn_word d[BN_NWORDS];
|
|
|
|
} bignum;
|
|
|
|
|
|
|
|
__constant bn_word modulus[] = { MODULUS_BYTES };
|
|
|
|
__constant bn_word bn_one[BN_NWORDS] = { 1, 0, };
|
|
|
|
__constant bignum bn_zero;
|
|
|
|
|
|
|
|
__constant bn_word mont_rr[BN_NWORDS] = { 0xe90a1, 0x7a2, 0x1, 0, };
|
|
|
|
__constant bn_word mont_n0[2] = { 0xd2253531, 0xd838091d };
|
|
|
|
|
|
|
|
|
|
|
|
#define bn_is_odd(bn) (bn.d[0] & 1)
|
|
|
|
#define bn_is_even(bn) (!bn_is_odd(bn))
|
|
|
|
#define bn_is_zero(bn) (!bn.d[0] && !bn.d[1] && !bn.d[2] && \
|
|
|
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \
|
|
|
|
!bn.d[6] && !bn.d[7])
|
|
|
|
#define bn_is_one(bn) ((bn.d[0] == 1) && !bn.d[1] && !bn.d[2] && \
|
|
|
|
!bn.d[3] && !bn.d[4] && !bn.d[5] && \
|
|
|
|
!bn.d[6] && !bn.d[7])
|
|
|
|
#define bn_is_bit_set(bn, n) \
|
|
|
|
((((bn_word*)&bn)[n >> BN_WSHIFT]) & (1 << (n & (BN_WBITS-1))))
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bitwise shift
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_lshift1(bignum *bn)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = (BN_NWORDS - 1); i > 0; i--)
|
|
|
|
bn->d[i] = (bn->d[i] << 1) | (bn->d[i-1] >> 31);
|
|
|
|
bn->d[i] <<= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_rshift(bignum *bn, int shift)
|
|
|
|
{
|
|
|
|
int i, wd, iws, iwr;
|
|
|
|
bn_word ihw, ilw;
|
|
|
|
iws = (shift & (BN_WBITS-1));
|
|
|
|
iwr = BN_WBITS - iws;
|
|
|
|
wd = (shift >> BN_WSHIFT);
|
|
|
|
ihw = (wd < BN_WBITS) ? bn->d[wd] : 0;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0, wd++; i < (BN_NWORDS-1); i++, wd++) {
|
|
|
|
ilw = ihw;
|
|
|
|
ihw = (wd < BN_WBITS) ? bn->d[wd] : 0;
|
|
|
|
bn->d[i] = (ilw >> iws) | (ihw << iwr);
|
|
|
|
}
|
|
|
|
bn->d[i] = (ihw >> iws);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_rshift1(bignum *bn)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < (BN_NWORDS - 1); i++)
|
|
|
|
bn->d[i] = (bn->d[i+1] << 31) | (bn->d[i] >> 1);
|
|
|
|
bn->d[i] >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unsigned comparison
|
|
|
|
*/
|
|
|
|
|
|
|
|
int
|
|
|
|
bn_ucmp(bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = (BN_NWORDS - 1); i >= 0; i--) {
|
|
|
|
if (a->d[i] < b->d[i]) return -1;
|
|
|
|
if (a->d[i] > b->d[i]) return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
bn_ucmp_c(bignum *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = (BN_NWORDS - 1); i >= 0; i--) {
|
|
|
|
if (a->d[i] < b[i]) return -1;
|
|
|
|
if (a->d[i] > b[i]) return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Negate
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_neg(bignum *n)
|
|
|
|
{
|
|
|
|
int i, c;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0, c = 1; i < BN_NWORDS; i++)
|
|
|
|
c = (n->d[i] = (~n->d[i]) + c) ? 0 : c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add/subtract
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define bn_add_word(r, a, b, t, c) do { \
|
|
|
|
t = a + b; \
|
|
|
|
c = (t < a) ? 1 : 0; \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define bn_addc_word(r, a, b, t, c) do { \
|
|
|
|
t = a + b + c; \
|
|
|
|
c = (t < a) ? 1 : ((c & (t == a)) ? 1 : 0); \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_uadd(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
int i;
|
|
|
|
bn_add_word(r->d[0], a->d[0], b->d[0], t, c);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 1; i < BN_NWORDS; i++)
|
|
|
|
bn_addc_word(r->d[i], a->d[i], b->d[i], t, c);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_uadd_c(bignum *r, bignum *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
int i;
|
|
|
|
bn_add_word(r->d[0], a->d[0], b[0], t, c);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 1; i < BN_NWORDS; i++)
|
|
|
|
bn_addc_word(r->d[i], a->d[i], b[i], t, c);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define bn_sub_word(r, a, b, t, c) do { \
|
|
|
|
t = a - b; \
|
|
|
|
c = (a < b) ? 1 : 0; \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define bn_subb_word(r, a, b, t, c) do { \
|
|
|
|
t = a - (b + c); \
|
|
|
|
c = (!(a) && c) ? 1 : 0; \
|
|
|
|
c |= (a < b) ? 1 : 0; \
|
|
|
|
r = t; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_usub(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
int i;
|
|
|
|
bn_sub_word(r->d[0], a->d[0], b->d[0], t, c);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 1; i < BN_NWORDS; i++)
|
|
|
|
bn_subb_word(r->d[i], a->d[i], b->d[i], t, c);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_word
