GOSTCoin addresses vainer
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

861 lines
20 KiB

/*
* Vanitygen, vanity bitcoin address generator
* Copyright (C) 2011 <samr7@cs.washington.edu>
*
* Vanitygen is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* Vanitygen is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with Vanitygen. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* This file contains an OpenCL kernel for performing certain parts of
* the bitcoin address calculation process.
*
* Kernel: calc_addrs
*
* Inputs:
* - Row of (sequential) EC points
* - Array of column increment EC points (= rowsize * Pgenerator)
*
* Steps:
* - For each row increment value C:
* - For each row point P:
* - Compute P + C
* - Normalize and hash with SHA256 and RIPEMD160
* - Store hash value in output array
*
* Output:
* - Array of 20-byte address hash values
*
* Each instance of the kernel computes one full row. With a typical
* row size of 256 points, this makes each kernel instance very heavy.
* This tradeoff is chosen in favor of batched modular inversion, which
* substantially reduces the cost of performing modular inversion.
*/
/*
* BIGNUM mini-library
* This module deals with fixed-size 256-bit bignums.
* Where modular arithmetic is performed, the SECP256k1 prime
* modulus (below) is assumed.
*
* Methods include:
* - bn_is_zero/bn_is_one/bn_is_odd/bn_is_even/bn_is_bit_set
* - bn_rshift[1]/bn_lshift[1]
* - bn_neg
* - bn_uadd/bn_uadd_p
* - bn_usub/bn_usub_p
*/
typedef uint bn_word;
#define BN_NBITS 256
#define BN_WSHIFT 5
#define BN_WBITS (1 << BN_WSHIFT)
#define BN_NWORDS ((BN_NBITS/8) / sizeof(bn_word))
#define BN_WORDMAX 0xffffffff
#define MODULUS_BYTES \
0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, \
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
typedef struct {
bn_word d[BN_NWORDS];
} bignum;
__constant bn_word modulus[] = { MODULUS_BYTES };
__constant bn_word bn_one[BN_NWORDS] = { 1, 0, };
__constant bignum bn_zero;
__constant bn_word mont_rr[BN_NWORDS] = { 0xe90a1, 0x7a2, 0x1, 0, };
__constant bn_word mont_n0[2] = { 0xd2253531, 0xd838091d };
#define bn_is_odd(bn) (bn.d[0] & 1)
#define bn_is_even(bn) (!bn_is_odd(bn))
#define bn_is_zero(bn) (!bn.d[0] && !bn.d[1] && !bn.d[2] && \
!bn.d[3] && !bn.d[4] && !bn.d[5] && \
!bn.d[6] && !bn.d[7])
#define bn_is_one(bn) ((bn.d[0] == 1) && !bn.d[1] && !bn.d[2] && \
!bn.d[3] && !bn.d[4] && !bn.d[5] && \
!bn.d[6] && !bn.d[7])
#define bn_is_bit_set(bn, n) \
((((bn_word*)&bn)[n >> BN_WSHIFT]) & (1 << (n & (BN_WBITS-1))))
/*
* Bitwise shift
*/
void
bn_lshift1(bignum *bn)
{
int i;
for (i = (BN_NWORDS - 1); i > 0; i--)
bn->d[i] = (bn->d[i] << 1) | (bn->d[i-1] >> 31);
bn->d[i] <<= 1;
}
void
bn_rshift(bignum *bn, int shift)
{
int i, wd, iws;
bn_word *op, *ip, ihw, ilw;
iws = (shift & (BN_WBITS-1));
wd = (shift >> BN_WSHIFT);
