mirror of https://github.com/GOSTSec/sgminer
R4SAS
7 years ago
18 changed files with 152 additions and 4181 deletions
@ -1,60 +0,0 @@
@@ -1,60 +0,0 @@
|
||||
#include "config.h" |
||||
#include "miner.h" |
||||
|
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
#include <string.h> |
||||
|
||||
#include "sph/sph_sha2.h" |
||||
#include "sph/sph_ripemd.h" |
||||
|
||||
typedef struct { |
||||
sph_sha256_context sha256; |
||||
sph_sha512_context sha512; |
||||
sph_ripemd160_context ripemd; |
||||
} lbryhash_context_holder; |
||||
|
||||
void lbryhash(void* output, const void* input) |
||||
{ |
||||
uint32_t hashA[16], hashB[16], hashC[16]; |
||||
lbryhash_context_holder ctx; |
||||
|
||||
sph_sha256_init(&ctx.sha256); |
||||
sph_sha512_init(&ctx.sha512); |
||||
sph_ripemd160_init(&ctx.ripemd); |
||||
|
||||
sph_sha256 (&ctx.sha256, input, 112); |
||||
sph_sha256_close(&ctx.sha256, hashA); |
||||
|
||||
sph_sha256 (&ctx.sha256, hashA, 32); |
||||
sph_sha256_close(&ctx.sha256, hashA); |
||||
|
||||
sph_sha512 (&ctx.sha512, hashA, 32); |
||||
sph_sha512_close(&ctx.sha512, hashA); |
||||
|
||||
sph_ripemd160 (&ctx.ripemd, hashA, 32); |
||||
sph_ripemd160_close(&ctx.ripemd, hashB); |
||||
|
||||
sph_ripemd160 (&ctx.ripemd, hashA+8, 32); |
||||
sph_ripemd160_close(&ctx.ripemd, hashC); |
||||
|
||||
sph_sha256 (&ctx.sha256, hashB, 20); |
||||
sph_sha256 (&ctx.sha256, hashC, 20); |
||||
sph_sha256_close(&ctx.sha256, hashA); |
||||
|
||||
sph_sha256 (&ctx.sha256, hashA, 32); |
||||
sph_sha256_close(&ctx.sha256, hashA); |
||||
|
||||
memcpy(output, hashA, 32); |
||||
} |
||||
|
||||
void lbry_regenhash(struct work *work) |
||||
{ |
||||
uint32_t data[28]; |
||||
uint32_t *nonce = (uint32_t *)(work->data + 108); |
||||
uint32_t *ohash = (uint32_t *)(work->hash); |
||||
|
||||
be32enc_vect(data, (const uint32_t *)work->data, 27); |
||||
data[27] = htobe32(*nonce); |
||||
lbryhash(ohash, data); |
||||
} |
@ -1,8 +0,0 @@
@@ -1,8 +0,0 @@
|
||||
#ifndef LBRY_H |
||||
#define LBRY_H |
||||
|
||||
#include "miner.h" |
||||
|
||||
extern void lbry_regenhash(struct work *work); |
||||
|
||||
#endif |
@ -1,119 +0,0 @@
@@ -1,119 +0,0 @@
|
||||
/*-
|
||||
* Copyright 2015 djm34 |
||||
* All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in the |
||||
* documentation and/or other materials provided with the distribution. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||||
* SUCH DAMAGE. |
||||
*/ |
||||
|
||||
#include "config.h" |
||||
#include "miner.h" |
||||
|
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
#include <string.h> |
||||
|
||||
#include "algorithm/yescrypt_core.h" |
||||
|
||||
static const uint32_t diff1targ = 0x0000ffff; |
||||
|
||||
/* Used externally as confirmation of correct OCL code */ |
||||
int yescrypt_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce) |
||||
{ |
||||
uint32_t tmp_hash7, Htarg = le32toh(((const uint32_t *)ptarget)[7]); |
||||
uint32_t data[20], ohash[8]; |
||||
|
||||
be32enc_vect(data, (const uint32_t *)pdata, 19); |
||||
data[19] = htobe32(nonce); |
||||
yescrypt_hash((unsigned char*)data,(unsigned char*)ohash); |
||||
|
||||
tmp_hash7 = be32toh(ohash[7]); |
||||
|
||||
applog(LOG_DEBUG, "htarget %08lx diff1 %08lx hash %08lx", |
||||
(long unsigned int)Htarg, |
||||
(long unsigned int)diff1targ, |
||||
(long unsigned int)tmp_hash7); |
||||
|
||||
if (tmp_hash7 > diff1targ) |
||||
return -1; |
||||
|
||||
if (tmp_hash7 > Htarg) |
||||
return 0; |
||||
|
||||
return 1; |
||||
} |
||||
|
||||
void yescrypt_regenhash(struct work *work) |
||||
{ |
||||
uint32_t data[20]; |
||||
uint32_t *nonce = (uint32_t *)(work->data + 76); |
||||
uint32_t *ohash = (uint32_t *)(work->hash); |
||||
|
||||
be32enc_vect(data, (const uint32_t *)work->data, 19); |
||||
data[19] = htobe32(*nonce); |
||||
|
||||
yescrypt_hash((unsigned char*)data, (unsigned char*)ohash); |
||||
|
||||
} |
||||
|
||||
|
||||
bool scanhash_yescrypt(struct thr_info *thr, const unsigned char __maybe_unused *pmidstate, |
||||
unsigned char *pdata, unsigned char __maybe_unused *phash1, |
||||
unsigned char __maybe_unused *phash, const unsigned char *ptarget, |
||||
uint32_t max_nonce, uint32_t *last_nonce, uint32_t n) |
||||
{ |
||||
uint32_t *nonce = (uint32_t *)(pdata + 76); |
||||
uint32_t data[20]; |
||||
uint32_t tmp_hash7; |
||||
uint32_t Htarg = le32toh(((const uint32_t *)ptarget)[7]); |
||||
bool ret = false; |
||||
|
||||
be32enc_vect(data, (const uint32_t *)pdata, 19); |
||||
|
||||
while (1) |
||||
{ |
||||
uint32_t ostate[8]; |
||||
|
||||
*nonce = ++n; |
||||
data[19] = (n); |
||||
|
||||
yescrypt_hash((unsigned char*)data, (unsigned char*)ostate); |
||||
tmp_hash7 = (ostate[7]); |
||||
|
||||
applog(LOG_INFO, "data7 %08lx", (long unsigned int)data[7]); |
||||
|
||||
if (unlikely(tmp_hash7 <= Htarg)) |
||||
{ |
||||
((uint32_t *)pdata)[19] = htobe32(n); |
||||
*last_nonce = n; |
||||
ret = true; |
||||
break; |
||||
} |
||||
|
||||
if (unlikely((n >= max_nonce) || thr->work_restart)) |
||||
{ |
||||
*last_nonce = n; |
||||
break; |
||||
} |
||||
} |
||||
|
||||
return ret; |
||||
} |
@ -1,10 +0,0 @@
@@ -1,10 +0,0 @@
|
||||
#ifndef YESCRYPT_H |
||||
#define YESCRYPT_H |
||||
|
||||
#include "miner.h" |
||||
#define YESCRYPT_SCRATCHBUF_SIZE (128 * 2048 * 8 ) //uchar
|
||||
#define YESCRYP_SECBUF_SIZE (128*64*8) |
||||
extern int yescrypt_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce); |
||||
extern void yescrypt_regenhash(struct work *work); |
||||
|
||||
#endif /* YESCRYPT_H */ |
@ -1,376 +0,0 @@
@@ -1,376 +0,0 @@
|
||||
/*-
|
||||
* Copyright 2009 Colin Percival |
||||
* Copyright 2013,2014 Alexander Peslyak |
||||
* All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted provided that the following conditions |
||||
* are met: |
||||
* 1. Redistributions of source code must retain the above copyright |
||||
* notice, this list of conditions and the following disclaimer. |
||||
* 2. Redistributions in binary form must reproduce the above copyright |
||||
* notice, this list of conditions and the following disclaimer in the |
||||
* documentation and/or other materials provided with the distribution. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||||
* SUCH DAMAGE. |
||||
* |
||||
* This file was originally written by Colin Percival as part of the Tarsnap |
||||
* online backup system. |
||||
*/ |
||||
#ifndef _YESCRYPT_H_ |
||||
#define _YESCRYPT_H_ |
||||
|
||||
#include <stdint.h> |
||||
#include <stdlib.h> /* for size_t */ |
||||
#include <errno.h> |
||||
|
||||
#ifdef __cplusplus |
||||
extern "C" { |
||||
#endif |
||||
|
||||
|
||||
//extern void yescrypt_hash_sp(const unsigned char *input, unsigned char *output);
|
||||
extern void yescrypt_hash(const unsigned char *input, unsigned char *output); |
||||
|
||||
|
||||
|
||||
/**
|
||||
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): |
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
||||
* p, buflen) and write the result into buf. The parameters r, p, and buflen |
||||
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N |
||||
* must be a power of 2 greater than 1. |
||||
* |
||||
* Return 0 on success; or -1 on error. |
||||
* |
||||
* MT-safe as long as buf is local to the thread. |
||||
*/ |
||||
extern int crypto_scrypt(const uint8_t * __passwd, size_t __passwdlen, |
||||
const uint8_t * __salt, size_t __saltlen, |
||||
uint64_t __N, uint32_t __r, uint32_t __p, |
||||
uint8_t * __buf, size_t __buflen); |
||||
|
||||
/**
|
||||
* Internal type used by the memory allocator. Please do not use it directly. |
||||
* Use yescrypt_shared_t and yescrypt_local_t as appropriate instead, since |
||||
* they might differ from each other in a future version. |
||||
*/ |
||||
typedef struct { |
||||
void * base, * aligned; |
||||
size_t base_size, aligned_size; |
||||
} yescrypt_region_t; |
||||
|
||||
/**
|
||||
* Types for shared (ROM) and thread-local (RAM) data structures. |
||||
*/ |
||||
typedef yescrypt_region_t yescrypt_shared1_t; |
||||
typedef struct { |
||||
yescrypt_shared1_t shared1; |
||||
uint32_t mask1; |
||||
} yescrypt_shared_t; |
||||
typedef yescrypt_region_t yescrypt_local_t; |
||||
|
||||
/**
|
||||
* Possible values for yescrypt_init_shared()'s flags argument. |
||||
*/ |
||||
typedef enum { |
||||
YESCRYPT_SHARED_DEFAULTS = 0, |
||||
YESCRYPT_SHARED_PREALLOCATED = 0x100 |
||||
} yescrypt_init_shared_flags_t; |
||||
|
||||
/**
|
||||
* Possible values for the flags argument of yescrypt_kdf(), |
||||
* yescrypt_gensalt_r(), yescrypt_gensalt(). These may be OR'ed together, |
||||
* except that YESCRYPT_WORM and YESCRYPT_RW are mutually exclusive. |
||||
* Please refer to the description of yescrypt_kdf() below for the meaning of |
||||
* these flags. |
||||
*/ |
||||
typedef enum { |
||||
/* public */ |
||||
YESCRYPT_WORM = 0, |
||||
YESCRYPT_RW = 1, |
||||
YESCRYPT_PARALLEL_SMIX = 2, |
||||
YESCRYPT_PWXFORM = 4, |
||||
/* private */ |
||||
__YESCRYPT_INIT_SHARED_1 = 0x10000, |
||||
__YESCRYPT_INIT_SHARED_2 = 0x20000, |
||||
__YESCRYPT_INIT_SHARED = 0x30000 |
||||
} yescrypt_flags_t; |
||||
|
||||
#define YESCRYPT_KNOWN_FLAGS \ |
||||
(YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | YESCRYPT_PWXFORM | \ |
||||
__YESCRYPT_INIT_SHARED) |
||||
|
||||
/**
|
||||
* yescrypt_init_shared(shared, param, paramlen, N, r, p, flags, mask, |
||||
* buf, buflen): |
||||
* Optionally allocate memory for and initialize the shared (ROM) data |
||||
* structure. The parameters N, r, and p must satisfy the same conditions as |
||||
* with crypto_scrypt(). param and paramlen specify a local parameter with |
||||
* which the ROM is seeded. If buf is not NULL, then it is used to return |
||||
* buflen bytes of message digest for the initialized ROM (the caller may use |
||||
* this to verify that the ROM has been computed in the same way that it was on |
||||
* a previous run). |
||||
* |
||||
* Return 0 on success; or -1 on error. |
||||
* |
||||
* If bit YESCRYPT_SHARED_PREALLOCATED in flags is set, then memory for the |
||||
* ROM is assumed to have been preallocated by the caller, with |
||||
* shared->shared1.aligned being the start address of the ROM and |
||||
* shared->shared1.aligned_size being its size (which must be consistent with |
||||