|
|
|
|
bn_usub_c(bignum *r, bignum *a, __constant bn_word *b)
|
|
|
|
{
|
|
|
|
bn_word t, c = 0;
|
|
|
|
int i;
|
|
|
|
bn_sub_word(r->d[0], a->d[0], b[0], t, c);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 1; i < BN_NWORDS; i++)
|
|
|
|
bn_subb_word(r->d[i], a->d[i], b[i], t, c);
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Modular add/sub
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_add(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
if (bn_uadd(r, a, b) ||
|
|
|
|
(bn_ucmp_c(r, modulus) >= 0))
|
|
|
|
bn_usub_c(r, r, modulus);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_sub(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
if (bn_usub(r, a, b))
|
|
|
|
bn_uadd_c(r, r, modulus);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_lshift1(bignum *bn)
|
|
|
|
{
|
|
|
|
bn_word c = (bn->d[BN_NWORDS-1] & 0x80000000);
|
|
|
|
bn_lshift1(bn);
|
|
|
|
if (c || (bn_ucmp_c(bn, modulus) >= 0))
|
|
|
|
bn_usub_c(bn, bn, modulus);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Montgomery multiplication
|
|
|
|
*
|
|
|
|
* This includes normal multiplication of two "Montgomeryized"
|
|
|
|
* bignums, and bn_from_mont for de-Montgomeryizing a bignum.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define bn_mul_word(r, a, w, c, p, s) do { \
|
|
|
|
p = mul_hi(a, w); \
|
|
|
|
r = (a * w) + c; \
|
|
|
|
c = (r < c) ? p + 1 : p; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define bn_mul_add_word(r, a, w, c, p, s) do { \
|
|
|
|
p = mul_hi(a, w); \
|
|
|
|
s = r + c; \
|
|
|
|
r = (a * w) + s; \
|
|
|
|
c = (s < c) ? p + 1 : p; \
|
|
|
|
if (r < s) c++; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mul_mont(bignum *r, bignum *a, bignum *b)
|
|
|
|
{
|
|
|
|
bignum t;
|
|
|
|
bn_word tea, teb, c, p, s, m;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
c = 0;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (j = 0; j < BN_NWORDS; j++)
|
|
|
|
bn_mul_word(t.d[j], a->d[j], b->d[0], c, p, s);
|
|
|
|
tea = c;
|
|
|
|
teb = 0;
|
|
|
|
|
|
|
|
c = 0;
|
|
|
|
m = t.d[0] * mont_n0[0];
|
|
|
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (j = 1; j < BN_NWORDS; j++) {
|
|
|
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s);
|
|
|
|
t.d[j-1] = t.d[j];
|
|
|
|
}
|
|
|
|
t.d[BN_NWORDS-1] = tea + c;
|
|
|
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0);
|
|
|
|
|
|
|
|
for (i = 1; i < BN_NWORDS; i++) {
|
|
|
|
c = 0;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (j = 0; j < BN_NWORDS; j++)
|
|
|
|
bn_mul_add_word(t.d[j], a->d[j], b->d[i], c, p, s);
|
|
|
|
tea += c;
|
|
|
|
teb = ((tea < c) ? 1 : 0);
|
|
|
|
|
|
|
|
c = 0;
|
|
|
|
m = t.d[0] * mont_n0[0];
|
|
|
|
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (j = 1; j < BN_NWORDS; j++) {
|
|
|
|
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s);
|
|
|
|
t.d[j-1] = t.d[j];
|
|
|
|
}
|
|
|
|
t.d[BN_NWORDS-1] = tea + c;
|
|
|
|
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tea || (t.d[BN_NWORDS-1] >= modulus[7])) {
|
|
|
|
c = bn_usub_c(r, &t, modulus);
|
|
|
|
if (tea || !c)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
*r = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_from_mont(bignum *rb, bignum *b)
|
|
|
|
{
|
|
|
|
#define WORKSIZE ((2*BN_NWORDS) + 1)
|
|
|
|
bn_word r[WORKSIZE];
|
|
|
|
bn_word m, c, p, s;
|
|
|
|
int i, j, top;
|
|
|
|
/* Copy the input to the working area */
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < BN_NWORDS; i++)
|
|
|
|
r[i] = b->d[i];
|
|
|
|
/* Zero the upper words */
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = BN_NWORDS; i < WORKSIZE; i++)
|
|
|
|
r[i] = 0;
|
|
|
|
/* Multiply (long) by modulus */
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < BN_NWORDS; i++) {
|
|
|
|
m = r[i] * mont_n0[0];
|
|
|
|
c = 0;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (j = 0; j < BN_NWORDS; j++)
|
|
|
|
bn_mul_add_word(r[i+j], modulus[j], m, c, p, s);
|
|
|
|
r[BN_NWORDS + i] += c;
|
|
|
|
if (r[BN_NWORDS + i] < c) {
|
|
|
|
if (++r[BN_NWORDS + i + 1] == 0)
|
|
|
|
++r[BN_NWORDS + i + 2]; /* The end..? */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (top = WORKSIZE - 1; ((top > BN_NWORDS) & (r[top] == 0)); top--);
|
|
|
|
if (top <= BN_NWORDS) {
|
|
|
|
*rb = bn_zero;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
c = 0;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (j = 0; j < BN_NWORDS; j++)
|
|
|
|
bn_subb_word(rb->d[j], r[BN_NWORDS + j], modulus[j], p, c);