ip = ((bn_word*)bn);
op = ip + wd;
wd = BN_NWORDS - wd;
ihw = ip[0];
for (i = 1; i < wd; i++) {
ilw = ihw;
ihw = ip[i];
op[i-1] = ((ilw >> iws) | (ihw << (BN_WBITS - iws)));
}
op[i-1] = (ihw >> iws);
if (i < BN_NWORDS) {
while (i < BN_NWORDS)
op[i++] = 0;
}
}
void
bn_rshift1(bignum *bn)
{
int i;
for (i = 0; i < (BN_NWORDS - 1); i++)
bn->d[i] = (bn->d[i+1] << 31) | (bn->d[i] >> 1);
bn->d[i] >>= 1;
}
/*
* Unsigned comparison
*/
int
bn_ucmp(bignum *a, bignum *b)
{
int i;
for (i = (BN_NWORDS - 1); i >= 0; i--) {
if (a->d[i] < b->d[i]) return -1;
if (a->d[i] > b->d[i]) return 1;
}
return 0;
}
int
bn_ucmp_c(bignum *a, __constant bn_word *b)
{
int i;
for (i = (BN_NWORDS - 1); i >= 0; i--) {
if (a->d[i] < b[i]) return -1;
if (a->d[i] > b[i]) return 1;
}
return 0;
}
/*
* Negate
*/
void
bn_neg(bignum *n)
{
int i, c;
for (i = 0, c = 1; i < BN_NWORDS; i++)
if ((n->d[i] = (~n->d[i]) + c) && c)
c = 0;
}
/*
* Add/subtract
*/
#define bn_add_word(r, a, b, t, c) do { \
t = a + b; \
c = (t < a) ? 1 : 0; \
r = t; \
} while (0)
#define bn_addc_word(r, a, b, t, c) do { \
t = a + b + c; \
c = (t < a) ? 1 : ((c && (t == a)) ? 1 : 0); \
r = t; \
} while (0)
bn_word
bn_uadd(bignum *r, bignum *a, bignum *b)
{
bn_word t, c = 0;
int i;
bn_add_word(r->d[0], a->d[0], b->d[0], t, c);
for (i = 1; i < BN_NWORDS; i++)
bn_addc_word(r->d[i], a->d[i], b->d[i], t, c);
return c;
}
bn_word
bn_uadd_c(bignum *r, bignum *a, __constant bn_word *b)
{
bn_word t, c = 0;
int i;
bn_add_word(r->d[0], a->d[0], b[0], t, c);
for (i = 1; i < BN_NWORDS; i++)
bn_addc_word(r->d[i], a->d[i], b[i], t, c);
return c;
}
#define bn_sub_word(r, a, b, t, c) do { \
t = a - b; \
c = (a < b) ? 1 : 0; \
r = t; \
} while (0)
#define bn_subb_word(r, a, b, t, c) do { \
t = a - (b + c); \
c = ((a < b) || (!a && c)) ? 1 : 0; \
r = t; \
} while (0)
bn_word
bn_usub(bignum *r, bignum *a, bignum *b)
{
bn_word t, c = 0;
int i;
bn_sub_word(r->d[0], a->d[0], b->d[0], t, c);
for (i = 1; i < BN_NWORDS; i++)
bn_subb_word(r->d[i], a->d[i], b->d[i], t, c);
return c;
}
bn_word
bn_usub_c(bignum *r, bignum *a, __constant bn_word *b)
{
bn_word t, c = 0;
int i;
bn_sub_word(r->d[0], a->d[0], b[0], t, c);
for (i = 1; i < BN_NWORDS; i++)
bn_subb_word(r->d[i], a->d[i], b[i], t, c);
return c;
}
/*
* Modular add/sub
*/
void
bn_mod_add(bignum *r, bignum *a, bignum *b)
{
if (bn_uadd(r, a, b) ||
(bn_ucmp_c(r, modulus) >= 0))
bn_usub_c(r, r, modulus);
}
void
bn_mod_sub(bignum *r, bignum *a, bignum *b)
{
if (bn_usub(r, a, b))
bn_uadd_c(r, r, modulus);
}
void
bn_mod_lshift1(bignum *bn)
{
bn_word c = (bn->d[BN_NWORDS-1] & 0x80000000);
bn_lshift1(bn);
if (c || (bn_ucmp_c(bn, modulus) >= 0))
bn_usub_c(bn, bn, modulus);
}
/*
* Montgomery multiplication
*
* This includes normal multiplication of two "Montgomeryized"
* bignums, and bn_from_mont for de-Montgomeryizing a bignum.
