/* * Vanitygen, vanity bitcoin address generator * Copyright (C) 2011 * * Vanitygen is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * any later version. * * Vanitygen is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with Vanitygen. If not, see . */ /* * This file contains an OpenCL kernel for performing certain parts of * the bitcoin address calculation process. * * Kernel: calc_addrs * * Inputs: * - Row of (sequential) EC points * - Array of column increment EC points (= rowsize * Pgenerator) * * Steps: * - For each row increment value C: * - For each row point P: * - Compute P + C * - Normalize and hash with SHA256 and RIPEMD160 * - Store hash value in output array * * Output: * - Array of 20-byte address hash values * * Each instance of the kernel computes one full row. With a typical * row size of 256 points, this makes each kernel instance very heavy. * This tradeoff is chosen in favor of batched modular inversion, which * substantially reduces the cost of performing modular inversion. */ /* * BIGNUM mini-library * This module deals with fixed-size 256-bit bignums. * Where modular arithmetic is performed, the SECP256k1 prime * modulus (below) is assumed. * * Methods include: * - bn_is_zero/bn_is_one/bn_is_odd/bn_is_even/bn_is_bit_set * - bn_rshift[1]/bn_lshift[1] * - bn_neg * - bn_uadd/bn_uadd_p * - bn_usub/bn_usub_p */ typedef uint bn_word; #define BN_NBITS 256 #define BN_WSHIFT 5 #define BN_WBITS (1 << BN_WSHIFT) #define BN_NWORDS ((BN_NBITS/8) / sizeof(bn_word)) #define BN_WORDMAX 0xffffffff #define MODULUS_BYTES \ 0xfffffc2f, 0xfffffffe, 0xffffffff, 0xffffffff, \ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff typedef struct { bn_word d[BN_NWORDS]; } bignum; __constant bn_word modulus[] = { MODULUS_BYTES }; __constant bn_word bn_one[BN_NWORDS] = { 1, 0, }; __constant bignum bn_zero; __constant bn_word mont_rr[BN_NWORDS] = { 0xe90a1, 0x7a2, 0x1, 0, }; __constant bn_word mont_n0[2] = { 0xd2253531, 0xd838091d }; #define bn_is_odd(bn) (bn.d[0] & 1) #define bn_is_even(bn) (!bn_is_odd(bn)) #define bn_is_zero(bn) (!bn.d[0] && !bn.d[1] && !bn.d[2] && \ !bn.d[3] && !bn.d[4] && !bn.d[5] && \ !bn.d[6] && !bn.d[7]) #define bn_is_one(bn) ((bn.d[0] == 1) && !bn.d[1] && !bn.d[2] && \ !bn.d[3] && !bn.d[4] && !bn.d[5] && \ !bn.d[6] && !bn.d[7]) #define bn_is_bit_set(bn, n) \ ((((bn_word*)&bn)[n >> BN_WSHIFT]) & (1 << (n & (BN_WBITS-1)))) /* * Bitwise shift */ void bn_lshift1(bignum *bn) { int i; for (i = (BN_NWORDS - 1); i > 0; i--) bn->d[i] = (bn->d[i] << 1) | (bn->d[i-1] >> 31); bn->d[i] <<= 1; } void bn_rshift(bignum *bn, int shift) { int i, wd, iws; bn_word *op, *ip, ihw, ilw; iws = (shift & (BN_WBITS-1)); wd = (shift >> BN_WSHIFT); ip = ((bn_word*)bn); op = ip + wd; wd = BN_NWORDS - wd; ihw = ip[0]; for (i = 1; i < wd; i++) { ilw = ihw; ihw = ip[i]; op[i-1] = ((ilw >> iws) | (ihw << (BN_WBITS - iws))); } op[i-1] = (ihw >> iws); if (i < BN_NWORDS) { while (i < BN_NWORDS) op[i++] = 0; } } void bn_rshift1(bignum *bn) { int i; for (i = 0; i < (BN_NWORDS - 1); i++) bn->d[i] = (bn->d[i+1] << 31) | (bn->d[i] >> 1); bn->d[i] >>= 1; } /* * Unsigned comparison */ int bn_ucmp(bignum *a, bignum *b) { int i; for (i = (BN_NWORDS - 1); i >= 0; i--) { if (a->d[i] < b->d[i]) return -1; if (a->d[i] > b->d[i]) return 1; } return 0; } int bn_ucmp_c(bignum *a, __constant bn_word *b) { int i; for (i = (BN_NWORDS - 1); i >= 0; i--) { if (a->d[i] < b[i]) return -1; if (a->d[i] > b[i]) return 1; } return 0; } /* * Negate */ void bn_neg(bignum *n) { int i, c; for (i = 0, c = 1; i < BN_NWORDS; i++) if ((n->d[i] = (~n->d[i]) + c) && c) c = 0; } /* * Add/subtract */ #define bn_add_word(r, a, b, t, c) do { \ t = a + b; \ c = (t < a) ? 1 : 0; \ r = t; \ } while (0) #define bn_addc_word(r, a, b, t, c) do { \ t = a + b + c; \ c = (t < a) ? 1 : ((c && (t == a)) ? 1 : 0); \ r = t; \ } while (0) bn_word bn_uadd(bignum *r, bignum *a, bignum *b) { bn_word t, c = 0; int i; bn_add_word(r->d[0], a->d[0], b->d[0], t, c); for (i = 1; i < BN_NWORDS; i++) bn_addc_word(r->d[i], a->d[i], b->d[i], t, c); return c; } bn_word bn_uadd_c(bignum *r, bignum *a, __constant bn_word *b) { bn_word t, c = 0; int i; bn_add_word(r->d[0], a->d[0], b[0], t, c); for (i = 1; i < BN_NWORDS; i++) bn_addc_word(r->d[i], a->d[i], b[i], t, c); return c; } #define bn_sub_word(r, a, b, t, c) do { \ t = a - b; \ c = (a < b) ? 1 : 0; \ r = t; \ } while (0) #define bn_subb_word(r, a, b, t, c) do { \ t = a - (b + c); \ c = ((a < b) || (!a && c)) ? 1 : 0; \ r = t; \ } while (0) bn_word bn_usub(bignum *r, bignum *a, bignum *b) { bn_word t, c = 0; int i; bn_sub_word(r->d[0], a->d[0], b->d[0], t, c); for (i = 1; i < BN_NWORDS; i++) bn_subb_word(r->d[i], a->d[i], b->d[i], t, c); return c; } bn_word bn_usub_c(bignum *r, bignum *a, __constant bn_word *b) { bn_word t, c = 0; int i; bn_sub_word(r->d[0], a->d[0], b[0], t, c); for (i = 1; i < BN_NWORDS; i++) bn_subb_word(r->d[i], a->d[i], b[i], t, c); return c; } /* * Modular add/sub */ void bn_mod_add(bignum *r, bignum *a, bignum *b) { if (bn_uadd(r, a, b) || (bn_ucmp_c(r, modulus) >= 0)) bn_usub_c(r, r, modulus); } void bn_mod_sub(bignum *r, bignum *a, bignum *b) { if (bn_usub(r, a, b)) bn_uadd_c(r, r, modulus); } void bn_mod_lshift1(bignum *bn) { bn_word c = (bn->d[BN_NWORDS-1] & 0x80000000); bn_lshift1(bn); if (c || (bn_ucmp_c(bn, modulus) >= 0)) bn_usub_c(bn, bn, modulus); } /* * Montgomery multiplication * * This includes normal multiplication of two "Montgomeryized" * bignums, and bn_from_mont for de-Montgomeryizing a bignum. */ #define bn_mul_word(r, a, w, c, p, s) do { \ p = mul_hi(a, w); \ r = (a * w) + c; \ c = (r < c) ? p + 1 : p; \ } while (0) #define bn_mul_add_word(r, a, w, c, p, s) do { \ p = mul_hi(a, w); \ s = r + c; \ r = (a * w) + s; \ c = (s < c) ? p + 1 : p; \ if (r < s) c++; \ } while (0) void bn_mul_mont(bignum *r, bignum *a, bignum *b) { bignum t; bn_word tea, teb, c, p, s, m; int i, j; c = 0; for (j = 0; j < BN_NWORDS; j++) bn_mul_word(t.d[j], a->d[j], b->d[0], c, p, s); tea = c; teb = 0; c = 0; m = t.d[0] * mont_n0[0]; bn_mul_add_word(t.d[0], modulus[0], m, c, p, s); for (j = 1; j < BN_NWORDS; j++) { bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); t.d[j-1] = t.d[j]; } t.d[BN_NWORDS-1] = tea + c; tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0); for (i = 1; i < BN_NWORDS; i++) { c = 0; for (j = 0; j < BN_NWORDS; j++) bn_mul_add_word(t.d[j], a->d[j], b->d[i], c, p, s); tea += c; teb = ((tea < c) ? 1 : 0); c = 0; m = t.d[0] * mont_n0[0]; bn_mul_add_word(t.d[0], modulus[0], m, c, p, s); for (j = 1; j < BN_NWORDS; j++) { bn_mul_add_word(t.d[j], modulus[j], m, c, p, s); t.d[j-1] = t.d[j]; } t.d[BN_NWORDS-1] = tea + c; tea = teb + ((t.d[BN_NWORDS-1] < c) ? 1 : 0); } if (tea || (t.d[BN_NWORDS-1] >= modulus[7])) { c = bn_usub_c(r, &t, modulus); if (tea || !c) return; } *r = t; } void bn_from_mont(bignum *rb, bignum *b) { #define WORKSIZE ((2*BN_NWORDS) + 1) bn_word r[WORKSIZE]; bn_word m, c, p, s; int i, j, top, tl; /* Copy the input to the working area */ for (i = 0; i < BN_NWORDS; i++) r[i] = b->d[i]; /* Zero the upper words */ for (i = BN_NWORDS; i < WORKSIZE; i++) r[i] = 0; /* Multiply (long) by modulus */ for (i = 0; i < BN_NWORDS; i++) { m = r[i] * mont_n0[0]; c = 0; for (j = 0; j < BN_NWORDS; j++) bn_mul_add_word(r[i+j], modulus[j], m, c, p, s); r[BN_NWORDS + i] += c; if (r[BN_NWORDS + i] < c) { if (++r[BN_NWORDS + i + 1] == 0) ++r[BN_NWORDS + i + 2]; /* The end..? */ } } for (top = WORKSIZE - 1; (top > BN_NWORDS) && (r[top] == 0); top--); if (top <= BN_NWORDS) { *rb = bn_zero; return; } tl = top - BN_NWORDS; c = 0; for (j = 0; j < BN_NWORDS; j++) bn_subb_word(rb->d[j], r[BN_NWORDS + j], modulus[j], p, c); if (c) { for (j = 0; j < BN_NWORDS; j++) rb->d[j] = r[BN_NWORDS + j]; } } /* Montgomery multiplication test kernel */ __kernel void test_mul_mont(__global bignum *products_out, __global bignum *nums_in, int count) { bignum x, y, tmp; int i, o, p; o = get_global_id(0) * count; p = o * 2; for (i = 0; i < count; i++) { x = nums_in[p++]; y = nums_in[p++]; bn_mul_mont(&tmp, &x, &y); bn_mul_mont(&tmp, &tmp, &x); bn_mul_mont(&tmp, &tmp, &y); bn_from_mont(&x, &tmp); products_out[o++] = x; } } /* * Modular inversion */ void bn_mod_inverse(bignum *r, bignum *n) { bignum a, b, x, y; int shift; bn_word xc, yc; for (shift = 0; shift < BN_NWORDS; shift++) { a.d[shift] = modulus[shift]; x.d[shift] = 0; y.d[shift] = 0; } b = *n; x.d[0] = 1; xc = 0; yc = 0; while (!bn_is_zero(b)) { shift = 0; while (!bn_is_bit_set(b, shift)) { shift++; if (bn_is_odd(x)) xc += bn_uadd_c(&x, &x, modulus); bn_rshift1(&x); x.d[7] |= (xc << 31); xc >>= 1; } if (shift) bn_rshift(&b, shift); shift = 0; while (!bn_is_bit_set(a, shift)) { shift++; if (bn_is_odd(y)) yc += bn_uadd_c(&y, &y, modulus); bn_rshift1(&y); y.d[7] |= (yc << 31); yc >>= 1; } if (shift) bn_rshift(&a, shift); if (bn_ucmp(&b, &a) >= 0) { xc += yc + bn_uadd(&x, &x, &y); bn_usub(&b, &b, &a); } else { yc += xc + bn_uadd(&y, &y, &x); bn_usub(&a, &a, &b); } } if (!bn_is_one(a)) { /* no modular inverse */ *r = bn_zero; return; } /* Compute y % m as cheaply as possible */ while (yc < 0x80000000) yc -= bn_usub_c(&y, &y, modulus); bn_neg(&y); *r = y; return; } /* modular inversion test kernel */ __kernel void test_mod_inverse(__global bignum *inv_out, __global bignum *nums_in, int count) { bignum x, xp; int i, o; o = get_global_id(0) * count; for (i = 0; i < count; i++) { x = nums_in[o]; bn_mod_inverse(&xp, &x); inv_out[o++] = xp; } } /* * HASH FUNCTIONS * * BYTE ORDER NOTE: None of the hash functions below deal with byte * order. The caller is expected to be aware of this when it stuffs * data into in the native integer. * * NOTE #2: Endianness of the OpenCL device makes no difference here. */ /* * SHA-2 256 * * CAUTION: Input buffer will be overwritten/mangled. * Data expected in big-endian format. * This implementation is designed for space efficiency more than * raw speed. */ __constant uint sha2_init[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; __constant uint sha2_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; void sha2_256_init(uint *out) { int i; for (i = 0; i < 8; i++) out[i] = sha2_init[i]; } /* The state variable remapping is really contorted */ #define sha2_stvar(vals, i, v) vals[(i+(7-v)) % 8] void sha2_256_block(uint *out, uint *in) { int i; uint state[8], s0, s1, t1, t2; for (i = 0; i < 8; i++) state[7-i] = out[i]; for (i = 0; i < 64; i++) { if (i >= 16) { /* Advance the input window */ t1 = in[(i + 1) % 16]; t2 = in[(i + 14) % 16]; in[i % 16] += (in[(i + 9) % 16] + (rotate(t1, 25U) ^ rotate(t1, 14U) ^ (t1 >> 3)) + (rotate(t2, 15U) ^ rotate(t2, 13U) ^ (t2 >> 10))); } /* Compute the t1, t2 augmentations */ t1 = sha2_stvar(state, i, 4); t2 = sha2_stvar(state, i, 0); s0 = (rotate(t2, 30U) ^ rotate(t2, 19U) ^ rotate(t2, 10U)); s1 = (rotate(t1, 26U) ^ rotate(t1, 21U) ^ rotate(t1, 7U)); t1 = (sha2_stvar(state, i, 7) + s1 + sha2_k[i] + in[i % 16] + ((t1 & sha2_stvar(state, i, 5)) ^ (~t1 & sha2_stvar(state, i, 6)))); t2 = s0 + ((t2 & sha2_stvar(state, i, 1)) ^ (t2 & sha2_stvar(state, i, 2)) ^ (sha2_stvar(state, i, 1) & sha2_stvar(state, i, 2))); sha2_stvar(state, i, 3) += t1; sha2_stvar(state, i, 7) = t1 + t2; } for (i = 0; i < 8; i++) out[i] += state[7-i]; } /* * RIPEMD160 * * Data expected in little-endian format. */ __constant uint ripemd160_iv[] = { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 }; __constant uint ripemd160_k[] = { 0x00000000, 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xA953FD4E }; __constant uint ripemd160_kp[] = { 