|
|
|
|
if (c) {
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (j = 0; j < BN_NWORDS; j++)
|
|
|
|
rb->d[j] = r[BN_NWORDS + j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Modular inversion
|
|
|
|
*/
|
|
|
|
|
|
|
|
void
|
|
|
|
bn_mod_inverse(bignum *r, bignum *n)
|
|
|
|
{
|
|
|
|
bignum a, b, x, y;
|
|
|
|
int shift;
|
|
|
|
bn_word xc, yc;
|
|
|
|
for (shift = 0; shift < BN_NWORDS; shift++) {
|
|
|
|
a.d[shift] = modulus[shift];
|
|
|
|
x.d[shift] = 0;
|
|
|
|
y.d[shift] = 0;
|
|
|
|
}
|
|
|
|
b = *n;
|
|
|
|
x.d[0] = 1;
|
|
|
|
xc = 0;
|
|
|
|
yc = 0;
|
|
|
|
while (!bn_is_zero(b)) {
|
|
|
|
shift = 0;
|
|
|
|
while (!bn_is_bit_set(b, shift)) {
|
|
|
|
shift++;
|
|
|
|
if (bn_is_odd(x))
|
|
|
|
xc += bn_uadd_c(&x, &x, modulus);
|
|
|
|
bn_rshift1(&x);
|
|
|
|
x.d[7] |= (xc << 31);
|
|
|
|
xc >>= 1;
|
|
|
|
}
|
|
|
|
if (shift)
|
|
|
|
bn_rshift(&b, shift);
|
|
|
|
|
|
|
|
shift = 0;
|
|
|
|
while (!bn_is_bit_set(a, shift)) {
|
|
|
|
shift++;
|
|
|
|
if (bn_is_odd(y))
|
|
|
|
yc += bn_uadd_c(&y, &y, modulus);
|
|
|
|
bn_rshift1(&y);
|
|
|
|
y.d[7] |= (yc << 31);
|
|
|
|
yc >>= 1;
|
|
|
|
}
|
|
|
|
if (shift)
|
|
|
|
bn_rshift(&a, shift);
|
|
|
|
|
|
|
|
if (bn_ucmp(&b, &a) >= 0) {
|
|
|
|
xc += yc + bn_uadd(&x, &x, &y);
|
|
|
|
bn_usub(&b, &b, &a);
|
|
|
|
} else {
|
|
|
|
yc += xc + bn_uadd(&y, &y, &x);
|
|
|
|
bn_usub(&a, &a, &b);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!bn_is_one(a)) {
|
|
|
|
/* no modular inverse */
|
|
|
|
*r = bn_zero;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Compute y % m as cheaply as possible */
|
|
|
|
while (yc < 0x80000000)
|
|
|
|
yc -= bn_usub_c(&y, &y, modulus);
|
|
|
|
bn_neg(&y);
|
|
|
|
*r = y;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HASH FUNCTIONS
|
|
|
|
*
|
|
|
|
* BYTE ORDER NOTE: None of the hash functions below deal with byte
|
|
|
|
* order. The caller is expected to be aware of this when it stuffs
|
|
|
|
* data into in the native integer.
|
|
|
|
*
|
|
|
|
* NOTE #2: Endianness of the OpenCL device makes no difference here.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SHA-2 256
|
|
|
|
*
|
|
|
|
* CAUTION: Input buffer will be overwritten/mangled.
|
|
|
|
* Data expected in big-endian format.
|
|
|
|
* This implementation is designed for space efficiency more than
|
|
|
|
* raw speed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
__constant uint sha2_init[8] = {
|
|
|
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
|
|
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
|
|
|
};
|
|
|
|
|
|
|
|
__constant uint sha2_k[64] = {
|
|
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
|
|
};
|
|
|
|
|
|
|
|
void
|
|
|
|
sha2_256_init(uint *out)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
out[i] = sha2_init[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The state variable remapping is really contorted */
|
|
|
|
#define sha2_stvar(vals, i, v) vals[(64+v-i) % 8]
|
|
|
|
|
|
|
|
void
|
|
|
|
sha2_256_block(uint *out, uint *in)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
uint state[8], s0, s1, t1, t2;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
state[i] = out[i];
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll 64
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
|
|
if (i >= 16) {
|
|
|
|
/* Advance the input window */
|
|
|
|
t1 = in[(i + 1) % 16];
|
|
|
|
t2 = in[(i + 14) % 16];
|
|
|
|
in[i % 16] += (in[(i + 9) % 16] +
|
|
|
|
(rotate(t1, 25U) ^ rotate(t1, 14U) ^ (t1 >> 3)) +
|
|
|
|
(rotate(t2, 15U) ^ rotate(t2, 13U) ^ (t2 >> 10)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute the t1, t2 augmentations */
|
|
|
|
t1 = sha2_stvar(state, i, 4);
|
|
|
|
t2 = sha2_stvar(state, i, 0);
|
|
|
|
s0 = (rotate(t2, 30U) ^ rotate(t2, 19U) ^ rotate(t2, 10U));
|
|
|
|
s1 = (rotate(t1, 26U) ^ rotate(t1, 21U) ^ rotate(t1, 7U));
|
|
|
|
|
|
|
|
t1 = (sha2_stvar(state, i, 7) + s1 + sha2_k[i] + in[i % 16] +
|
|
|
|
((t1 & sha2_stvar(state, i, 5)) ^
|
|
|
|
(~t1 & sha2_stvar(state, i, 6))));
|
|
|
|
t2 = s0 + ((t2 & sha2_stvar(state, i, 1)) ^
|
|
|
|
(t2 & sha2_stvar(state, i, 2)) ^
|
|
|
|
(sha2_stvar(state, i, 1) & sha2_stvar(state, i, 2)));
|
|
|
|
|
|
|
|
sha2_stvar(state, i, 3) += t1;
|
|
|
|
sha2_stvar(state, i, 7) = t1 + t2;
|
|
|
|
}
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
out[i] += state[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RIPEMD160
|
|
|
|
*
|
|
|
|
* Data expected in little-endian format.