* N, r, and p). This may be used e.g. when the ROM is to be placed in a SysV |
||||
* shared memory segment allocated by the caller. |
||||
* |
||||
* mask controls the frequency of ROM accesses by yescrypt_kdf(). Normally it |
||||
* should be set to 1, to interleave RAM and ROM accesses, which works well |
||||
* when both regions reside in the machine's RAM anyway. Other values may be |
||||
* used e.g. when the ROM is memory-mapped from a disk file. Recommended mask |
||||
* values are powers of 2 minus 1 or minus 2. Here's the effect of some mask |
||||
* values: |
||||
* mask value ROM accesses in SMix 1st loop ROM accesses in SMix 2nd loop |
||||
* 0 0 1/2 |
||||
* 1 1/2 1/2 |
||||
* 2 0 1/4 |
||||
* 3 1/4 1/4 |
||||
* 6 0 1/8 |
||||
* 7 1/8 1/8 |
||||
* 14 0 1/16 |
||||
* 15 1/16 1/16 |
||||
* 1022 0 1/1024 |
||||
* 1023 1/1024 1/1024 |
||||
* |
||||
* Actual computation of the ROM contents may be avoided, if you don't intend |
||||
* to use a ROM but need a dummy shared structure, by calling this function |
||||
* with NULL, 0, 0, 0, 0, YESCRYPT_SHARED_DEFAULTS, 0, NULL, 0 for the |
||||
* arguments starting with param and on. |
||||
* |
||||
* MT-safe as long as shared is local to the thread. |
||||
*/ |
||||
extern int yescrypt_init_shared(yescrypt_shared_t * __shared, |
||||
const uint8_t * __param, size_t __paramlen, |
||||
uint64_t __N, uint32_t __r, uint32_t __p, |
||||
yescrypt_init_shared_flags_t __flags, uint32_t __mask, |
||||
uint8_t * __buf, size_t __buflen); |
||||
|
||||
/**
|
||||
* yescrypt_free_shared(shared): |
||||
* Free memory that had been allocated with yescrypt_init_shared(). |
||||
* |
||||
* Return 0 on success; or -1 on error. |
||||
* |
||||
* MT-safe as long as shared is local to the thread. |
||||
*/ |
||||
extern int yescrypt_free_shared(yescrypt_shared_t * __shared); |
||||
|
||||
/**
|
||||
* yescrypt_init_local(local): |
||||
* Initialize the thread-local (RAM) data structure. Actual memory allocation |
||||
* is currently fully postponed until a call to yescrypt_kdf() or yescrypt_r(). |
||||
* |
||||
* Return 0 on success; or -1 on error. |
||||
* |
||||
* MT-safe as long as local is local to the thread. |
||||
*/ |
||||
extern int yescrypt_init_local(yescrypt_local_t * __local); |
||||
|
||||
/**
|
||||
* yescrypt_free_local(local): |
||||
* Free memory that may have been allocated for an initialized thread-local |
||||
* (RAM) data structure. |
||||
* |
||||
* Return 0 on success; or -1 on error. |
||||
* |
||||
* MT-safe as long as local is local to the thread. |
||||
*/ |
||||
extern int yescrypt_free_local(yescrypt_local_t * __local); |
||||
|
||||
/**
|
||||
* yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen, |
||||
* N, r, p, t, flags, buf, buflen): |
||||
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, |
||||
* p, buflen), or a revision of scrypt as requested by flags and shared, and |
||||
* write the result into buf. The parameters N, r, p, and buflen must satisfy |
||||
* the same conditions as with crypto_scrypt(). t controls computation time |
||||
* while not affecting peak memory usage. shared and flags may request |
||||
* special modes as described below. local is the thread-local data |
||||
* structure, allowing to preserve and reuse a memory allocation across calls, |
||||
* thereby reducing its overhead. |
||||
* |
||||
* Return 0 on success; or -1 on error. |
||||
* |
||||
* t controls computation time. t = 0 is optimal in terms of achieving the |
||||
* highest area-time for ASIC attackers. Thus, higher computation time, if |
||||
* affordable, is best achieved by increasing N rather than by increasing t. |
||||
* However, if the higher memory usage (which goes along with higher N) is not |
||||
* affordable, or if fine-tuning of the time is needed (recall that N must be a |
||||
* power of 2), then t = 1 or above may be used to increase time while staying |
||||
* at the same peak memory usage. t = 1 increases the time by 25% and |
||||
* decreases the normalized area-time to 96% of optimal. (Of course, in |
||||
* absolute terms the area-time increases with higher t. It's just that it |
||||
* would increase slightly more with higher N*r rather than with higher t.) |
||||
* t = 2 increases the time by another 20% and decreases the normalized |
||||
* area-time to 89% of optimal. Thus, these two values are reasonable to use |
||||
* for fine-tuning. Values of t higher than 2 result in further increase in |
||||
* time while reducing the efficiency much further (e.g., down to around 50% of |
||||
* optimal for t = 5, which runs 3 to 4 times slower than t = 0, with exact |
||||
* numbers varying by the flags settings). |
||||
* |
||||
* Classic scrypt is available by setting t = 0 and flags to YESCRYPT_WORM and |
||||
* passing a dummy shared structure (see the description of |
||||
* yescrypt_init_shared() above for how to produce one). In this mode, the |
||||
* thread-local memory region (RAM) is first sequentially written to and then |
||||
* randomly read from. This algorithm is friendly towards time-memory |
||||
* tradeoffs (TMTO), available both to defenders (albeit not in this |
||||
* implementation) and to attackers. |
||||
* |
||||
* Setting YESCRYPT_RW adds extra random reads and writes to the thread-local |
||||
* memory region (RAM), which makes TMTO a lot less efficient. This may be |
||||
* used to slow down the kinds of attackers who would otherwise benefit from |
||||
* classic scrypt's efficient TMTO. Since classic scrypt's TMTO allows not |
||||
* only for the tradeoff, but also for a decrease of attacker's area-time (by |
||||
* up to a constant factor), setting YESCRYPT_RW substantially increases the |
||||
* cost of attacks in area-time terms as well. Yet another benefit of it is |
||||
* that optimal area-time is reached at an earlier time than with classic |
||||
* scrypt, and t = 0 actually corresponds to this earlier completion time, |
||||
* resulting in quicker hash computations (and thus in higher request rate |
||||
* capacity). Due to these properties, YESCRYPT_RW should almost always be |
||||
* set, except when compatibility with classic scrypt or TMTO-friendliness are |
||||
* desired. |
||||
* |
||||
* YESCRYPT_PARALLEL_SMIX moves parallelism that is present with p > 1 to a |
||||
* lower level as compared to where it is in classic scrypt. This reduces |
||||
* flexibility for efficient computation (for both attackers and defenders) by |
||||
* requiring that, short of resorting to TMTO, the full amount of memory be |
||||
* allocated as needed for the specified p, regardless of whether that |
||||
* parallelism is actually being fully made use of or not. (For comparison, a |
||||
* single instance of classic scrypt may be computed in less memory without any |
||||
* CPU time overhead, but in more real time, by not making full use of the |
||||
* parallelism.) This may be desirable when the defender has enough memory |
||||
* with sufficiently low latency and high bandwidth for efficient full parallel |
||||
* execution, yet the required memory size is high enough that some likely |
||||
* attackers might end up being forced to choose between using higher latency |
||||
* memory than they could use otherwise (waiting for data longer) or using TMTO |
||||
* (waiting for data more times per one hash computation). The area-time cost |
||||
* for other kinds of attackers (who would use the same memory type and TMTO |
||||
* factor or no TMTO either way) remains roughly the same, given the same |
||||
* running time for the defender. In the TMTO-friendly YESCRYPT_WORM mode, as |
||||
* long as the defender has enough memory that is just as fast as the smaller |
||||
* per-thread regions would be, doesn't expect to ever need greater |
||||
* flexibility (except possibly via TMTO), and doesn't need backwards |
||||
* compatibility with classic scrypt, there are no other serious drawbacks to |
||||
* this setting. In the YESCRYPT_RW mode, which is meant to discourage TMTO, |
||||
* this new approach to parallelization makes TMTO less inefficient. (This is |
||||
* an unfortunate side-effect of avoiding some random writes, as we have to in |
||||
* order to allow for parallel threads to access a common memory region without |
||||
* synchronization overhead.) Thus, in this mode this setting poses an extra |
||||
* tradeoff of its own (higher area-time cost for a subset of attackers vs. |
||||
* better TMTO resistance). Setting YESCRYPT_PARALLEL_SMIX also changes the |
||||
* way the running time is to be controlled from N*r*p (for classic scrypt) to |
||||
* N*r (in this modification). All of this applies only when p > 1. For |
||||
* p = 1, this setting is a no-op. |
||||
* |
||||
* Passing a real shared structure, with ROM contents previously computed by |
||||
* yescrypt_init_shared(), enables the use of ROM and requires YESCRYPT_RW for |
||||
* the thread-local RAM region. In order to allow for initialization of the |
||||
* ROM to be split into a separate program, the shared->shared1.aligned and |
||||
* shared->shared1.aligned_size fields may be set by the caller of |
||||
* yescrypt_kdf() manually rather than with yescrypt_init_shared(). |
||||
* |
||||
* local must be initialized with yescrypt_init_local(). |
||||
* |
||||
* MT-safe as long as local and buf are local to the thread. |
||||
*/ |
||||
extern int yescrypt_kdf(const yescrypt_shared_t * __shared, |
||||
yescrypt_local_t * __local, |
||||
const uint8_t * __passwd, size_t __passwdlen, |
||||
const uint8_t * __salt, size_t __saltlen, |
||||
uint64_t __N, uint32_t __r, uint32_t __p, uint32_t __t, |
||||
yescrypt_flags_t __flags, |
||||
uint8_t * __buf, size_t __buflen); |
||||
|
||||
/**
|
||||
* yescrypt_r(shared, local, passwd, passwdlen, setting, buf, buflen): |
||||
* Compute and encode an scrypt or enhanced scrypt hash of passwd given the |
||||
* parameters and salt value encoded in setting. If the shared structure is |
||||
* not dummy, a ROM is used and YESCRYPT_RW is required. Otherwise, whether to |
||||
* use the YESCRYPT_WORM (classic scrypt) or YESCRYPT_RW (time-memory tradeoff |
||||
* discouraging modification) is determined by the setting string. shared and |
||||