*/
#define bn_mul_word(r, a, w, c, p, s) do { \
p = mul_hi(a, w); \
r = (a * w) + c; \
c = (r < c) ? p + 1 : p; \
} while (0)
#define bn_mul_add_word(r, a, w, c, p, s) do { \
p = mul_hi(a, w); \
s = r + c; \
r = (a * w) + s; \
c = (s < c) ? p + 1 : p; \
if (r < s) c++; \
} while (0)
void
bn_mul_mont(bignum *r, bignum *a, bignum *b)
{
bignum t;
bn_word tea, teb, c, p, s, m;
int i, j;
c = 0;
for (j = 0; j < BN_NWORDS; j++)
bn_mul_word(t.d[j], a->d[j], b->d[0], c, p, s);
tea = c;
teb = 0;
c = 0;
m = t.d[0] * mont_n0[0];
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s);
for (j = 1; j < BN_NWORDS; j++) {
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s);
t.d[j-1] = t.d[j];
}
t.d[BN_NWORDS-1] = tea + c;
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0);
for (i = 1; i < BN_NWORDS; i++) {
c = 0;
for (j = 0; j < BN_NWORDS; j++)
bn_mul_add_word(t.d[j], a->d[j], b->d[i], c, p, s);
tea += c;
teb = ((tea < c) ? 1 : 0);
c = 0;
m = t.d[0] * mont_n0[0];
bn_mul_add_word(t.d[0], modulus[0], m, c, p, s);
for (j = 1; j < BN_NWORDS; j++) {
bn_mul_add_word(t.d[j], modulus[j], m, c, p, s);
t.d[j-1] = t.d[j];
}
t.d[BN_NWORDS-1] = tea + c;
tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0);
}
if (tea || (t.d[BN_NWORDS-1] >= modulus[7])) {
c = bn_usub_c(r, &t, modulus);
if (tea || !c)
return;
}
*r = t;
}
void
bn_from_mont(bignum *rb, bignum *b)
{
#define WORKSIZE ((2*BN_NWORDS) + 1)
bn_word r[WORKSIZE];
bn_word m, c, p, s;
int i, j, top, tl;
/* Copy the input to the working area */
for (i = 0; i < BN_NWORDS; i++)
r[i] = b->d[i];
/* Zero the upper words */
for (i = BN_NWORDS; i < WORKSIZE; i++)
r[i] = 0;
/* Multiply (long) by modulus */
for (i = 0; i < BN_NWORDS; i++) {
m = r[i] * mont_n0[0];
c = 0;
for (j = 0; j < BN_NWORDS; j++)
bn_mul_add_word(r[i+j], modulus[j], m, c, p, s);
r[BN_NWORDS + i] += c;
if (r[BN_NWORDS + i] < c) {
if (++r[BN_NWORDS + i + 1] == 0)
++r[BN_NWORDS + i + 2]; /* The end..? */
}
}
for (top = WORKSIZE - 1; (top > BN_NWORDS) && (r[top] == 0); top--);
if (top <= BN_NWORDS) {
*rb = bn_zero;
return;
}
tl = top - BN_NWORDS;
c = 0;
for (j = 0; j < BN_NWORDS; j++)
bn_subb_word(rb->d[j], r[BN_NWORDS + j], modulus[j], p, c);
if (c) {
for (j = 0; j < BN_NWORDS; j++)
rb->d[j] = r[BN_NWORDS + j];
}
}
/* Montgomery multiplication test kernel */
__kernel void
test_mul_mont(__global bignum *products_out, __global bignum *nums_in,
int count)
{
bignum x, y, tmp;
int i, o, p;
o = get_global_id(0) * count;
p = o * 2;
for (i = 0; i < count; i++) {
x = nums_in[p++];
y = nums_in[p++];
bn_mul_mont(&tmp, &x, &y);
bn_mul_mont(&tmp, &tmp, &x);
bn_mul_mont(&tmp, &tmp, &y);
bn_from_mont(&x, &tmp);
products_out[o++] = x;
}
}
/*
* Modular inversion
*/
void
bn_mod_inverse(bignum *r, bignum *n)
{
bignum a, b, x, y;
int shift;
bn_word xc, yc;
for (shift = 0; shift < BN_NWORDS; shift++) {
a.d[shift] = modulus[shift];
x.d[shift] = 0;
y.d[shift] = 0;
}
b = *n;