|
|
|
|
*/
|
|
|
|
|
|
|
|
__constant uint ripemd160_iv[] = {
|
|
|
|
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 };
|
|
|
|
__constant uint ripemd160_k[] = {
|
|
|
|
0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E };
|
|
|
|
__constant uint ripemd160_kp[] = {
|
|
|
|
0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000 };
|
|
|
|
__constant uchar ripemd160_ws[] = {
|
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
|
|
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
|
|
|
|
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
|
|
|
|
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
|
|
|
|
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13,
|
|
|
|
};
|
|
|
|
__constant uchar ripemd160_wsp[] = {
|
|
|
|
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
|
|
|
|
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
|
|
|
|
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
|
|
|
|
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
|
|
|
|
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
|
|
|
|
};
|
|
|
|
__constant uchar ripemd160_rl[] = {
|
|
|
|
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
|
|
|
|
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
|
|
|
|
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
|
|
|
|
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
|
|
|
|
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6,
|
|
|
|
};
|
|
|
|
__constant uchar ripemd160_rlp[] = {
|
|
|
|
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
|
|
|
|
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
|
|
|
|
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
|
|
|
|
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
|
|
|
|
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
|
|
|
|
};
|
|
|
|
|
|
|
|
#define ripemd160_val(v, i, n) (v)[(80+(n)-(i)) % 5]
|
|
|
|
#define ripemd160_valp(v, i, n) (v)[5 + ((80+(n)-(i)) % 5)]
|
|
|
|
#define ripemd160_f0(x, y, z) (x ^ y ^ z)
|
|
|
|
#define ripemd160_f1(x, y, z) ((x & y) | (~x & z))
|
|
|
|
#define ripemd160_f2(x, y, z) ((x | ~y) ^ z)
|
|
|
|
#define ripemd160_f3(x, y, z) ((x & z) | (y & ~z))
|
|
|
|
#define ripemd160_f4(x, y, z) (x ^ (y | ~z))
|
|
|
|
#define ripemd160_round(i, in, vals, f, fp, t) do { \
|
|
|
|
ripemd160_val(vals, i, 0) = \
|
|
|
|
rotate(ripemd160_val(vals, i, 0) + \
|
|
|
|
f(ripemd160_val(vals, i, 1), \
|
|
|
|
ripemd160_val(vals, i, 2), \
|
|
|
|
ripemd160_val(vals, i, 3)) + \
|
|
|
|
in[ripemd160_ws[i]] + \
|
|
|
|
ripemd160_k[i / 16], \
|
|
|
|
(uint)ripemd160_rl[i]) + \
|
|
|
|
ripemd160_val(vals, i, 4); \
|
|
|
|
ripemd160_val(vals, i, 2) = \
|
|
|
|
rotate(ripemd160_val(vals, i, 2), 10U); \
|
|
|
|
ripemd160_valp(vals, i, 0) = \
|
|
|
|
rotate(ripemd160_valp(vals, i, 0) + \
|
|
|
|
fp(ripemd160_valp(vals, i, 1), \
|
|
|
|
ripemd160_valp(vals, i, 2), \
|
|
|
|
ripemd160_valp(vals, i, 3)) + \
|
|
|
|
in[ripemd160_wsp[i]] + \
|
|
|
|
ripemd160_kp[i / 16], \
|
|
|
|
(uint)ripemd160_rlp[i]) + \
|
|
|
|
ripemd160_valp(vals, i, 4); \
|
|
|
|
ripemd160_valp(vals, i, 2) = \
|
|
|
|
rotate(ripemd160_valp(vals, i, 2), 10U); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
void
|
|
|
|
ripemd160_init(uint *out)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for(i = 0; i < 5; i++)
|
|
|
|
out[i] = ripemd160_iv[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
ripemd160_block(uint *out, uint *in)
|
|
|
|
{
|
|
|
|
uint vals[10], t;
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 5; i++)
|
|
|
|
vals[i] = vals[i + 5] = out[i];
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 16; i++)
|
|
|
|
ripemd160_round(i, in, vals,
|
|
|
|
ripemd160_f0, ripemd160_f4, t);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 16; i < 32; i++)
|
|
|
|
ripemd160_round(i, in, vals,
|
|
|
|
ripemd160_f1, ripemd160_f3, t);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 32; i < 48; i++)
|
|
|
|
ripemd160_round(i, in, vals,
|
|
|
|
ripemd160_f2, ripemd160_f2, t);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 48; i < 64; i++)
|
|
|
|
ripemd160_round(i, in, vals,
|
|
|
|
ripemd160_f3, ripemd160_f1, t);