* local must be initialized as described above for yescrypt_kdf(). buf must |
||||
* be large enough (as indicated by buflen) to hold the encoded hash string. |
||||
* |
||||
* Return the encoded hash string on success; or NULL on error. |
||||
* |
||||
* MT-safe as long as local and buf are local to the thread. |
||||
*/ |
||||
extern uint8_t * yescrypt_r(const yescrypt_shared_t * __shared, |
||||
yescrypt_local_t * __local, |
||||
const uint8_t * __passwd, size_t __passwdlen, |
||||
const uint8_t * __setting, |
||||
uint8_t * __buf, size_t __buflen); |
||||
|
||||
/**
|
||||
* yescrypt(passwd, setting): |
||||
* Compute and encode an scrypt or enhanced scrypt hash of passwd given the |
||||
* parameters and salt value encoded in setting. Whether to use the |
||||
* YESCRYPT_WORM (classic scrypt) or YESCRYPT_RW (time-memory tradeoff |
||||
* discouraging modification) is determined by the setting string. |
||||
* |
||||
* Return the encoded hash string on success; or NULL on error. |
||||
* |
||||
* This is a crypt(3)-like interface, which is simpler to use than |
||||
* yescrypt_r(), but it is not MT-safe, it does not allow for the use of a ROM, |
||||
* and it is slower than yescrypt_r() for repeated calls because it allocates |
||||
* and frees memory on each call. |
||||
* |
||||
* MT-unsafe. |
||||
*/ |
||||
extern uint8_t * yescrypt(const uint8_t * __passwd, const uint8_t * __setting); |
||||
|
||||
/**
|
||||
* yescrypt_gensalt_r(N_log2, r, p, flags, src, srclen, buf, buflen): |
||||
* Generate a setting string for use with yescrypt_r() and yescrypt() by |
||||
* encoding into it the parameters N_log2 (which is to be set to base 2 |
||||
* logarithm of the desired value for N), r, p, flags, and a salt given by src |
||||
* (of srclen bytes). buf must be large enough (as indicated by buflen) to |
||||
* hold the setting string. |
||||
* |
||||
* Return the setting string on success; or NULL on error. |
||||
* |
||||
* MT-safe as long as buf is local to the thread. |
||||
*/ |
||||
extern uint8_t * yescrypt_gensalt_r( |
||||
uint32_t __N_log2, uint32_t __r, uint32_t __p, |
||||
yescrypt_flags_t __flags, |
||||
const uint8_t * __src, size_t __srclen, |
||||
uint8_t * __buf, size_t __buflen); |
||||
|
||||
/**
|
||||
* yescrypt_gensalt(N_log2, r, p, flags, src, srclen): |
||||
* Generate a setting string for use with yescrypt_r() and yescrypt(). This |
||||
* function is the same as yescrypt_gensalt_r() except that it uses a static |
||||
* buffer and thus is not MT-safe. |
||||
* |
||||
* Return the setting string on success; or NULL on error. |
||||
* |
||||
* MT-unsafe. |
||||
*/ |
||||
extern uint8_t * yescrypt_gensalt( |
||||
uint32_t __N_log2, uint32_t __r, uint32_t __p, |
||||
yescrypt_flags_t __flags, |
||||
const uint8_t * __src, size_t __srclen); |
||||
|
||||
#ifdef __cplusplus |
||||
} |
||||
#endif |
||||
|
||||
#endif /* !_YESCRYPT_H_ */ |
@ -1,360 +0,0 @@
@@ -1,360 +0,0 @@
|
||||
/*-
|
||||
* Copyright 2013,2014 Alexander Peslyak |
||||
* All rights reserved. |
||||
* |
||||
* Redistribution and use in source and binary forms, with or without |
||||
* modification, are permitted. |
||||
* |
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
||||
* SUCH DAMAGE. |
||||
*/ |
||||
|
||||
#include <stdint.h> |
||||
#include <string.h> |
||||
#include <stdio.h> |
||||
#include "algorithm/yescrypt_core.h" |
||||
|
||||
#define BYTES2CHARS(bytes) \ |
||||
((((bytes) * 8) + 5) / 6) |
||||
|
||||
#define HASH_SIZE 32 /* bytes */ |
||||
#define HASH_LEN BYTES2CHARS(HASH_SIZE) /* base-64 chars */ |
||||
#define YESCRYPT_FLAGS (YESCRYPT_RW | YESCRYPT_PWXFORM) |
||||
static const char * const itoa64 = |
||||
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
||||
|
||||
static uint8_t * encode64_uint32(uint8_t * dst, size_t dstlen, |
||||
uint32_t src, uint32_t srcbits) |
||||
{ |
||||
uint32_t bit; |
||||
|
||||
for (bit = 0; bit < srcbits; bit += 6) { |
||||
if (dstlen < 1) |
||||
return NULL; |
||||
*dst++ = itoa64[src & 0x3f]; |
||||
dstlen--; |
||||
src >>= 6; |
||||
} |
||||
|
||||
return dst; |
||||
} |
||||
|
||||
static uint8_t * encode64(uint8_t * dst, size_t dstlen, |
||||
const uint8_t * src, size_t srclen) |
||||
{ |
||||
size_t i; |
||||
|
||||
for (i = 0; i < srclen; ) { |
||||
uint8_t * dnext; |
||||
uint32_t value = 0, bits = 0; |
||||
do { |
||||
value |= (uint32_t)src[i++] << bits; |
||||
bits += 8; |
||||
} while (bits < 24 && i < srclen); |
||||
dnext = encode64_uint32(dst, dstlen, value, bits); |
||||
if (!dnext) |
||||
return NULL; |
||||
dstlen -= dnext - dst; |
||||
dst = dnext; |
||||
} |
||||
|
||||
return dst; |
||||
} |
||||
|
||||
static int decode64_one(uint32_t * dst, uint8_t src) |
||||
{ |
||||
const char * ptr = strchr(itoa64, src); |
||||
if (ptr) { |
||||
*dst = ptr - itoa64; |
||||
return 0; |
||||
} |
||||
*dst = 0; |
||||
return -1; |
||||
} |
||||
|
||||
static const uint8_t * decode64_uint32(uint32_t * dst, uint32_t dstbits, |
||||
const uint8_t * src) |
||||
{ |
||||
uint32_t bit; |
||||
uint32_t value; |
||||
|
||||
value = 0; |
||||
for (bit = 0; bit < dstbits; bit += 6) { |
||||
uint32_t one; |
||||
if (decode64_one(&one, *src)) { |
||||
*dst = 0; |
||||
return NULL; |
||||
} |
||||
src++; |
||||
value |= one << bit; |
||||
} |
||||
|
||||
*dst = value; |
||||
return src; |
||||
} |
||||
|
||||
uint8_t * |
||||
yescrypt_r(const yescrypt_shared_t * shared, yescrypt_local_t * local, |
||||
const uint8_t * passwd, size_t passwdlen, |
||||
const uint8_t * setting, |
||||
uint8_t * buf, size_t buflen) |
||||
{ |
||||
uint8_t hash[HASH_SIZE]; |
||||
const uint8_t * src, * salt; |
||||
uint8_t * dst; |
||||
size_t prefixlen, saltlen, need; |
||||
uint8_t version; |
||||
uint64_t N; |
||||
uint32_t r, p; |
||||
yescrypt_flags_t flags = YESCRYPT_WORM; |
||||
fflush(stdout); |
||||
if (setting[0] != '$' || setting[1] != '7') |
||||
{ |
||||
fflush(stdout); |
||||
return NULL; |
||||
} |
||||
fflush(stdout); |
||||
src = setting + 2; |
||||
fflush(stdout); |
||||
switch ((version = *src)) { |
||||
case '$': |
||||
fflush(stdout); |
||||
break; |
||||
case 'X': |
||||
src++; |
||||
flags = YESCRYPT_RW; |
||||
fflush(stdout); |
||||
break; |
||||
default: |
||||
{ |
||||
fflush(stdout); |
||||
return NULL; |
||||
} |
||||
} |
||||
|
||||
fflush(stdout); |
||||
if (*src != '$') { |
||||
uint32_t decoded_flags; |
||||
if (decode64_one(&decoded_flags, *src)) |
||||
|
||||
{ |
||||
fflush(stdout); |
||||
return NULL; |
||||
} |
||||
flags = decoded_flags; |
||||
if (*++src != '$') |
||||
{ |
||||
fflush(stdout); |
||||
return NULL; |
||||
} |
||||
} |
||||
src++; |
||||
|
||||
{ |
||||
uint32_t N_log2; |
||||
if (decode64_one(&N_log2, *src)) |
||||
{ |
||||
return NULL; |
||||
} |
||||
src++; |
||||
N = (uint64_t)1 << N_log2; |
||||
} |
||||
|
||||
src = decode64_uint32(&r, 30, src); |
||||
if (!src) |
||||
{ |
||||
return NULL; |
||||
} |
||||
|
||||
src = decode64_uint32(&p, 30, src); |
||||
if (!src) |
||||
{ |
||||
return NULL; |
||||
} |
||||
|
||||
prefixlen = src - setting; |
||||
|
||||
salt = src; |
||||
src = (uint8_t *)strrchr((char *)salt, '$'); |
||||
if (src) |
||||
saltlen = src - salt; |
||||
else |
||||
saltlen = strlen((char *)salt); |
||||
|
||||
need = prefixlen + saltlen + 1 + HASH_LEN + 1; |
||||
if (need > buflen || need < saltlen) |
||||
|
||||
{ |
||||
fflush(stdout); |
||||
return NULL; |
||||
} |
||||
|
||||
fflush(stdout); |
||||
if (yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen, |
||||
N, r, p, 0, flags, hash, sizeof(hash))) |
||||
{ |
||||
fflush(stdout); |
||||
return NULL; |
||||
} |
||||
|
||||
dst = buf; |
||||
memcpy(dst, setting, prefixlen + saltlen); |
||||
dst += prefixlen + saltlen; |
||||
*dst++ = '$'; |
||||
|
||||
dst = encode64(dst, buflen - (dst - buf), hash, sizeof(hash)); |
||||
/* Could zeroize hash[] here, but yescrypt_kdf() doesn't zeroize its
|
||||
* memory allocations yet anyway. */ |
||||
if (!dst || dst >= buf + buflen) /* Can't happen */ |
||||
{ |
||||
return NULL; |
||||
} |
||||
|
||||
*dst = 0; /* NUL termination */ |
||||
fflush(stdout); |
||||
return buf; |
||||
} |
||||
|
||||
uint8_t * |
||||
yescrypt(const uint8_t * passwd, const uint8_t * setting) |
||||
{ |
||||
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1 + HASH_LEN + 1]; |
||||
yescrypt_shared_t shared; |
||||
yescrypt_local_t local; |
||||
uint8_t * retval; |
||||
if (yescrypt_init_shared(&shared, NULL, 0, |
||||
0, 0, 0, YESCRYPT_SHARED_DEFAULTS, 0, NULL, 0)) |
||||
return NULL; |
||||
if (yescrypt_init_local(&local)) { |
||||
yescrypt_free_shared(&shared); |
||||
return NULL; |
||||
} |
||||
retval = yescrypt_r(&shared, &local, |
||||
passwd, 80, setting, buf, sizeof(buf)); |
||||
// printf("hashse='%s'\n", (char *)retval);
|
||||
if (yescrypt_free_local(&local)) { |
||||
yescrypt_free_shared(&shared); |
||||
return NULL; |
||||
} |
||||
if (yescrypt_free_shared(&shared)) |
||||
return NULL; |
||||
return retval; |
||||
|
||||
} |
||||
|
||||
uint8_t * |
||||
yescrypt_gensalt_r(uint32_t N_log2, uint32_t r, uint32_t p, |
||||
yescrypt_flags_t flags, |
||||
const uint8_t * src, size_t srclen, |
||||
uint8_t * buf, size_t buflen) |
||||
{ |
||||
uint8_t * dst; |
||||
size_t prefixlen = 3 + 1 + 5 + 5; |
||||
size_t saltlen = BYTES2CHARS(srclen); |
||||
size_t need; |
||||
|
||||
if (p == 1) |
||||
flags &= ~YESCRYPT_PARALLEL_SMIX; |
||||
|
||||
if (flags) { |
||||
if (flags & ~0x3f) |
||||
return NULL; |
||||
|
||||
prefixlen++; |
||||
if (flags != YESCRYPT_RW) |
||||
prefixlen++; |
||||
} |
||||
|
||||
need = prefixlen + saltlen + 1; |
||||
if (need > buflen || need < saltlen || saltlen < srclen) |
||||
return NULL; |
||||
|
||||
if (N_log2 > 63 || ((uint64_t)r * (uint64_t)p >= (1U << 30))) |
||||
return NULL; |
||||
|
||||
dst = buf; |
||||
*dst++ = '$'; |
||||
*dst++ = '7'; |
||||
if (flags) { |
||||
*dst++ = 'X'; /* eXperimental, subject to change */ |
||||
if (flags != YESCRYPT_RW) |
||||
*dst++ = itoa64[flags]; |
||||
} |
||||
*dst++ = '$'; |
||||
|
||||
*dst++ = itoa64[N_log2]; |
||||
|
||||
dst = encode64_uint32(dst, buflen - (dst - buf), r, 30); |
||||
if (!dst) /* Can't happen */ |
||||
return NULL; |
||||
|
||||
dst = encode64_uint32(dst, buflen - (dst - buf), p, 30); |
||||
if (!dst) /* Can't happen */ |