x.d[0] = 1;
xc = 0;
yc = 0;
while (!bn_is_zero(b)) {
shift = 0;
while (!bn_is_bit_set(b, shift)) {
shift++;
if (bn_is_odd(x))
xc += bn_uadd_c(&x, &x, modulus);
bn_rshift1(&x);
x.d[7] |= (xc << 31);
xc >>= 1;
}
if (shift)
bn_rshift(&b, shift);
shift = 0;
while (!bn_is_bit_set(a, shift)) {
shift++;
if (bn_is_odd(y))
yc += bn_uadd_c(&y, &y, modulus);
bn_rshift1(&y);
y.d[7] |= (yc << 31);
yc >>= 1;
}
if (shift)
bn_rshift(&a, shift);
if (bn_ucmp(&b, &a) >= 0) {
xc += yc + bn_uadd(&x, &x, &y);
bn_usub(&b, &b, &a);
} else {
yc += xc + bn_uadd(&y, &y, &x);
bn_usub(&a, &a, &b);
}
}
if (!bn_is_one(a)) {
/* no modular inverse */
*r = bn_zero;
return;
}
/* Compute y % m as cheaply as possible */
while (yc < 0x80000000)
yc -= bn_usub_c(&y, &y, modulus);
bn_neg(&y);
*r = y;
return;
}
/* modular inversion test kernel */
__kernel void
test_mod_inverse(__global bignum *inv_out, __global bignum *nums_in,
int count)
{
bignum x, xp;
int i, o;
o = get_global_id(0) * count;
for (i = 0; i < count; i++) {
x = nums_in[o];
bn_mod_inverse(&xp, &x);
inv_out[o++] = xp;
}
}
/*
* HASH FUNCTIONS
*
* BYTE ORDER NOTE: None of the hash functions below deal with byte
* order. The caller is expected to be aware of this when it stuffs
* data into in the native integer.
*
* NOTE #2: Endianness of the OpenCL device makes no difference here.
*/
/*
* SHA-2 256
*
* CAUTION: Input buffer will be overwritten/mangled.
* Data expected in big-endian format.
* This implementation is designed for space efficiency more than
* raw speed.
*/
__constant uint sha2_init[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
__constant uint sha2_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
void
sha2_256_init(uint *out)
{
int i;
for (i = 0; i < 8; i++)
out[i] = sha2_init[i];
}
/* The state variable remapping is really contorted */
#define sha2_stvar(vals, i, v) vals[(i+(7-v)) % 8]
void
sha2_256_block(uint *out, uint *in)
{
int i;
uint state[8], s0, s1, t1, t2;
for (i = 0; i < 8; i++)
state[7-i] = out[i];
for (i = 0; i < 64; i++) {
if (i >= 16) {
/* Advance the input window */
t1 = in[(i + 1) % 16];
t2 = in[(i + 14) % 16];
in[i % 16] += (in[(i + 9) % 16] +
(rotate(t1, 25U) ^ rotate(t1, 14U) ^ (t1 >> 3)) +
(rotate(t2, 15U) ^ rotate(t2, 13U) ^ (t2 >> 10)));
}
/* Compute the t1, t2 augmentations */
t1 = sha2_stvar(state, i, 4);
t2 = sha2_stvar(state, i, 0);
s0 = (rotate(t2, 30U) ^ rotate(t2, 19U) ^ rotate(t2, 10U));
s1 = (rotate(t1, 26U) ^ rotate(t1, 21U) ^ rotate(t1, 7U));
t1 = (sha2_stvar(state, i, 7) + s1 + sha2_k[i] + in[i % 16] +
((t1 & sha2_stvar(state, i, 5)) ^
(~t1 & sha2_stvar(state, i, 6))));
t2 = s0 + ((t2 & sha2_stvar(state, i, 1)) ^
(t2 & sha2_stvar(state, i, 2)) ^
(sha2_stvar(state, i, 1) & sha2_stvar(state, i, 2)));
sha2_stvar(state, i, 3) += t1;
sha2_stvar(state, i, 7) = t1 + t2;
}
for (i = 0; i < 8; i++)
out[i] += state[7-i];
}
/*
* RIPEMD160
*
* Data expected in little-endian format.