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 64; i < 80; i++)
|
|
|
|
ripemd160_round(i, in, vals,
|
|
|
|
ripemd160_f4, ripemd160_f0, t);
|
|
|
|
t = out[1] + vals[2] + vals[8];
|
|
|
|
out[1] = out[2] + vals[3] + vals[9];
|
|
|
|
out[2] = out[3] + vals[4] + vals[5];
|
|
|
|
out[3] = out[4] + vals[0] + vals[6];
|
|
|
|
out[4] = out[0] + vals[1] + vals[7];
|
|
|
|
out[0] = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef TEST_KERNELS
|
|
|
|
/*
|
|
|
|
* Test kernels
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Montgomery multiplication test kernel */
|
|
|
|
__kernel void
|
|
|
|
test_mul_mont(__global bignum *products_out, __global bignum *nums_in)
|
|
|
|
{
|
|
|
|
bignum a, b, c;
|
|
|
|
int o;
|
|
|
|
o = get_global_id(0);
|
|
|
|
nums_in += (2*o);
|
|
|
|
|
|
|
|
a = nums_in[0];
|
|
|
|
b = nums_in[1];
|
|
|
|
bn_mul_mont(&c, &a, &b);
|
|
|
|
products_out[o] = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* modular inversion test kernel */
|
|
|
|
__kernel void
|
|
|
|
test_mod_inverse(__global bignum *inv_out, __global bignum *nums_in,
|
|
|
|
int count)
|
|
|
|
{
|
|
|
|
bignum x, xp;
|
|
|
|
int i, o;
|
|
|
|
o = get_global_id(0) * count;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
|
|
x = nums_in[o];
|
|
|
|
bn_mod_inverse(&xp, &x);
|
|
|
|
inv_out[o++] = xp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* TEST_KERNELS */
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
__kernel void
|
|
|
|
calc_addrs(__global uint *hashes_out,
|
|
|
|
__global bignum *z_heap, __global bignum *point_tmp,
|
|
|
|
__global bignum *row_in, __global bignum *col_in, int ncols)
|
|
|
|
{
|
|
|
|
uint hash1[16];
|
|
|
|
uint hash2[16];
|
|
|
|
uint wl, wh;
|
|
|
|
bignum rx, ry;
|
|
|
|
bignum x1, y1, a, b, c, d, e, z;
|
|
|
|
bn_word cy;
|
|
|
|
int i, o;
|
|
|
|
|
|
|
|
/* Load the row increment point */
|
|
|
|
o = get_global_id(0);
|
|
|
|
rx = col_in[2*o];
|
|
|
|
ry = col_in[(2*o) + 1];
|
|
|
|
hashes_out += (o * 5 * ncols);
|
|
|
|
z_heap += (o * 2 * ncols);
|
|
|
|
point_tmp += (o * 2 * ncols);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Perform the EC point add.
|
|
|
|
* Add the row increment to all row points.
|
|
|
|
* Save the X,Y in the point temporary space.
|
|
|
|
* Save the Z in the z_heap for modular inversion.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < ncols; i++) {
|
|
|
|
x1 = row_in[(2*i)];
|
|
|
|
y1 = row_in[(2*i) + 1];
|
|
|
|
|
|
|
|
bn_mod_sub(&z, &x1, &rx);
|
|
|
|
z_heap[(ncols - 1) + i] = z;
|
|
|
|
|
|
|
|
bn_mod_sub(&b, &y1, &ry);
|
|
|
|
bn_mod_add(&c, &x1, &rx);
|
|
|
|
bn_mod_add(&d, &y1, &ry);
|
|
|
|
bn_mul_mont(&y1, &b, &b);
|
|
|
|
bn_mul_mont(&x1, &z, &z);
|
|
|
|
bn_mul_mont(&e, &c, &x1);
|
|
|
|
bn_mod_sub(&y1, &y1, &e);
|
|
|
|
point_tmp[2*i] = y1;
|
|
|
|
bn_mod_lshift1(&y1);
|
|
|
|
bn_mod_sub(&y1, &e, &y1);
|
|
|
|
bn_mul_mont(&y1, &y1, &b);
|
|
|
|
bn_mul_mont(&a, &x1, &z);
|
|
|
|
bn_mul_mont(&c, &d, &a);
|
|
|
|
bn_mod_sub(&y1, &y1, &c);
|
|
|
|
cy = 0;
|
|
|
|
if (bn_is_odd(y1))
|
|
|
|
cy = bn_uadd_c(&y1, &y1, modulus);
|
|
|
|
bn_rshift1(&y1);
|
|
|
|
y1.d[BN_NWORDS-1] |= (cy ? 0x80000000 : 0);
|
|
|
|
point_tmp[(2*i)+1] = y1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute the product hierarchy in z_heap */
|
|
|
|
for (i = ncols - 1; i > 0; i--) {
|
|
|
|
a = z_heap[(i*2) - 1];
|
|
|
|
b = z_heap[(i*2)];
|
|
|
|
bn_mul_mont(&z, &a, &b);
|
|
|
|
z_heap[i-1] = z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Invert the root, fix up 1/ZR -> R/Z */
|
|
|
|
z = z_heap[0];
|
|
|
|
bn_mod_inverse(&z, &z);
|
|
|
|
|
|
|
|
for (i = 0; i < BN_NWORDS; i++)
|
|
|
|
a.d[i] = mont_rr[i];
|
|
|
|
bn_mul_mont(&z, &z, &a);
|
|
|
|
bn_mul_mont(&z, &z, &a);
|
|
|
|
z_heap[0] = z;
|
|
|
|
|
|
|
|
for (i = 1; i < ncols; i++) {
|
|
|
|
a = z_heap[i - 1];
|
|
|
|
b = z_heap[(i*2) - 1];
|
|
|
|
c = z_heap[i*2];
|
|
|
|
bn_mul_mont(&z, &a, &c);
|
|
|
|
z_heap[(i*2) - 1] = z;
|
|
|
|
bn_mul_mont(&z, &a, &b);
|
|
|
|
z_heap[i*2] = z;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < ncols; i++) {
|
|
|
|
/*
|
|
|
|
* Multiply the coordinates by the inverted Z values.