||||
return NULL; |
||||
|
||||
dst = encode64(dst, buflen - (dst - buf), src, srclen); |
||||
if (!dst || dst >= buf + buflen) /* Can't happen */ |
||||
return NULL; |
||||
|
||||
*dst = 0; /* NUL termination */ |
||||
|
||||
return buf; |
||||
} |
||||
|
||||
uint8_t * |
||||
yescrypt_gensalt(uint32_t N_log2, uint32_t r, uint32_t p, |
||||
yescrypt_flags_t flags, |
||||
const uint8_t * src, size_t srclen) |
||||
{ |
||||
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1]; |
||||
return yescrypt_gensalt_r(N_log2, r, p, flags, src, srclen, |
||||
buf, sizeof(buf)); |
||||
} |
||||
|
||||
static int |
||||
yescrypt_bsty(const uint8_t * passwd, size_t passwdlen, |
||||
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, |
||||
uint8_t * buf, size_t buflen) |
||||
{ |
||||
static __thread int initialized = 0; |
||||
static __thread yescrypt_shared_t shared; |
||||
static __thread yescrypt_local_t local; |
||||
|
||||
// static __declspec(thread) int initialized = 0;
|
||||
// static __declspec(thread) yescrypt_shared_t shared;
|
||||
// static __declspec(thread) yescrypt_local_t local;
|
||||
|
||||
int retval; |
||||
if (!initialized) { |
||||
/* "shared" could in fact be shared, but it's simpler to keep it private
|
||||
* along with "local". It's dummy and tiny anyway. */ |
||||
if (yescrypt_init_shared(&shared, NULL, 0, |
||||
0, 0, 0, YESCRYPT_SHARED_DEFAULTS, 0, NULL, 0)) |
||||
return -1; |
||||
if (yescrypt_init_local(&local)) { |
||||
yescrypt_free_shared(&shared); |
||||
return -1; |
||||
} |
||||
initialized = 1; |
||||
} |
||||
retval = yescrypt_kdf(&shared, &local, |
||||
passwd, passwdlen, salt, saltlen, N, r, p, 0, YESCRYPT_FLAGS, |
||||
buf, buflen); |
||||
|
||||
return retval; |
||||
} |
||||
|
||||
void yescrypt_hash(const unsigned char *input, unsigned char *output) |
||||
{ |
||||
|
||||
yescrypt_bsty((const uint8_t *)input, 80, (const uint8_t *) input, 80, 2048, 8, 1, (uint8_t *)output, 32); |
||||
} |
@ -1,179 +0,0 @@
@@ -1,179 +0,0 @@
|
||||
#include "sha256.cl" |
||||
#include "wolf-sha512.cl" |
||||
#include "ripemd160.cl" |
||||
|
||||
#define SWAP32(x) as_uint(as_uchar4(x).s3210) |
||||
#define SWAP64(x) as_ulong(as_uchar8(x).s76543210) |
||||
|
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search(__global const uint *input, __global uint8 *ctx) |
||||
{ |
||||
// SHA256 takes 16 uints of input per block - we have 112 bytes to process |
||||
// 8 * 16 == 64, meaning two block transforms. |
||||
|
||||
uint SHA256Buf[16]; |
||||
uint gid = get_global_id(0); |
||||
|
||||
// Remember the last four is the nonce - so 108 bytes / 4 bytes per dword |
||||
#pragma unroll |
||||
for(int i = 0; i < 16; ++i) SHA256Buf[i] = SWAP32(input[i]); |
||||
|
||||
|
||||
|
||||
// SHA256 initialization constants |
||||
uint8 outbuf = (uint8)(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); |
||||
|
||||
#pragma unroll |
||||
for(int i = 0; i < 3; ++i) |
||||
{ |
||||
if(i == 1) |
||||
{ |
||||
#pragma unroll |
||||
for(int i = 0; i < 11; ++i) SHA256Buf[i] = SWAP32(input[i + 16]); |
||||
SHA256Buf[11] = SWAP32(gid); |
||||
SHA256Buf[12] = 0x80000000; |
||||
SHA256Buf[13] = 0x00000000; |
||||
SHA256Buf[14] = 0x00000000; |
||||
SHA256Buf[15] = 0x00000380; |
||||
} |
||||
if(i == 2) |
||||
{ |
||||
((uint8 *)SHA256Buf)[0] = outbuf; |
||||
SHA256Buf[8] = 0x80000000; |
||||
#pragma unroll |
||||
for(int i = 9; i < 15; ++i) SHA256Buf[i] = 0x00000000; |
||||
SHA256Buf[15] = 0x00000100; |
||||
outbuf = (uint8)(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); |
||||
} |
||||
outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
} |
||||
|
||||
/* |
||||
outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
#pragma unroll |
||||
for(int i = 0; i < 11; ++i) SHA256Buf[i] = SWAP32(input[i + 16]); |
||||
SHA256Buf[11] = SWAP32(gid); |
||||
SHA256Buf[12] = 0x80000000; |
||||
SHA256Buf[13] = 0x00000000; |
||||
SHA256Buf[14] = 0x00000000; |
||||
SHA256Buf[15] = 0x00000380; |
||||
|
||||
outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
((uint8 *)SHA256Buf)[0] = outbuf; |
||||
SHA256Buf[8] = 0x80000000; |
||||
for(int i = 9; i < 15; ++i) SHA256Buf[i] = 0x00000000; |
||||
SHA256Buf[15] = 0x00000100; |
||||
outbuf = (uint8)(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); |
||||
outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
*/ |
||||
|
||||
|
||||
/* |
||||
|
||||
//outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
//outbuf = sha256_round(((uint16 *)SHA256Buf)[1], outbuf); |
||||
|
||||
// outbuf would normall be SWAP32'd here, but it'll need it again |
||||
// once we use it as input to the next SHA256, so it negates. |
||||
|
||||
((uint8 *)SHA256Buf)[0] = outbuf; |
||||
SHA256Buf[8] = 0x80000000; |
||||
for(int i = 9; i < 15; ++i) SHA256Buf[i] = 0x00000000; |
||||
SHA256Buf[15] = 0x00000100; |
||||
|
||||
outbuf = (uint8)(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); |
||||
outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
*/ |
||||
|
||||
|
||||
|
||||
outbuf.s0 = SWAP32(outbuf.s0); |
||||
outbuf.s1 = SWAP32(outbuf.s1); |
||||
outbuf.s2 = SWAP32(outbuf.s2); |
||||
outbuf.s3 = SWAP32(outbuf.s3); |
||||
outbuf.s4 = SWAP32(outbuf.s4); |
||||
outbuf.s5 = SWAP32(outbuf.s5); |
||||
outbuf.s6 = SWAP32(outbuf.s6); |
||||
outbuf.s7 = SWAP32(outbuf.s7); |
||||
|
||||
ctx[get_global_id(0) - get_global_offset(0)] = outbuf; |
||||
} |
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search1(__global uint8 *ctx) |
||||
{ |
||||
ulong W[16] = { 0UL }, SHA512Out[8]; |
||||
uint SHA256Buf[16]; |
||||
uint8 outbuf = ctx[get_global_id(0) - get_global_offset(0)]; |
||||
|
||||
((uint8 *)W)[0] = outbuf; |
||||
|
||||
for(int i = 0; i < 4; ++i) W[i] = SWAP64(W[i]); |
||||
|
||||
W[4] = 0x8000000000000000UL; |
||||
W[15] = 0x0000000000000100UL; |
||||
|
||||
for(int i = 0; i < 8; ++i) SHA512Out[i] = SHA512_INIT[i]; |
||||
|
||||
SHA512Block(W, SHA512Out); |
||||
|
||||
for(int i = 0; i < 8; ++i) SHA512Out[i] = SWAP64(SHA512Out[i]); |
||||
|
||||
uint RMD160_0[16] = { 0U }; |
||||
uint RMD160_1[16] = { 0U }; |
||||
uint RMD160_0_Out[5], RMD160_1_Out[5]; |
||||
|
||||
for(int i = 0; i < 4; ++i) |
||||
{ |
||||
((ulong *)RMD160_0)[i] = SHA512Out[i]; |
||||
((ulong *)RMD160_1)[i] = SHA512Out[i + 4]; |
||||
} |
||||
|
||||
RMD160_0[8] = RMD160_1[8] = 0x00000080; |
||||
RMD160_0[14] = RMD160_1[14] = 0x00000100; |
||||
|
||||
for(int i = 0; i < 5; ++i) |
||||
{ |
||||
RMD160_0_Out[i] = RMD160_IV[i]; |
||||
RMD160_1_Out[i] = RMD160_IV[i]; |
||||
} |
||||
|
||||
RIPEMD160_ROUND_BODY(RMD160_0, RMD160_0_Out); |
||||
RIPEMD160_ROUND_BODY(RMD160_1, RMD160_1_Out); |
||||
|
||||
for(int i = 0; i < 5; ++i) SHA256Buf[i] = SWAP32(RMD160_0_Out[i]); |
||||
for(int i = 5; i < 10; ++i) SHA256Buf[i] = SWAP32(RMD160_1_Out[i - 5]); |
||||
SHA256Buf[10] = 0x80000000; |
||||
|
||||
for(int i = 11; i < 15; ++i) SHA256Buf[i] = 0x00000000U; |
||||
|
||||
SHA256Buf[15] = 0x00000140; |
||||
|
||||
outbuf = (uint8)(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); |
||||
outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
|
||||
ctx[get_global_id(0) - get_global_offset(0)] = outbuf; |
||||
} |
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search2(__global uint8 *ctx, __global uint *output, ulong target) |
||||
{ |
||||
uint SHA256Buf[16] = { 0U }; |
||||
uint gid = get_global_id(0); |
||||
uint8 outbuf = ctx[get_global_id(0) - get_global_offset(0)]; |
||||
|
||||
((uint8 *)SHA256Buf)[0] = outbuf; |
||||
SHA256Buf[8] = 0x80000000; |
||||
for(int i = 9; i < 15; ++i) SHA256Buf[i] = 0x00000000; |
||||
SHA256Buf[15] = 0x00000100; |
||||
|
||||
outbuf = (uint8)(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); |
||||
outbuf = sha256_round(((uint16 *)SHA256Buf)[0], outbuf); |
||||
|
||||
outbuf.s6 = SWAP32(outbuf.s6); |
||||
outbuf.s7 = SWAP32(outbuf.s7); |
||||
|
||||
if(as_ulong(outbuf.s67) <= target) |
||||
output[atomic_inc(output+0xFF)] = SWAP32(gid); |
||||
} |
@ -1,314 +0,0 @@
@@ -1,314 +0,0 @@
|
||||
/* |
||||
* "yescrypt" kernel implementation. |
||||
* |
||||
* ==========================(LICENSE BEGIN)============================ |
||||
* |
||||
* Copyright (c) 2015 djm34 |
||||
* |
||||
* Permission is hereby granted, free of charge, to any person obtaining |
||||
* a copy of this software and associated documentation files (the |
||||
* "Software"), to deal in the Software without restriction, including |
||||
* without limitation the rights to use, copy, modify, merge, publish, |
||||
* distribute, sublicense, and/or sell copies of the Software, and to |
||||
* permit persons to whom the Software is furnished to do so, subject to |
||||
* the following conditions: |
||||
* |
||||
* The above copyright notice and this permission notice shall be |
||||
* included in all copies or substantial portions of the Software. |
||||
* |
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
||||
* |
||||
* ===========================(LICENSE END)============================= |
||||
* |
||||
* @author djm34 |
||||
*/ |
||||
#if !defined(cl_khr_byte_addressable_store) |
||||
#error "Device does not support unaligned stores" |
||||
#endif |
||||
|
||||
#include "yescrypt_essential.cl" |
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, __global uchar* buff1, __global uchar* buff2, __global uchar* buff3, const uint target) |
||||
{ |
||||
|
||||
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16 *prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)*(get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global uint8 *sha256tokeep = (__global uint8 *)(buff3 + (8 * sizeof(uint)*(get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
|
||||
|
||||
|
||||
uint nonce = (get_global_id(0)); |
||||
uint data[20]; |
||||
uint16 in; |
||||
uint8 state1, state2; |
||||
// uint8 sha256tokeep; |
||||
|
||||
// ulong16 Bdev[8]; // will require an additional buffer |
||||
((uint16 *)data)[0] = ((__global const uint16 *)input)[0]; |
||||
((uint4 *)data)[4] = ((__global const uint4 *)input)[4]; |
||||
// for (int i = 0; i<20; i++) { data[i] = SWAP32(data[i]); } |
||||
// if (nonce == 10) { printf("data %08x %08x\n", data[0], data[1]); } |
||||
uint8 passwd = sha256_80(data, nonce); |
||||
//pbkdf |
||||