0x50A28BE6, 0x5C4DD124, 0x6D703EF3, 0x7A6D76E9, 0x00000000 }; __constant uchar ripemd160_ws[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13, }; __constant uchar ripemd160_wsp[] = { 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 }; __constant uchar ripemd160_rl[] = { 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6, }; __constant uchar ripemd160_rlp[] = { 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 }; #define ripemd160_f0(x, y, z) (x ^ y ^ z) #define ripemd160_f1(x, y, z) ((x & y) | (~x & z)) #define ripemd160_f2(x, y, z) ((x | ~y) ^ z) #define ripemd160_f3(x, y, z) ((x & z) | (y & ~z)) #define ripemd160_f4(x, y, z) (x ^ (y | ~z)) #define ripemd160_round(i, in, vals, f, fp, t) do { \ t = rotate(vals[0] + \ f(vals[1], vals[2], vals[3]) + \ in[ripemd160_ws[i]] + \ ripemd160_k[i / 16], \ (uint)ripemd160_rl[i]) + vals[4]; \ vals[0] = vals[4]; vals[4] = vals[3]; \ vals[3] = rotate(vals[2], 10U); vals[2] = vals[1]; \ vals[1] = t; \ t = rotate(vals[5] + \ fp(vals[6], vals[7], vals[8]) + \ in[ripemd160_wsp[i]] + \ ripemd160_kp[i / 16], \ (uint)ripemd160_rlp[i]) + vals[9]; \ vals[5] = vals[9]; vals[9] = vals[8]; \ vals[8] = rotate(vals[7], 10U); vals[7] = vals[6]; \ vals[6] = t; \ } while (0) void ripemd160_init(uint *out) { int i; for(i = 0; i < 5; i++) out[i] = ripemd160_iv[i]; } void ripemd160_block(uint *out, uint *in) { uint vals[10], t; int i; for (i = 0; i < 5; i++) vals[i] = vals[i + 5] = out[i]; for (i = 0; i < 16; i++) ripemd160_round(i, in, vals, ripemd160_f0, ripemd160_f4, t); for (i = 16; i < 32; i++) ripemd160_round(i, in, vals, ripemd160_f1, ripemd160_f3, t); for (i = 32; i < 48; i++) ripemd160_round(i, in, vals, ripemd160_f2, ripemd160_f2, t); for (i = 48; i < 64; i++) ripemd160_round(i, in, vals, ripemd160_f3, ripemd160_f1, t); for (i = 64; i < 80; i++) ripemd160_round(i, in, vals, ripemd160_f4, ripemd160_f0, t); t = out[1] + vals[2] + vals[8]; out[1] = out[2] + vals[3] + vals[9]; out[2] = out[3] + vals[4] + vals[5]; out[3] = out[4] + vals[0] + vals[6]; out[4] = out[0] + vals[1] + vals[7]; out[0] = t; } #define bswap32(v) \ (((v) >> 24) | (((v) >> 8) & 0xff00) | \ (((v) << 8) & 0xff0000) | ((v) << 24)) __kernel void calc_addrs(__global uint *hashes_out, __global bignum *z_heap, __global bignum *point_tmp, __global bignum *row_in, __global bignum *col_in, int ncols) { uint hash1[16]; uint hash2[16]; uint wl, wh; bignum rx, ry; bignum x1, y1, a, b, c, d, e, z; bn_word cy; int i, o; /* Load the row increment point */ o = get_global_id(0); rx = col_in[2*o]; ry = col_in[(2*o) + 1]; hashes_out += (o * 5 * ncols); z_heap += (o * 2 * ncols); point_tmp += (o * 2 * ncols); /* * Perform the EC point add. * Add the row increment to all row points. * Save the X,Y in the point temporary space. * Save the Z in the z_heap for modular inversion. */ for (i = 0; i < ncols; i++) { x1 = row_in[(2*i)]; y1 = row_in[(2*i) + 