|
|
|
|
* Stash the coordinates in the hash buffer.
|
|
|
|
* SHA-2 requires big endian, and our intended hash input
|
|
|
|
* is big-endian, so swapping is unnecessary, but
|
|
|
|
* inserting the format byte in front causes a headache.
|
|
|
|
*/
|
|
|
|
a = z_heap[(ncols - 1) + i];
|
|
|
|
bn_mul_mont(&b, &a, &a); /* Z^2 */
|
|
|
|
x1 = point_tmp[2*i];
|
|
|
|
bn_mul_mont(&x1, &x1, &b); /* X / Z^2 */
|
|
|
|
bn_from_mont(&x1, &x1);
|
|
|
|
|
|
|
|
wh = 0x00000004; /* POINT_CONVERSION_UNCOMPRESSED */
|
|
|
|
for (o = 0; o < BN_NWORDS; o++) {
|
|
|
|
wl = wh;
|
|
|
|
wh = x1.d[(BN_NWORDS - 1) - o];
|
|
|
|
hash1[o] = (wl << 24) | (wh >> 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_mul_mont(&a, &a, &b); /* Z^3 */
|
|
|
|
y1 = point_tmp[(2*i)+1];
|
|
|
|
bn_mul_mont(&y1, &y1, &a); /* Y / Z^3 */
|
|
|
|
bn_from_mont(&y1, &y1);
|
|
|
|
|
|
|
|
for (o = 0; o < BN_NWORDS; o++) {
|
|
|
|
wl = wh;
|
|
|
|
wh = y1.d[(BN_NWORDS - 1) - o];
|
|
|
|
hash1[BN_NWORDS + o] = (wl << 24) | (wh >> 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the first 64 bytes of the buffer
|
|
|
|
*/
|
|
|
|
sha2_256_init(hash2);
|
|
|
|
sha2_256_block(hash2, hash1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the last byte of the buffer + SHA-2 padding
|
|
|
|
*/
|
|
|
|
hash1[0] = wh << 24 | 0x800000;
|
|
|
|
hash1[1] = 0;
|
|
|
|
hash1[2] = 0;
|
|
|
|
hash1[3] = 0;
|
|
|
|
hash1[4] = 0;
|
|
|
|
hash1[5] = 0;
|
|
|
|
hash1[6] = 0;
|
|
|
|
hash1[7] = 0;
|
|
|
|
hash1[8] = 0;
|
|
|
|
hash1[9] = 0;
|
|
|
|
hash1[10] = 0;
|
|
|
|
hash1[11] = 0;
|
|
|
|
hash1[12] = 0;
|
|
|
|
hash1[13] = 0;
|
|
|
|
hash1[14] = 0;
|
|
|
|
hash1[15] = 65 * 8;
|
|
|
|
sha2_256_block(hash2, hash1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the SHA-2 result with RIPEMD160
|
|
|
|
* Unfortunately, SHA-2 outputs big-endian, but
|
|
|
|
* RIPEMD160 expects little-endian. Need to swap!
|
|
|
|
*/
|
|
|
|
for (o = 0; o < 8; o++)
|
|
|
|
hash2[o] = bswap32(hash2[o]);
|
|
|
|
hash2[8] = bswap32(0x80000000);
|
|
|
|
hash2[9] = 0;
|
|
|
|
hash2[10] = 0;
|
|
|
|
hash2[11] = 0;
|
|
|
|
hash2[12] = 0;
|
|
|
|
hash2[13] = 0;
|
|
|
|
hash2[14] = 32 * 8;
|
|
|
|
hash2[15] = 0;
|
|
|
|
ripemd160_init(hash1);
|
|
|
|
ripemd160_block(hash1, hash2);
|
|
|
|
|
|
|
|
/* Copy the hash to the output buffer */
|
|
|
|
for (o = 0; o < 5; o++)
|
|
|
|
*(hashes_out++) = hash1[o];
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
ec_add_grid(__global bignum *points_out, __global bignum *z_heap,
|
|
|
|
__global bignum *row_in, __global bignum *col_in)
|
|
|
|
{
|
|
|
|
bignum rx, ry;
|
|
|
|
bignum x1, y1, a, b, c, d, e, z;
|
|
|
|
bn_word cy;
|
|
|
|
int i, o, colinc;
|
|
|
|
|
|
|
|
/* Load the row increment point */
|
|
|
|
o = get_global_id(1);
|
|
|
|
colinc = 2 * o * get_global_size(0);
|
|
|
|
rx = col_in[2*o];
|
|
|
|
ry = col_in[(2*o) + 1];
|
|
|
|
z_heap += colinc;
|
|
|
|
|
|
|
|
i = get_global_id(0);
|
|
|
|
o = get_global_size(0);
|
|
|
|
x1 = row_in[(2*i)];
|
|
|
|
y1 = row_in[(2*i) + 1];
|
|
|
|
|
|
|
|
bn_mod_sub(&z, &x1, &rx);
|
|
|
|
bn_mod_sub(&b, &y1, &ry);
|
|
|
|
bn_mod_add(&c, &x1, &rx);
|
|
|
|
bn_mod_add(&d, &y1, &ry);
|
|
|
|
bn_mul_mont(&y1, &b, &b);
|
|
|
|
bn_mul_mont(&x1, &z, &z);
|
|
|
|
bn_mul_mont(&e, &c, &x1);
|
|
|
|
bn_mod_sub(&y1, &y1, &e);
|
|
|
|
points_out[colinc + 2*i] = y1;
|
|
|
|
bn_mod_lshift1(&y1);
|
|
|
|
bn_mod_sub(&y1, &e, &y1);
|
|
|
|
bn_mul_mont(&y1, &y1, &b);
|
|
|
|
bn_mul_mont(&a, &x1, &z);
|
|
|
|
bn_mul_mont(&c, &d, &a);
|
|
|
|
bn_mod_sub(&y1, &y1, &c);
|
|
|
|