*/
__constant uint ripemd160_iv[] = {
0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 };
__constant uint ripemd160_k[] = {
0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E };
__constant uint ripemd160_kp[] = {
0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000 };
__constant uchar ripemd160_ws[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13,
};
__constant uchar ripemd160_wsp[] = {
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
};
__constant uchar ripemd160_rl[] = {
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6,
};
__constant uchar ripemd160_rlp[] = {
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
};
#define ripemd160_f0(x, y, z) (x ^ y ^ z)
#define ripemd160_f1(x, y, z) ((x & y) | (~x & z))
#define ripemd160_f2(x, y, z) ((x | ~y) ^ z)
#define ripemd160_f3(x, y, z) ((x & z) | (y & ~z))
#define ripemd160_f4(x, y, z) (x ^ (y | ~z))
#define ripemd160_round(i, in, vals, f, fp, t) do { \
t = rotate(vals[0] + \
f(vals[1], vals[2], vals[3]) + \
in[ripemd160_ws[i]] + \
ripemd160_k[i / 16], \
(uint)ripemd160_rl[i]) + vals[4]; \
vals[0] = vals[4]; vals[4] = vals[3]; \
vals[3] = rotate(vals[2], 10U); vals[2] = vals[1]; \
vals[1] = t; \
t = rotate(vals[5] + \
fp(vals[6], vals[7], vals[8]) + \
in[ripemd160_wsp[i]] + \
ripemd160_kp[i / 16], \
(uint)ripemd160_rlp[i]) + vals[9]; \
vals[5] = vals[9]; vals[9] = vals[8]; \
vals[8] = rotate(vals[7], 10U); vals[7] = vals[6]; \
vals[6] = t; \
} while (0)
void
ripemd160_init(uint *out)
{
int i;
for(i = 0; i < 5; i++)
out[i] = ripemd160_iv[i];
}
void
ripemd160_block(uint *out, uint *in)
{
uint vals[10], t;
int i;
for (i = 0; i < 5; i++)
vals[i] = vals[i + 5] = out[i];
for (i = 0; i < 16; i++)
ripemd160_round(i, in, vals,
ripemd160_f0, ripemd160_f4, t);
for (i = 16; i < 32; i++)
ripemd160_round(i, in, vals,
ripemd160_f1, ripemd160_f3, t);
for (i = 32; i < 48; i++)
ripemd160_round(i, in, vals,
ripemd160_f2, ripemd160_f2, t);
for (i = 48; i < 64; i++)
ripemd160_round(i, in, vals,
ripemd160_f3, ripemd160_f1, t);
for (i = 64; i < 80; i++)
ripemd160_round(i, in, vals,
ripemd160_f4, ripemd160_f0, t);
t = out[1] + vals[2] + vals[8];
out[1] = out[2] + vals[3] + vals[9];
out[2] = out[3] + vals[4] + vals[5];
out[3] = out[4] + vals[0] + vals[6];
out[4] = out[0] + vals[1] + vals[7];
out[0] = t;
}
#define bswap32(v) \
(((v) >> 24) | (((v) >> 8) & 0xff00) | \
(((v) << 8) & 0xff0000) | ((v) << 24))
__kernel void
calc_addrs(__global uint *hashes_out,
__global bignum *z_heap, __global bignum *point_tmp,
__global bignum *row_in, __global bignum *col_in, int ncols)
{
uint hash1[16];
uint hash2[16];
uint wl, wh;
bignum rx, ry;
bignum x1, y1, a, b, c, d, e, z;
bn_word cy;
int i, o;
/* Load the row increment point */
o = get_global_id(0);
rx = col_in[2*o];
ry = col_in[(2*o) + 1];
hashes_out += (o * 5 * ncols);
z_heap += (o * 2 * ncols);
point_tmp += (o * 2 * ncols);
/*
* Perform the EC point add.
* Add the row increment to all row points.
* Save the X,Y in the point temporary space.
* Save the Z in the z_heap for modular inversion.