in.lo = pad1.lo ^ passwd; |
||||
in.hi = pad1.hi; |
||||
state1 = sha256_Transform(in, H256); |
||||
|
||||
in.lo = pad2.lo ^ passwd; |
||||
in.hi = pad2.hi; |
||||
state2 = sha256_Transform(in, H256); |
||||
|
||||
in = ((uint16*)data)[0]; |
||||
state1 = sha256_Transform(in, state1); |
||||
#pragma unroll 1 |
||||
for (int i = 0; i<8; i++) |
||||
{ |
||||
uint16 result; |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 1; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.lo = swapvec(sha256_Transform(in, state2)); |
||||
if (i == 0) sha256tokeep[0] = result.lo; |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 2; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.hi = swapvec(sha256_Transform(in, state2)); |
||||
Bdev[i].lo = as_ulong8(shuffle(result)); |
||||
// Bdev[i].lo = as_ulong8(result); |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 3; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.lo = swapvec(sha256_Transform(in, state2)); |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 4; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.hi = swapvec(sha256_Transform(in, state2)); |
||||
|
||||
|
||||
Bdev[i].hi = as_ulong8(shuffle(result)); |
||||
// Bdev[i].hi = as_ulong8(result); |
||||
} |
||||
|
||||
//mixing1 |
||||
|
||||
prevstate[0] = Bdev[0]; |
||||
Bdev[0] = blockmix_salsa8_small2(Bdev[0]); |
||||
prevstate[1] = Bdev[0]; |
||||
Bdev[0] = blockmix_salsa8_small2(Bdev[0]); |
||||
|
||||
uint n = 1; |
||||
#pragma unroll 1 |
||||
for (uint i = 2; i < 64; i++) |
||||
{ |
||||
|
||||
prevstate[i] = Bdev[0]; |
||||
|
||||
if ((i&(i - 1)) == 0) n = n << 1; |
||||
|
||||
uint j = as_uint2(Bdev[0].hi.s0).x & (n - 1); |
||||
|
||||
j += i - n; |
||||
Bdev[0] ^= prevstate[j]; |
||||
|
||||
Bdev[0] = blockmix_salsa8_small2(Bdev[0]); |
||||
} |
||||
|
||||
|
||||
} |
||||
|
||||
|
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search1(__global uchar *buffer1, __global uchar *buffer2) |
||||
{ |
||||
} |
||||
|
||||
|
||||
|
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search2(__global uchar *padcache, __global uchar *buff1, __global uchar *buff2) |
||||
{ |
||||
|
||||
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16* prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
|
||||
|
||||
for (int i = 0; i<8; i++) |
||||
hashbuffer[i] = Bdev[i]; |
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
|
||||
|
||||
for (int i = 0; i<8; i++) |
||||
hashbuffer[i + 8] = Bdev[i]; |
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
int n = 1; |
||||
#pragma unroll 1 |
||||
for (int i = 2; i < 2048; i ++) |
||||
{ |
||||
|
||||
for (int k = 0; k<8; k++) |
||||
(hashbuffer + 8 * i)[k] = Bdev[k]; |
||||
|
||||
|
||||
if ((i&(i - 1)) == 0) n = n << 1; |
||||
|
||||
uint j = as_uint2(Bdev[7].hi.s0).x & (n - 1); |
||||
j += i - n; |
||||
|
||||
for (int k = 0; k < 8; k++) |
||||
Bdev[k] ^= (hashbuffer + 8 * j)[k]; |
||||
|
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
} |
||||
} |
||||
|
||||
/* |
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search3(__global uchar *buffer1, __global uchar *buffer2) |
||||
{ |
||||
} |
||||
*/ |
||||
|
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search3(__global uchar *padcache, __global uchar *buff1, __global uchar *buff2) |
||||
{ |
||||
|
||||
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16* prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
|
||||
|
||||
#pragma unroll 1 |
||||
for (int z = 0; z < 684; z++) |
||||
{ |
||||
|
||||
uint j = as_uint2(Bdev[7].hi.s0).x & 2047; |
||||
|
||||
|
||||
for (int k = 0; k < 8; k++) |
||||
Bdev[k] ^= (hashbuffer + 8 * j)[k]; |
||||
|
||||
if (z<682) |
||||
for (int k = 0; k<8; k++) |
||||
(hashbuffer + 8 * j)[k] = Bdev[k]; |
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
//// |
||||
} |
||||
|
||||
} |
||||
|
||||
/* |
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search5(__global uchar *buffer1, __global uchar *buffer2) |
||||
{ |
||||
} |
||||
*/ |
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search4(__global const uchar* restrict input, __global uint* restrict output, __global uchar *buff2,__global uchar* buff3, const uint target) |
||||
{ |
||||
|
||||
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global uint8 *sha256tokeep = (__global uint8 *)(buff3 + (8 * sizeof(uint)*(get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
|
||||
uint nonce = (get_global_id(0)); |
||||
|
||||
|
||||
uint data[20]; |
||||
((uint16 *)data)[0] = ((__global const uint16 *)input)[0]; |
||||
((uint4 *)data)[4] = ((__global const uint4 *)input)[4]; |
||||
// for (int i = 0; i<20; i++) { data[i] = SWAP32(data[i]); } |
||||
uint8 swpass = swapvec(sha256tokeep[0]); |
||||
uint16 in; |
||||
uint8 state1,state2; |
||||
in.lo = pad1.lo ^ swpass; |
||||
in.hi = pad1.hi; |
||||
|
||||
|
||||
state1 = sha256_Transform(in, H256); |
||||
|
||||
in.lo = pad2.lo ^ swpass; |
||||
in.hi = pad2.hi; |
||||
state2 = sha256_Transform(in, H256); |
||||
|
||||
#pragma unroll 1 |
||||
for (int i = 0; i<8; i++) { |
||||
in = unshuffle(Bdev[i].lo); |
||||
in = swapvec16(in); |
||||
state1 = sha256_Transform(in, state1); |
||||
in = unshuffle(Bdev[i].hi); |
||||
in = swapvec16(in); |
||||
state1 = sha256_Transform(in, state1); |
||||
} |
||||
in = pad5; |
||||
state1 = sha256_Transform(in, state1); |
||||
in.lo = state1; |
||||
in.hi = pad4; |
||||
uint8 res = sha256_Transform(in, state2); |
||||
|
||||
//hmac and final sha |
||||
|
||||
in.lo = pad1.lo ^ res; |
||||
in.hi = pad1.hi; |
||||
state1 = sha256_Transform(in, H256); |
||||
in.lo = pad2.lo ^ res; |
||||
in.hi = pad2.hi; |
||||
state2 = sha256_Transform(in, H256); |
||||
in = ((uint16*)data)[0]; |
||||
state1 = sha256_Transform(in, state1); |
||||
in = padsha80; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = get_global_id(0); |
||||
in.sf = 0x480; |
||||
state1 = sha256_Transform(in, state1); |
||||
in.lo = state1; |
||||
in.hi = pad4; |
||||
state1 = sha256_Transform(in, state2); |
||||
// state2 = H256; |
||||
in.lo = state1; |
||||
in.hi = pad4; |
||||
in.sf = 0x100; |
||||
res = sha256_Transform(in, H256); |
||||
|
||||
|
||||
if (SWAP32(res.s7) <= (target)) |
||||
output[atomic_inc(output + 0xFF)] = (nonce); |
||||
|
||||
} |
@ -1,253 +0,0 @@
@@ -1,253 +0,0 @@
|
||||
/* |
||||
* "yescrypt" kernel implementation. |
||||
* |
||||
* ==========================(LICENSE BEGIN)============================ |
||||
* |
||||
* Copyright (c) 2015 djm34 |
||||
* |
||||
* Permission is hereby granted, free of charge, to any person obtaining |
||||
* a copy of this software and associated documentation files (the |
||||
* "Software"), to deal in the Software without restriction, including |
||||
* without limitation the rights to use, copy, modify, merge, publish, |
||||
* distribute, sublicense, and/or sell copies of the Software, and to |
||||
* permit persons to whom the Software is furnished to do so, subject to |
||||
* the following conditions: |
||||
* |
||||
* The above copyright notice and this permission notice shall be |
||||
* included in all copies or substantial portions of the Software. |
||||
* |
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
||||
* |
||||
* ===========================(LICENSE END)============================= |
||||
* |
||||
* @author djm34 |
||||
*/ |
||||
#if !defined(cl_khr_byte_addressable_store) |
||||
#error "Device does not support unaligned stores" |
||||
#endif |
||||
|
||||
#include "yescrypt_essential.cl" |
||||
|
||||
|
||||
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) |
||||
__kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, __global uchar* buff1, __global uchar* buff2, const uint target) |
||||
{ |
||||
|
||||
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16 *prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)*(get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); |
||||
|
||||
|
||||
|
||||
uint nonce = (get_global_id(0)); |
||||
uint data[20]; |
||||
uint16 in; |
||||
uint8 state1, state2; |
||||
uint8 sha256tokeep; |
||||
|
||||
((uint16 *)data)[0] = ((__global const uint16 *)input)[0]; |
||||
((uint4 *)data)[4] = ((__global const uint4 *)input)[4]; |
||||
for (int i = 0; i<20; i++) { data[i] = SWAP32(data[i]); } |
||||
// if (nonce == 10) { printf("data %08x %08x\n", data[0], data[1]); } |
||||
uint8 passwd = sha256_80(data, nonce); |
||||
//pbkdf |
||||
in.lo = pad1.lo ^ passwd; |
||||
in.hi = pad1.hi; |
||||
state1 = sha256_Transform(in, H256); |
||||
|
||||
in.lo = pad2.lo ^ passwd; |
||||
in.hi = pad2.hi; |
||||
state2 = sha256_Transform(in, H256); |
||||
|
||||
in = ((uint16*)data)[0]; |
||||
state1 = sha256_Transform(in, state1); |
||||
#pragma unroll 1 |
||||
for (int i = 0; i<8; i++) |
||||
{ |
||||
uint16 result; |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 1; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.lo = swapvec(sha256_Transform(in, state2)); |
||||
if (i == 0) sha256tokeep = result.lo; |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 2; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.hi = swapvec(sha256_Transform(in, state2)); |
||||
Bdev[i].lo = as_ulong8(shuffle(result)); |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 3; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.lo = swapvec(sha256_Transform(in, state2)); |
||||
in = pad3; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
in.s4 = 4 * i + 4; |
||||
in.lo = sha256_Transform(in, state1); |
||||
in.hi = pad4; |
||||
result.hi = swapvec(sha256_Transform(in, state2)); |
||||
|
||||
|
||||
Bdev[i].hi = as_ulong8(shuffle(result)); |
||||
} |
||||
|
||||
//mixing1 |
||||
|
||||
prevstate[0] = Bdev[0]; |
||||
Bdev[0] = blockmix_salsa8_small2(Bdev[0]); |
||||
prevstate[1] = Bdev[0]; |
||||
Bdev[0] = blockmix_salsa8_small2(Bdev[0]); |
||||
|
||||
uint n = 1; |
||||
#pragma unroll 1 |
||||
for (uint i = 2; i < 64; i++) |
||||
{ |
||||
|
||||
prevstate[i] = Bdev[0]; |
||||
|
||||
if ((i&(i - 1)) == 0) n = n << 1; |
||||
|
||||
uint j = as_uint2(Bdev[0].hi.s0).x & (n - 1); |
||||
|
||||
j += i - n; |
||||
Bdev[0] ^= prevstate[j]; |
||||
|
||||
Bdev[0] = blockmix_salsa8_small2(Bdev[0]); |
||||
} |
||||
|
||||
|
||||
for (int i = 0; i<8; i++) |
||||
hashbuffer[i] = Bdev[i]; |