cy = 0;
|
|
|
|
if (bn_is_odd(y1))
|
|
|
|
cy = bn_uadd_c(&y1, &y1, modulus);
|
|
|
|
bn_rshift1(&y1);
|
|
|
|
y1.d[BN_NWORDS-1] |= (cy ? 0x80000000 : 0);
|
|
|
|
points_out[colinc + (2*i) + 1] = y1;
|
|
|
|
z_heap[(o-1) + i] = z;
|
|
|
|
}
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
heap_invert(__global bignum *z_heap, int ncols)
|
|
|
|
{
|
|
|
|
bignum a, b, c, z;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
i = get_global_id(0);
|
|
|
|
z_heap += (2 * i * ncols);
|
|
|
|
|
|
|
|
/* Compute the product hierarchy in z_heap */
|
|
|
|
for (i = ncols - 1; i > 0; i--) {
|
|
|
|
a = z_heap[(i*2) - 1];
|
|
|
|
b = z_heap[(i*2)];
|
|
|
|
bn_mul_mont(&z, &a, &b);
|
|
|
|
z_heap[i-1] = z;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Invert the root, fix up 1/ZR -> R/Z */
|
|
|
|
bn_mod_inverse(&z, &z);
|
|
|
|
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < BN_NWORDS; i++)
|
|
|
|
a.d[i] = mont_rr[i];
|
|
|
|
bn_mul_mont(&z, &z, &a);
|
|
|
|
bn_mul_mont(&z, &z, &a);
|
|
|
|
z_heap[0] = z;
|
|
|
|
|
|
|
|
for (i = 1; i < ncols; i++) {
|
|
|
|
a = z_heap[i - 1];
|
|
|
|
b = z_heap[(i*2) - 1];
|
|
|
|
c = z_heap[i*2];
|
|
|
|
bn_mul_mont(&z, &a, &c);
|
|
|
|
z_heap[(i*2) - 1] = z;
|
|
|
|
bn_mul_mont(&z, &a, &b);
|
|
|
|
z_heap[i*2] = z;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
hash_ec_point(uint *hash_out, __global bignum *xy, __global bignum *zip)
|
|
|
|
{
|
|
|
|
uint hash1[16], hash2[16];
|
|
|
|
bignum c, zi, zzi;
|
|
|
|
bn_word wh, wl;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Multiply the coordinates by the inverted Z values.
|
|
|
|
* Stash the coordinates in the hash buffer.
|
|
|
|
* SHA-2 requires big endian, and our intended hash input
|
|
|
|
* is big-endian, so swapping is unnecessary, but
|
|
|
|
* inserting the format byte in front causes a headache.
|
|
|
|
*/
|
|
|
|
zi = zip[0];
|
|
|
|
bn_mul_mont(&zzi, &zi, &zi); /* 1 / Z^2 */
|
|
|
|
c = xy[0];
|
|
|
|
bn_mul_mont(&c, &c, &zzi); /* X / Z^2 */
|
|
|
|
bn_from_mont(&c, &c);
|
|
|
|
|
|
|
|
wh = 0x00000004; /* POINT_CONVERSION_UNCOMPRESSED */
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < BN_NWORDS; i++) {
|
|
|
|
wl = wh;
|
|
|
|
wh = c.d[(BN_NWORDS - 1) - i];
|
|
|
|
hash1[i] = (wl << 24) | (wh >> 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
bn_mul_mont(&zzi, &zzi, &zi); /* 1 / Z^3 */
|
|
|
|
c = xy[1];
|
|
|
|
bn_mul_mont(&c, &c, &zzi); /* Y / Z^3 */
|
|
|
|
bn_from_mont(&c, &c);
|
|
|
|
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < BN_NWORDS; i++) {
|
|
|
|
wl = wh;
|
|
|
|
wh = c.d[(BN_NWORDS - 1) - i];
|
|
|
|
hash1[BN_NWORDS + i] = (wl << 24) | (wh >> 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the first 64 bytes of the buffer
|
|
|
|
*/
|
|
|
|
sha2_256_init(hash2);
|
|
|
|
sha2_256_block(hash2, hash1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the last byte of the buffer + SHA-2 padding
|
|
|
|
*/
|
|
|
|
hash1[0] = wh << 24 | 0x800000;
|
|
|
|
hash1[1] = 0;
|
|
|
|
hash1[2] = 0;
|
|
|
|
hash1[3] = 0;
|
|
|
|
hash1[4] = 0;
|
|
|
|
hash1[5] = 0;
|
|
|
|
hash1[6] = 0;
|
|
|
|
hash1[7] = 0;
|
|
|
|
hash1[8] = 0;
|
|
|
|
hash1[9] = 0;
|
|
|
|
hash1[10] = 0;
|
|
|
|
hash1[11] = 0;
|
|
|
|
hash1[12] = 0;
|
|
|
|
hash1[13] = 0;
|
|
|
|
hash1[14] = 0;
|
|
|
|
hash1[15] = 65 * 8;
|
|
|
|
sha2_256_block(hash2, hash1);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash the SHA-2 result with RIPEMD160
|
|
|
|
* Unfortunately, SHA-2 outputs big-endian, but
|
|
|
|
* RIPEMD160 expects little-endian. Need to swap!