1]; bn_mod_sub(&z, &x1, &rx); z_heap[(ncols - 1) + i] = z; bn_mod_sub(&b, &y1, &ry); bn_mod_add(&c, &x1, &rx); bn_mod_add(&d, &y1, &ry); bn_mul_mont(&y1, &b, &b); bn_mul_mont(&x1, &z, &z); bn_mul_mont(&e, &c, &x1); bn_mod_sub(&y1, &y1, &e); point_tmp[2*i] = y1; bn_mod_lshift1(&y1); bn_mod_sub(&y1, &e, &y1); bn_mul_mont(&y1, &y1, &b); bn_mul_mont(&a, &x1, &z); bn_mul_mont(&c, &d, &a); bn_mod_sub(&y1, &y1, &c); cy = 0; if (bn_is_odd(y1)) cy = bn_uadd_c(&y1, &y1, modulus); bn_rshift1(&y1); if (cy) y1.d[BN_NWORDS-1] |= 0x80000000; point_tmp[(2*i)+1] = y1; } /* Compute the product hierarchy in z_heap */ for (i = ncols - 1; i > 0; i--) { a = z_heap[(i*2) - 1]; b = z_heap[(i*2)]; bn_mul_mont(&z, &a, &b); z_heap[i-1] = z; } /* Invert the root, fix up 1/ZR -> R/Z */ z = z_heap[0]; bn_mod_inverse(&z, &z); for (i = 0; i < BN_NWORDS; i++) a.d[i] = mont_rr[i]; bn_mul_mont(&z, &z, &a); bn_mul_mont(&z, &z, &a); z_heap[0] = z; for (i = 1; i < ncols; i++) { a = z_heap[i - 1]; b = z_heap[(i*2) - 1]; c = z_heap[i*2]; bn_mul_mont(&z, &a, &c); z_heap[(i*2) - 1] = z; bn_mul_mont(&z, &a, &b); z_heap[i*2] = z; } for (i = 0; i < ncols; i++) { /* * Multiply the coordinates by the inverted Z values. * Stash the coordinates in the hash buffer. * SHA-2 requires big endian, and our intended hash input * is big-endian, so swapping is unnecessary, but * inserting the format byte in front causes a headache. */ a = z_heap[(ncols - 1) + i]; bn_mul_mont(&b, &a, &a); /* Z^2 */ x1 = point_tmp[2*i]; bn_mul_mont(&x1, &x1, &b); /* X / Z^2 */ bn_from_mont(&x1, &x1); wh = 0x00000004; /* POINT_CONVERSION_UNCOMPRESSED */ for (o = 0; o < BN_NWORDS; o++) { wl = wh; wh = x1.d[(BN_NWORDS - 1) - o]; hash1[o] = (wl << 24) | (wh >> 8); } bn_mul_mont(&a, &a, &b); /* Z^3 */ y1 = point_tmp[(2*i)+1]; bn_mul_mont(&y1, &y1, &a); /* Y / Z^3 */ bn_from_mont(&y1, &y1); for (o = 0; o < BN_NWORDS; o++) { wl = wh; wh = y1.d[(BN_NWORDS - 1) - o]; hash1[BN_NWORDS + o] = (wl << 24) | (wh >> 8); } /* * Hash the first 64 bytes of the buffer */ sha2_256_init(hash2); sha2_256_block(hash2, hash1); /* * Hash the last byte of the buffer + SHA-2 padding */ hash1[0] = wh << 24 | 0x800000; hash1[1] = 0; hash1[2] = 0; hash1[3] = 0; hash1[4] = 0; hash1[5] = 0; hash1[6] = 0; hash1[7] = 0; hash1[8] = 0; hash1[9] = 0; hash1[10] = 0; hash1[11] = 0; hash1[12] = 0; hash1[13] = 0; hash1[14] = 0; hash1[15] = 65 * 8; sha2_256_block(hash2, hash1); /* * Hash the SHA-2 result with RIPEMD160 * Unfortunately, SHA-2 outputs big-endian, but * RIPEMD160 expects little-endian. Need to swap! */ for (o = 0; o < 8; o++) hash2[o] = bswap32(hash2[o]); hash2[8] = bswap32(0x80000000); hash2[9] = 0; hash2[10] = 0; hash2[11] = 0; hash2[12] = 0; hash2[13] = 0; hash2[14] = 32 * 8; hash2[15] = 0; ripemd160_init(hash1); ripemd160_block(hash1, hash2); /* Copy the hash to the output buffer */ for (o = 0; o < 5; o++) *(hashes_out++) = hash1[o]; } }