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
|
||||
|
||||
for (int i = 0; i<8; i++) |
||||
hashbuffer[i + 8] = Bdev[i]; |
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
n = 1; |
||||
#pragma unroll 1 |
||||
for (int i = 2; i < 2048; i++) |
||||
{ |
||||
|
||||
for (int k = 0; k<8; k++) |
||||
(hashbuffer + 8 * i)[k] = Bdev[k]; |
||||
|
||||
|
||||
if ((i&(i - 1)) == 0) n = n << 1; |
||||
|
||||
uint j = as_uint2(Bdev[7].hi.s0).x & (n - 1); |
||||
j += i - n; |
||||
|
||||
for (int k = 0; k < 8; k++) |
||||
Bdev[k] ^= (hashbuffer + 8 * j)[k]; |
||||
|
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
} |
||||
|
||||
|
||||
#pragma unroll 1 |
||||
for (int z = 0; z < 684; z++) |
||||
{ |
||||
|
||||
uint j = as_uint2(Bdev[7].hi.s0).x & 2047; |
||||
|
||||
|
||||
for (int k = 0; k < 8; k++) |
||||
Bdev[k] ^= (hashbuffer + 8 * j)[k]; |
||||
|
||||
if (z<682) |
||||
for (int k = 0; k<8; k++) |
||||
(hashbuffer + 8 * j)[k] = Bdev[k]; |
||||
|
||||
blockmix_pwxform((__global ulong8*)Bdev, prevstate); |
||||
//// |
||||
} |
||||
|
||||
|
||||
|
||||
uint8 swpass = swapvec(sha256tokeep); |
||||
// uint16 in; |
||||
// uint8 state1, state2; |
||||
in.lo = pad1.lo ^ swpass; |
||||
in.hi = pad1.hi; |
||||
|
||||
|
||||
state1 = sha256_Transform(in, H256); |
||||
|
||||
in.lo = pad2.lo ^ swpass; |
||||
in.hi = pad2.hi; |
||||
state2 = sha256_Transform(in, H256); |
||||
|
||||
#pragma unroll 1 |
||||
for (int i = 0; i<8; i++) { |
||||
in = unshuffle(Bdev[i].lo); |
||||
in = swapvec16(in); |
||||
state1 = sha256_Transform(in, state1); |
||||
in = unshuffle(Bdev[i].hi); |
||||
in = swapvec16(in); |
||||
state1 = sha256_Transform(in, state1); |
||||
} |
||||
in = pad5; |
||||
state1 = sha256_Transform(in, state1); |
||||
in.lo = state1; |
||||
in.hi = pad4; |
||||
uint8 res = sha256_Transform(in, state2); |
||||
|
||||
//hmac and final sha |
||||
|
||||
in.lo = pad1.lo ^ res; |
||||
in.hi = pad1.hi; |
||||
state1 = sha256_Transform(in, H256); |
||||
in.lo = pad2.lo ^ res; |
||||
in.hi = pad2.hi; |
||||
state2 = sha256_Transform(in, H256); |
||||
in = ((uint16*)data)[0]; |
||||
state1 = sha256_Transform(in, state1); |
||||
in = padsha80; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = get_global_id(0); |
||||
in.sf = 0x480; |
||||
state1 = sha256_Transform(in, state1); |
||||
in.lo = state1; |
||||
in.hi = pad4; |
||||
state1 = sha256_Transform(in, state2); |
||||
// state2 = H256; |
||||
in.lo = state1; |
||||
in.hi = pad4; |
||||
in.sf = 0x100; |
||||
res = sha256_Transform(in, H256); |
||||
|
||||
|
||||
if (SWAP32(res.s7) <= (target)) |
||||
output[atomic_inc(output + 0xFF)] = (nonce); |
||||
|
||||
} |
||||
|
@ -1,760 +0,0 @@
@@ -1,760 +0,0 @@
|
||||
/* |
||||
* "yescrypt" kernel implementation. |
||||
* |
||||
* ==========================(LICENSE BEGIN)============================ |
||||
* |
||||
* Copyright (c) 2015 djm34 |
||||
* |
||||
* Permission is hereby granted, free of charge, to any person obtaining |
||||
* a copy of this software and associated documentation files (the |
||||
* "Software"), to deal in the Software without restriction, including |
||||
* without limitation the rights to use, copy, modify, merge, publish, |
||||
* distribute, sublicense, and/or sell copies of the Software, and to |
||||
* permit persons to whom the Software is furnished to do so, subject to |
||||
* the following conditions: |
||||
* |
||||
* The above copyright notice and this permission notice shall be |
||||
* included in all copies or substantial portions of the Software. |
||||
* |
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
||||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
||||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
||||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY |
||||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
||||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE |
||||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
||||
* |
||||
* ===========================(LICENSE END)============================= |
||||
* |
||||
* @author djm34 |
||||
*/ |
||||
|
||||
#define ROL32(x, n) rotate(x, (uint) n) |
||||
#define SWAP32(a) (as_uint(as_uchar4(a).wzyx)) |
||||
//#define ROL32(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) |
||||
#define HASH_MEMORY 4096 |
||||
|
||||
|
||||
#define SALSA(a,b,c,d) do { \ |
||||
t =a+d; b^=ROL32(t, 7U); \ |
||||
t =b+a; c^=ROL32(t, 9U); \ |
||||
t =c+b; d^=ROL32(t, 13U); \ |
||||
t =d+c; a^=ROL32(t, 18U); \ |
||||
} while(0) |
||||
|
||||
|
||||
#define SALSA_CORE(state) do { \ |
||||
\ |
||||
SALSA(state.s0,state.s4,state.s8,state.sc); \ |
||||
SALSA(state.s5,state.s9,state.sd,state.s1); \ |
||||
SALSA(state.sa,state.se,state.s2,state.s6); \ |
||||
SALSA(state.sf,state.s3,state.s7,state.sb); \ |
||||
SALSA(state.s0,state.s1,state.s2,state.s3); \ |
||||
SALSA(state.s5,state.s6,state.s7,state.s4); \ |
||||
SALSA(state.sa,state.sb,state.s8,state.s9); \ |
||||
SALSA(state.sf,state.sc,state.sd,state.se); \ |
||||
} while(0) |
||||
|
||||
#define uSALSA_CORE(state) do { \ |
||||
\ |
||||
SALSA(state.s0,state.s4,state.s8,state.sc); \ |
||||
SALSA(state.s1,state.s5,state.s9,state.sd); \ |
||||
SALSA(state.s2,state.s6,state.sa,state.se); \ |
||||
SALSA(state.s3,state.s7,state.sb,state.sf); \ |
||||
SALSA(state.s0,state.sd,state.sa,state.s7); \ |
||||
SALSA(state.s1,state.se,state.sb,state.s4); \ |
||||
SALSA(state.s2,state.sf,state.s8,state.s5); \ |
||||
SALSA(state.s3,state.sc,state.s9,state.s6); \ |
||||
} while(0) |
||||
|
||||
|
||||
#define unshuffle(state) (as_uint16(state).s0da741eb852fc963) |
||||
|
||||
#define shuffle(state) (as_uint16(state).s05af49e38d27c16b) |
||||
|
||||
static __constant uint16 pad1 = |
||||
{ |
||||
0x36363636, 0x36363636, 0x36363636, 0x36363636, |
||||
0x36363636, 0x36363636, 0x36363636, 0x36363636, |
||||
0x36363636, 0x36363636, 0x36363636, 0x36363636, |
||||
0x36363636, 0x36363636, 0x36363636, 0x36363636 |
||||
}; |
||||
|
||||
static __constant uint16 pad2 = |
||||
{ |
||||
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, |
||||
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, |
||||
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, |
||||
0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c, 0x5c5c5c5c |
||||
}; |
||||
|
||||
static __constant uint16 pad5 = |
||||
{ |
||||
0x00000001, 0x80000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x00002220 |
||||
}; |
||||
|
||||
static __constant uint16 pad3 = |
||||
{ |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x80000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x000004a0 |
||||
}; |
||||
|
||||
static __constant uint16 padsha80 = |
||||
{ |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x80000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000280 |
||||
}; |
||||
|
||||
static __constant uint8 pad4 = |
||||
{ |
||||
0x80000000, 0x00000000, 0x00000000, 0x00000000, |
||||
0x00000000, 0x00000000, 0x00000000, 0x00000300 |
||||
}; |
||||
|
||||
|
||||
|
||||
static __constant uint8 H256 = { |
||||
0x6A09E667, 0xBB67AE85, 0x3C6EF372, |
||||
0xA54FF53A, 0x510E527F, 0x9B05688C, |
||||
0x1F83D9AB, 0x5BE0CD19 |
||||
}; |
||||
|
||||
inline uint8 swapvec(uint8 buf) |
||||
{ |
||||
uint8 vec; |
||||
vec.s0 = SWAP32(buf.s0); |
||||
vec.s1 = SWAP32(buf.s1); |
||||
vec.s2 = SWAP32(buf.s2); |
||||
vec.s3 = SWAP32(buf.s3); |
||||
vec.s4 = SWAP32(buf.s4); |
||||
vec.s5 = SWAP32(buf.s5); |
||||
vec.s6 = SWAP32(buf.s6); |
||||
vec.s7 = SWAP32(buf.s7); |
||||
return vec; |
||||
} |
||||
|
||||
|
||||
|
||||
inline uint16 swapvec16(uint16 buf) |
||||
{ |
||||
uint16 vec; |
||||
vec.s0 = SWAP32(buf.s0); |
||||
vec.s1 = SWAP32(buf.s1); |
||||
vec.s2 = SWAP32(buf.s2); |
||||
vec.s3 = SWAP32(buf.s3); |
||||
vec.s4 = SWAP32(buf.s4); |
||||
vec.s5 = SWAP32(buf.s5); |
||||
vec.s6 = SWAP32(buf.s6); |
||||
vec.s7 = SWAP32(buf.s7); |
||||
vec.s8 = SWAP32(buf.s8); |
||||
vec.s9 = SWAP32(buf.s9); |
||||
vec.sa = SWAP32(buf.sa); |
||||
vec.sb = SWAP32(buf.sb); |
||||
vec.sc = SWAP32(buf.sc); |
||||
vec.sd = SWAP32(buf.sd); |
||||
vec.se = SWAP32(buf.se); |
||||
vec.sf = SWAP32(buf.sf); |
||||
return vec; |
||||
} |
||||
|
||||
ulong8 salsa20_8(uint16 Bx) |
||||
{ |
||||
uint t; |
||||
uint16 st = Bx; |
||||
uSALSA_CORE(st); |
||||
uSALSA_CORE(st); |
||||
uSALSA_CORE(st); |
||||
uSALSA_CORE(st); |
||||
return(as_ulong8(st + Bx)); |
||||
} |
||||
|
||||
ulong8 salsa20_8n(uint16 Bx) |
||||
{ |
||||
uint t; |
||||
uint16 st = Bx; |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
SALSA_CORE(st); |
||||
return(as_ulong8(st + Bx)); |
||||
} |
||||
|
||||
|
||||
ulong16 blockmix_salsa8_small2(ulong16 Bin) |
||||
{ |
||||
ulong8 X = Bin.hi; |
||||
X ^= Bin.lo; |
||||
X = salsa20_8(as_uint16(X)); |
||||
Bin.lo = X; |
||||
X ^= Bin.hi; |
||||
X = salsa20_8(as_uint16(X)); |
||||
Bin.hi = X; |
||||
return(Bin); |
||||
} |
||||
/* |
||||
uint16 salsa20_8_2(uint16 Bx) |
||||
{ |
||||
uint t; |
||||
uint16 st = Bx; |
||||
uSALSA_CORE(st); |
||||
uSALSA_CORE(st); |
||||
uSALSA_CORE(st); |
||||
uSALSA_CORE(st); |
||||
return(st + Bx); |
||||
} |
||||
|
||||
ulong16 blockmix_salsa8_small2(ulong16 Bin) |
||||
{ |
||||
uint16 X = as_uint16(Bin.hi); |
||||
X ^= as_uint16(Bin.lo); |
||||
X = salsa20_8_2(as_uint16(X)); |
||||
Bin.lo = as_ulong8(X); |
||||
X ^= as_uint16(Bin.hi); |
||||
X = salsa20_8_2(as_uint16(X)); |
||||
Bin.hi = as_ulong8(X); |
||||
return(Bin); |
||||
} |
||||
*/ |
||||
|
||||
|
||||
inline ulong2 madd4long2(uint4 a, uint4 b) |
||||
{ |
||||
uint4 result; |
||||
result.x = a.x*a.y + b.x; |
||||
result.y = b.y + mad_hi(a.x, a.y, b.x); |
||||
result.z = a.z*a.w + b.z; |
||||
result.w = b.w + mad_hi(a.z, a.w, b.z); |
||||
return as_ulong2(result); |
||||
} |
||||
|
||||
inline ulong2 madd4long3(uint4 a, ulong2 b) |
||||
{ |
||||
ulong2 result; |
||||
result.x = (ulong)a.x*(ulong)a.y + b.x; |
||||
result.y = (ulong)a.z*(ulong)a.w + b.y; |
||||
return result; |
||||
} |
||||
|
||||
|
||||
inline ulong8 block_pwxform_long_old(ulong8 Bout, __global ulong16 *prevstate) |
||||
{ |
||||
|
||||
ulong2 vec = Bout.lo.lo; |
||||
|
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = ((__global ulong2*)(prevstate ))[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = ((__global ulong2*)(prevstate + 32))[x.y]; |