|
|
|
|
*/
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 8; i++)
|
|
|
|
hash2[i] = bswap32(hash2[i]);
|
|
|
|
hash2[8] = bswap32(0x80000000);
|
|
|
|
hash2[9] = 0;
|
|
|
|
hash2[10] = 0;
|
|
|
|
hash2[11] = 0;
|
|
|
|
hash2[12] = 0;
|
|
|
|
hash2[13] = 0;
|
|
|
|
hash2[14] = 32 * 8;
|
|
|
|
hash2[15] = 0;
|
|
|
|
ripemd160_init(hash_out);
|
|
|
|
ripemd160_block(hash_out, hash2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
hash_ec_point_get(__global uint *hashes_out,
|
|
|
|
__global bignum *points_in, __global bignum *z_heap)
|
|
|
|
{
|
|
|
|
uint hash[5];
|
|
|
|
int i, o;
|
|
|
|
|
|
|
|
o = get_global_size(0);
|
|
|
|
i = o * get_global_id(1);
|
|
|
|
z_heap += (i * 2);
|
|
|
|
points_in += (i * 2);
|
|
|
|
hashes_out += (i * 5);
|
|
|
|
|
|
|
|
i = get_global_id(0);
|
|
|
|
points_in += (i * 2);
|
|
|
|
hashes_out += (i * 5);
|
|
|
|
|
|
|
|
/* Complete the coordinates and hash */
|
|
|
|
hash_ec_point(hash, points_in, &z_heap[i + (o - 1)]);
|
|
|
|
|
|
|
|
/* Output the hash in proper byte-order */
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 5; i++)
|
|
|
|
hashes_out[i] = load_le32(hash[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Normally this would be one function that compared two hash160s.
|
|
|
|
* This one compares a hash160 with an upper and lower bound in one
|
|
|
|
* function to work around a problem with AMD's OpenCL compiler.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
hash160_ucmp_g(uint *a, __global uint *bound)
|
|
|
|
{
|
|
|
|
uint gv;
|
|
|
|
int i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
|
|
gv = load_be32(bound[i]);
|
|
|
|
if (a[i] < gv) return -1;
|
|
|
|
if (a[i] > gv) break;
|
|
|
|
}
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
|
|
gv = load_be32(bound[5+i]);
|
|
|
|
if (a[i] < gv) return 0;
|
|
|
|
if (a[i] > gv) return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
__kernel void
|
|
|
|
hash_ec_point_search_prefix(__global uint *found,
|
|
|
|
__global bignum *points_in, __global bignum *z_heap,
|
|
|
|
__global uint *target_table, int ntargets)
|
|
|
|
{
|
|
|
|
uint hash[5];
|
|
|
|
int i, high, low, p;
|
|
|
|
|
|
|
|
p = get_global_size(0);
|
|
|
|
i = p * get_global_id(1);
|
|
|
|
z_heap += (i * 2);
|
|
|
|
points_in += (i * 2);
|
|
|
|
|
|
|
|
i = get_global_id(0);
|
|
|
|
points_in += (i * 2);
|
|
|
|
|
|
|
|
/* Complete the coordinates and hash */
|
|
|
|
hash_ec_point(hash, points_in, &z_heap[(p - 1) + i]);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unconditionally byteswap the hash result, because:
|
|
|
|
* - The byte-level convention of RIPEMD160 is little-endian
|
|
|
|
* - We are comparing it in big-endian order
|
|
|
|
*/
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < 5; i++)
|
|
|
|
hash[i] = bswap32(hash[i]);
|
|
|
|
|
|
|
|
/* Binary-search the target table for the hash we just computed */
|
|
|
|
for (high = ntargets - 1, low = 0, i = high >> 1;
|
|
|
|
high >= low;
|
|
|
|
i = low + ((high - low) >> 1)) {
|
|
|
|
p = hash160_ucmp_g(hash, &target_table[10*i]);
|
|
|
|
low = (p > 0) ? (i + 1) : low;
|
|
|
|
high = (p < 0) ? (i - 1) : high;
|
|
|
|
if (p == 0) {
|
|
|
|
/* For debugging purposes, write the hash value */
|
|
|
|
found[0] = ((get_global_id(1) * get_global_size(0)) +
|
|
|
|
get_global_id(0));
|
|
|
|
found[1] = i;
|
|
|
|
#ifdef UNROLL_MAX
|
|
|
|
#pragma unroll UNROLL_MAX
|
|
|
|
#endif
|
|
|
|
for (p = 0; p < 5; p++)
|
|
|
|
found[p+2] = load_be32(hash[p]);
|
|
|
|
high = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|