*/
for (i = 0; i < ncols; i++) {
x1 = row_in[(2*i)];
y1 = row_in[(2*i) + 1];
bn_mod_sub(&z, &x1, &rx);
z_heap[(ncols - 1) + i] = z;
bn_mod_sub(&b, &y1, &ry);
bn_mod_add(&c, &x1, &rx);
bn_mod_add(&d, &y1, &ry);
bn_mul_mont(&y1, &b, &b);
bn_mul_mont(&x1, &z, &z);
bn_mul_mont(&e, &c, &x1);
bn_mod_sub(&y1, &y1, &e);
point_tmp[2*i] = y1;
bn_mod_lshift1(&y1);
bn_mod_sub(&y1, &e, &y1);
bn_mul_mont(&y1, &y1, &b);
bn_mul_mont(&a, &x1, &z);
bn_mul_mont(&c, &d, &a);
bn_mod_sub(&y1, &y1, &c);
cy = 0;
if (bn_is_odd(y1))
cy = bn_uadd_c(&y1, &y1, modulus);
bn_rshift1(&y1);
if (cy)
y1.d[BN_NWORDS-1] |= 0x80000000;
point_tmp[(2*i)+1] = y1;
}
/* Compute the product hierarchy in z_heap */
for (i = ncols - 1; i > 0; i--) {
a = z_heap[(i*2) - 1];
b = z_heap[(i*2)];
bn_mul_mont(&z, &a, &b);
z_heap[i-1] = z;
}
/* Invert the root, fix up 1/ZR -> R/Z */
z = z_heap[0];
bn_mod_inverse(&z, &z);
for (i = 0; i < BN_NWORDS; i++)
a.d[i] = mont_rr[i];
bn_mul_mont(&z, &z, &a);
bn_mul_mont(&z, &z, &a);
z_heap[0] = z;
for (i = 1; i < ncols; i++) {
a = z_heap[i - 1];
b = z_heap[(i*2) - 1];
c = z_heap[i*2];
bn_mul_mont(&z, &a, &c);
z_heap[(i*2) - 1] = z;
bn_mul_mont(&z, &a, &b);
z_heap[i*2] = z;
}
for (i = 0; i < ncols; i++) {
/*
* Multiply the coordinates by the inverted Z values.
* Stash the coordinates in the hash buffer.
* SHA-2 requires big endian, and our intended hash input
* is big-endian, so swapping is unnecessary, but
* inserting the format byte in front causes a headache.
*/
a = z_heap[(ncols - 1) + i];
bn_mul_mont(&b, &a, &a); /* Z^2 */
x1 = point_tmp[2*i];
bn_mul_mont(&x1, &x1, &b); /* X / Z^2 */
bn_from_mont(&x1, &x1);
wh = 0x00000004; /* POINT_CONVERSION_UNCOMPRESSED */
for (o = 0; o < BN_NWORDS; o++) {
wl = wh;
wh = x1.d[(BN_NWORDS - 1) - o];
hash1[o] = (wl << 24) | (wh >> 8);
}
bn_mul_mont(&a, &a, &b); /* Z^3 */
y1 = point_tmp[(2*i)+1];
bn_mul_mont(&y1, &y1, &a); /* Y / Z^3 */
bn_from_mont(&y1, &y1);
for (o = 0; o < BN_NWORDS; o++) {
wl = wh;
wh = y1.d[(BN_NWORDS - 1) - o];
hash1[BN_NWORDS + o] = (wl << 24) | (wh >> 8);
}
/*
* Hash the first 64 bytes of the buffer
*/
sha2_256_init(hash2);
sha2_256_block(hash2, hash1);
/*
* Hash the last byte of the buffer + SHA-2 padding
*/
hash1[0] = wh << 24 | 0x800000;
hash1[1] = 0;
hash1[2] = 0;
hash1[3] = 0;
hash1[4] = 0;
hash1[5] = 0;
hash1[6] = 0;
hash1[7] = 0;
hash1[8] = 0;
hash1[9] = 0;
hash1[10] = 0;
hash1[11] = 0;
hash1[12] = 0;
hash1[13] = 0;
hash1[14] = 0;
hash1[15] = 65 * 8;
sha2_256_block(hash2, hash1);
/*
* Hash the SHA-2 result with RIPEMD160
* Unfortunately, SHA-2 outputs big-endian, but
* RIPEMD160 expects little-endian. Need to swap!
*/
for (o = 0; o < 8; o++)
hash2[o] = bswap32(hash2[o]);
hash2[8] = bswap32(0x80000000);
hash2[9] = 0;
hash2[10] = 0;
hash2[11] = 0;
hash2[12] = 0;
hash2[13] = 0;
hash2[14] = 32 * 8;
hash2[15] = 0;
ripemd160_init(hash1);
ripemd160_block(hash1, hash2);
/* Copy the hash to the output buffer */
for (o = 0; o < 5; o++)
*(hashes_out++) = hash1[o];
}
}