||||
|
||||
vec ^= p1; |
||||
} |
||||
Bout.lo.lo = vec; |
||||
vec = Bout.lo.hi; |
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
|
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = ((__global ulong2*)(prevstate))[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = ((__global ulong2*)(prevstate + 32))[x.y]; |
||||
|
||||
vec ^= p1; |
||||
} |
||||
Bout.lo.hi = vec; |
||||
|
||||
vec = Bout.hi.lo; |
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = ((__global ulong2*)(prevstate))[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = ((__global ulong2*)(prevstate + 32))[x.y]; |
||||
vec ^= p1; |
||||
} |
||||
Bout.hi.lo = vec; |
||||
vec = Bout.hi.hi; |
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = ((__global ulong2*)(prevstate))[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = ((__global ulong2*)(prevstate + 32))[x.y]; |
||||
|
||||
vec ^= p1; |
||||
} |
||||
Bout.hi.hi = vec; |
||||
|
||||
return(Bout); |
||||
} |
||||
|
||||
inline ulong8 block_pwxform_long(ulong8 Bout, __global ulong2 *prevstate) |
||||
{ |
||||
|
||||
ulong2 vec = Bout.lo.lo; |
||||
|
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = prevstate[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = (prevstate + 32*8)[x.y]; |
||||
|
||||
vec ^= p1; |
||||
} |
||||
Bout.lo.lo = vec; |
||||
vec = Bout.lo.hi; |
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
|
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = prevstate[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = (prevstate + 32 * 8)[x.y]; |
||||
|
||||
vec ^= p1; |
||||
} |
||||
Bout.lo.hi = vec; |
||||
|
||||
vec = Bout.hi.lo; |
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = prevstate[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = (prevstate + 32 * 8)[x.y]; |
||||
vec ^= p1; |
||||
} |
||||
Bout.hi.lo = vec; |
||||
vec = Bout.hi.hi; |
||||
for (int i = 0; i < 6; i++) |
||||
{ |
||||
ulong2 p0, p1; |
||||
uint2 x = as_uint2((vec.x >> 4) & 0x000000FF000000FF); |
||||
p0 = prevstate[x.x]; |
||||
vec = madd4long3(as_uint4(vec), p0); |
||||
p1 = (prevstate + 32 * 8)[x.y]; |
||||
|
||||
vec ^= p1; |
||||
} |
||||
Bout.hi.hi = vec; |
||||
|
||||
return(Bout); |
||||
} |
||||
|
||||
|
||||
|
||||
|
||||
inline void blockmix_pwxform(__global ulong8 *Bin, __global ulong16 *prevstate) |
||||
{ |
||||
Bin[0] ^= Bin[15]; |
||||
Bin[0] = block_pwxform_long_old(Bin[0], prevstate); |
||||
#pragma unroll 1 |
||||
for (int i = 1; i < 16; i++) |
||||
{ |
||||
Bin[i] ^= Bin[i - 1]; |
||||
Bin[i] = block_pwxform_long_old(Bin[i], prevstate); |
||||
} |
||||
Bin[15] = salsa20_8(as_uint16(Bin[15])); |
||||
} |
||||
|
||||
#define SHR(x, n) ((x) >> n) |
||||
|
||||
|
||||
#define S0(x) (ROL32(x, 25) ^ ROL32(x, 14) ^ SHR(x, 3)) |
||||
#define S1(x) (ROL32(x, 15) ^ ROL32(x, 13) ^ SHR(x, 10)) |
||||
|
||||
#define S2(x) (ROL32(x, 30) ^ ROL32(x, 19) ^ ROL32(x, 10)) |
||||
#define S3(x) (ROL32(x, 26) ^ ROL32(x, 21) ^ ROL32(x, 7)) |
||||
|
||||
#define P(a,b,c,d,e,f,g,h,x,K) \ |
||||
{ \ |
||||
temp1 = h + S3(e) + F1(e,f,g) + (K + x); \ |
||||
d += temp1; h = temp1 + S2(a) + F0(a,b,c); \ |
||||
} |
||||
|
||||
#define PLAST(a,b,c,d,e,f,g,h,x,K) \ |
||||
{ \ |
||||
d += h + S3(e) + F1(e,f,g) + (x + K); \ |
||||
} |
||||
|
||||
#define F0(y, x, z) bitselect(z, y, z ^ x) |
||||
#define F1(x, y, z) bitselect(z, y, x) |
||||
|
||||
#define R0 (W0 = S1(W14) + W9 + S0(W1) + W0) |
||||
#define R1 (W1 = S1(W15) + W10 + S0(W2) + W1) |
||||
#define R2 (W2 = S1(W0) + W11 + S0(W3) + W2) |
||||
#define R3 (W3 = S1(W1) + W12 + S0(W4) + W3) |
||||
#define R4 (W4 = S1(W2) + W13 + S0(W5) + W4) |
||||
#define R5 (W5 = S1(W3) + W14 + S0(W6) + W5) |
||||
#define R6 (W6 = S1(W4) + W15 + S0(W7) + W6) |
||||
#define R7 (W7 = S1(W5) + W0 + S0(W8) + W7) |
||||
#define R8 (W8 = S1(W6) + W1 + S0(W9) + W8) |
||||
#define R9 (W9 = S1(W7) + W2 + S0(W10) + W9) |
||||
#define R10 (W10 = S1(W8) + W3 + S0(W11) + W10) |
||||
#define R11 (W11 = S1(W9) + W4 + S0(W12) + W11) |
||||
#define R12 (W12 = S1(W10) + W5 + S0(W13) + W12) |
||||
#define R13 (W13 = S1(W11) + W6 + S0(W14) + W13) |
||||
#define R14 (W14 = S1(W12) + W7 + S0(W15) + W14) |
||||
#define R15 (W15 = S1(W13) + W8 + S0(W0) + W15) |
||||
|
||||
#define RD14 (S1(W12) + W7 + S0(W15) + W14) |
||||
#define RD15 (S1(W13) + W8 + S0(W0) + W15) |
||||
|
||||
/// generic sha transform |
||||
inline uint8 sha256_Transform(uint16 data, uint8 state) |
||||
{ |
||||
uint temp1; |
||||
uint8 res = state; |
||||
uint W0 = data.s0; |
||||
uint W1 = data.s1; |
||||
uint W2 = data.s2; |
||||
uint W3 = data.s3; |
||||
uint W4 = data.s4; |
||||
uint W5 = data.s5; |
||||
uint W6 = data.s6; |
||||
uint W7 = data.s7; |
||||
uint W8 = data.s8; |
||||
uint W9 = data.s9; |
||||
uint W10 = data.sA; |
||||
uint W11 = data.sB; |
||||
uint W12 = data.sC; |
||||
uint W13 = data.sD; |
||||
uint W14 = data.sE; |
||||
uint W15 = data.sF; |
||||
|
||||
#define v0 res.s0 |
||||
#define v1 res.s1 |
||||
#define v2 res.s2 |
||||
#define v3 res.s3 |
||||
#define v4 res.s4 |
||||
#define v5 res.s5 |
||||
#define v6 res.s6 |
||||
#define v7 res.s7 |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, W0, 0x428A2F98); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, W1, 0x71374491); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, W2, 0xB5C0FBCF); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, W3, 0xE9B5DBA5); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, W4, 0x3956C25B); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, W5, 0x59F111F1); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, W6, 0x923F82A4); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, W7, 0xAB1C5ED5); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, W8, 0xD807AA98); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, W9, 0x12835B01); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, W10, 0x243185BE); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, W11, 0x550C7DC3); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, W12, 0x72BE5D74); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, W13, 0x80DEB1FE); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, W14, 0x9BDC06A7); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, W15, 0xC19BF174); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0xE49B69C1); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0xEFBE4786); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x0FC19DC6); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x240CA1CC); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x2DE92C6F); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4A7484AA); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5CB0A9DC); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x76F988DA); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x983E5152); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA831C66D); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xB00327C8); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xBF597FC7); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xC6E00BF3); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD5A79147); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0x06CA6351); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x14292967); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x27B70A85); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x2E1B2138); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x4D2C6DFC); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x53380D13); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x650A7354); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x766A0ABB); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x81C2C92E); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x92722C85); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0xA2BFE8A1); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA81A664B); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xC24B8B70); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xC76C51A3); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xD192E819); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD6990624); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0xF40E3585); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x106AA070); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x19A4C116); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x1E376C08); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x2748774C); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x34B0BCB5); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x391C0CB3); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4ED8AA4A); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5B9CCA4F); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x682E6FF3); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x748F82EE); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0x78A5636F); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0x84C87814); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0x8CC70208); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0x90BEFFFA); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xA4506CEB); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, RD14, 0xBEF9A3F7); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, RD15, 0xC67178F2); |
||||
#undef v0 |
||||
#undef v1 |
||||
#undef v2 |
||||
#undef v3 |
||||
#undef v4 |
||||
#undef v5 |
||||
#undef v6 |
||||
#undef v7 |
||||
return (res+state); |
||||
} |
||||
|
||||
|
||||
static inline uint8 sha256_round1(uint16 data) |
||||
{ |
||||
uint temp1; |
||||
uint8 res; |
||||
uint W0 = data.s0; |
||||
uint W1 = data.s1; |
||||
uint W2 = data.s2; |
||||
uint W3 = data.s3; |
||||
uint W4 = data.s4; |
||||
uint W5 = data.s5; |
||||
uint W6 = data.s6; |
||||
uint W7 = data.s7; |
||||
uint W8 = data.s8; |
||||
uint W9 = data.s9; |
||||
uint W10 = data.sA; |
||||
uint W11 = data.sB; |
||||
uint W12 = data.sC; |
||||
uint W13 = data.sD; |
||||
uint W14 = data.sE; |
||||
uint W15 = data.sF; |
||||
|
||||
uint v0 = 0x6A09E667; |
||||
uint v1 = 0xBB67AE85; |
||||
uint v2 = 0x3C6EF372; |
||||
uint v3 = 0xA54FF53A; |
||||
uint v4 = 0x510E527F; |
||||
uint v5 = 0x9B05688C; |
||||
uint v6 = 0x1F83D9AB; |
||||
uint v7 = 0x5BE0CD19; |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, W0, 0x428A2F98); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, W1, 0x71374491); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, W2, 0xB5C0FBCF); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, W3, 0xE9B5DBA5); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, W4, 0x3956C25B); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, W5, 0x59F111F1); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, W6, 0x923F82A4); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, W7, 0xAB1C5ED5); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, W8, 0xD807AA98); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, W9, 0x12835B01); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, W10, 0x243185BE); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, W11, 0x550C7DC3); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, W12, 0x72BE5D74); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, W13, 0x80DEB1FE); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, W14, 0x9BDC06A7); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, W15, 0xC19BF174); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0xE49B69C1); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0xEFBE4786); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x0FC19DC6); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x240CA1CC); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x2DE92C6F); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4A7484AA); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5CB0A9DC); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x76F988DA); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x983E5152); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA831C66D); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xB00327C8); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xBF597FC7); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xC6E00BF3); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD5A79147); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0x06CA6351); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x14292967); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x27B70A85); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x2E1B2138); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x4D2C6DFC); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x53380D13); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x650A7354); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x766A0ABB); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x81C2C92E); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x92722C85); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0xA2BFE8A1); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA81A664B); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xC24B8B70); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xC76C51A3); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xD192E819); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD6990624); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0xF40E3585); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x106AA070); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x19A4C116); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x1E376C08); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x2748774C); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x34B0BCB5); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x391C0CB3); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4ED8AA4A); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5B9CCA4F); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x682E6FF3); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x748F82EE); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0x78A5636F); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0x84C87814); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0x8CC70208); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0x90BEFFFA); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xA4506CEB); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, RD14, 0xBEF9A3F7); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, RD15, 0xC67178F2); |
||||
|
||||
res.s0 = v0 + 0x6A09E667; |
||||
res.s1 = v1 + 0xBB67AE85; |
||||
res.s2 = v2 + 0x3C6EF372; |
||||
res.s3 = v3 + 0xA54FF53A; |
||||
res.s4 = v4 + 0x510E527F; |
||||
res.s5 = v5 + 0x9B05688C; |
||||
res.s6 = v6 + 0x1F83D9AB; |
||||
res.s7 = v7 + 0x5BE0CD19; |
||||
return (res); |
||||
} |
||||
|
||||
|
||||
static inline uint8 sha256_round2(uint16 data,uint8 buf) |
||||
{ |
||||
uint temp1; |
||||
uint8 res; |
||||
uint W0 = data.s0; |
||||
uint W1 = data.s1; |
||||
uint W2 = data.s2; |
||||
uint W3 = data.s3; |
||||
uint W4 = data.s4; |
||||
uint W5 = data.s5; |
||||
uint W6 = data.s6; |
||||
uint W7 = data.s7; |
||||
uint W8 = data.s8; |
||||
uint W9 = data.s9; |
||||
uint W10 = data.sA; |
||||
uint W11 = data.sB; |
||||
uint W12 = data.sC; |
||||
uint W13 = data.sD; |
||||
uint W14 = data.sE; |
||||
uint W15 = data.sF; |
||||
|
||||
uint v0 = buf.s0; |
||||
uint v1 = buf.s1; |
||||
uint v2 = buf.s2; |
||||
uint v3 = buf.s3; |
||||
uint v4 = buf.s4; |
||||
uint v5 = buf.s5; |
||||
uint v6 = buf.s6; |
||||
uint v7 = buf.s7; |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, W0, 0x428A2F98); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, W1, 0x71374491); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, W2, 0xB5C0FBCF); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, W3, 0xE9B5DBA5); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, W4, 0x3956C25B); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, W5, 0x59F111F1); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, W6, 0x923F82A4); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, W7, 0xAB1C5ED5); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, W8, 0xD807AA98); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, W9, 0x12835B01); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, W10, 0x243185BE); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, W11, 0x550C7DC3); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, W12, 0x72BE5D74); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, W13, 0x80DEB1FE); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, W14, 0x9BDC06A7); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, W15, 0xC19BF174); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0xE49B69C1); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0xEFBE4786); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x0FC19DC6); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x240CA1CC); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x2DE92C6F); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4A7484AA); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5CB0A9DC); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x76F988DA); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x983E5152); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA831C66D); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xB00327C8); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xBF597FC7); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xC6E00BF3); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD5A79147); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0x06CA6351); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x14292967); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x27B70A85); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x2E1B2138); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x4D2C6DFC); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x53380D13); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x650A7354); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x766A0ABB); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x81C2C92E); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x92722C85); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0xA2BFE8A1); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA81A664B); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xC24B8B70); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xC76C51A3); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xD192E819); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD6990624); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0xF40E3585); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x106AA070); |
||||
|
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x19A4C116); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x1E376C08); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x2748774C); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x34B0BCB5); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x391C0CB3); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4ED8AA4A); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5B9CCA4F); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x682E6FF3); |
||||
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x748F82EE); |
||||
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0x78A5636F); |
||||
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0x84C87814); |
||||
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0x8CC70208); |
||||
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0x90BEFFFA); |
||||
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xA4506CEB); |
||||
P(v2, v3, v4, v5, v6, v7, v0, v1, RD14, 0xBEF9A3F7); |
||||
P(v1, v2, v3, v4, v5, v6, v7, v0, RD15, 0xC67178F2); |
||||
|
||||
res.s0 = (v0 + buf.s0); |
||||
res.s1 = (v1 + buf.s1); |
||||
res.s2 = (v2 + buf.s2); |
||||
res.s3 = (v3 + buf.s3); |
||||
res.s4 = (v4 + buf.s4); |
||||
res.s5 = (v5 + buf.s5); |
||||
res.s6 = (v6 + buf.s6); |
||||
res.s7 = (v7 + buf.s7); |
||||
return (res); |
||||
} |
||||
|
||||
static inline uint8 sha256_80(uint* data,uint nonce) |
||||
{ |
||||
|
||||
uint8 buf = sha256_round1( ((uint16*)data)[0]); |
||||
uint16 in = padsha80; |
||||
in.s0 = data[16]; |
||||
in.s1 = data[17]; |
||||
in.s2 = data[18]; |
||||
in.s3 = nonce; |
||||
|
||||
return(sha256_round2(in,buf)); |
||||
} |
||||
|
Loading…
Reference in new issue