Browse Source

faster kernels choice between --kernel yescrypt and --kernel yescrypt-multi

--kernel yescrypt for amd
--kernel yescrypt-multi for nvidia (> 5.0)
djm34
djm34 10 years ago
parent
commit
f5f828cbc4
  1. 74
      algorithm.c
  2. 3
      algorithm.h
  3. 8
      driver-opencl.c
  4. 4
      example.bat
  5. 314
      kernel/yescrypt-multi.cl
  6. 336
      kernel/yescrypt.cl
  7. 16
      kernel/yescrypt_essential.cl
  8. 27
      ocl.c
  9. 4
      sgminer.c
  10. BIN
      sgminer.exe

74
algorithm.c

@ -58,7 +58,8 @@ const char *algorithm_type_str[] = {
"Neoscrypt", "Neoscrypt",
"Lyra2RE", "Lyra2RE",
"pluck", "pluck",
"yescrypt" "yescrypt",
"yescrypt-multi"
}; };
void sha256(const unsigned char *message, unsigned int len, unsigned char *digest) void sha256(const unsigned char *message, unsigned int len, unsigned char *digest)
@ -196,6 +197,8 @@ static cl_int queue_pluck_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_un
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]); le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
// memcpy(clState->cldata, blk->work->data, 80); // memcpy(clState->cldata, blk->work->data, 80);
flip80(clState->cldata, blk->work->data); flip80(clState->cldata, blk->work->data);
//int i;
//for (i = 0; i<20; i++) ((uint32_t*)clState->cldata)[i] = ((uint32_t*)blk->work->data)[i]; // don't flip
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL); status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0); CL_SET_ARG(clState->CLbuffer0);
@ -215,9 +218,12 @@ static cl_int queue_yescrypt_kernel(_clState *clState, dev_blk_ctx *blk, __maybe
cl_int status = 0; cl_int status = 0;
// le_target = (*(cl_uint *)(blk->work->device_target + 28)); // le_target = (*(cl_uint *)(blk->work->device_target + 28));
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]); le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
// memcpy(clState->cldata, blk->work->data, 80); // le_target = (cl_uint)((uint32_t *)blk->work->target)[7];
// memcpy(clState->cldata, blk->work->data, 80);
flip80(clState->cldata, blk->work->data); flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL); status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
@ -225,6 +231,7 @@ static cl_int queue_yescrypt_kernel(_clState *clState, dev_blk_ctx *blk, __maybe
CL_SET_ARG(clState->outputBuffer); CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8); CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->buffer1); CL_SET_ARG(clState->buffer1);
CL_SET_ARG(clState->buffer2);
CL_SET_ARG(le_target); CL_SET_ARG(le_target);
return status; return status;
@ -241,29 +248,54 @@ static cl_int queue_yescrypt_multikernel(_clState *clState, dev_blk_ctx *blk, __
// le_target = (*(cl_uint *)(blk->work->device_target + 28)); // le_target = (*(cl_uint *)(blk->work->device_target + 28));
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]); le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
// memcpy(clState->cldata, blk->work->data, 80); memcpy(clState->cldata, blk->work->data, 80);
flip80(clState->cldata, blk->work->data); // flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL); status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
//pbkdf and initial sha //pbkdf and initial sha
kernel = &clState->kernel; kernel = &clState->kernel;
CL_SET_ARG_0(clState->CLbuffer0);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(clState->buffer1);
CL_SET_ARG(clState->buffer2); CL_SET_ARG(clState->buffer2);
CL_SET_ARG(clState->buffer3); CL_SET_ARG(clState->buffer3);
//mix1_1 (salsa) CL_SET_ARG(le_target);
//inactive kernel
num = 0; num = 0;
kernel = clState->extra_kernels; kernel = clState->extra_kernels;
CL_SET_ARG_0(clState->buffer1); CL_SET_ARG_N(0,clState->buffer1);
CL_SET_ARG(clState->buffer2); CL_SET_ARG_N(1,clState->buffer2);
//mix1_2/2_2 (pwxform) // CL_SET_ARG_N(3, clState->buffer3);
CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8);
CL_SET_ARG(clState->buffer1);
CL_SET_ARG(clState->buffer2);
//mix2_2 //mix2_2
// CL_NEXTKERNEL_SET_ARG_0(clState->padbuffer8); num = 0;
// CL_SET_ARG(clState->buffer1); CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
// CL_SET_ARG(clState->buffer2); CL_SET_ARG_N(1,clState->buffer1);
CL_SET_ARG_N(2,clState->buffer2);
//mix2_2
//inactive kernel
// num = 0;
// CL_NEXTKERNEL_SET_ARG_N(0, clState->buffer1);
// CL_SET_ARG_N(1, clState->buffer2);
//mix2_2
num = 0;
CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
CL_SET_ARG_N(1, clState->buffer1);
CL_SET_ARG_N(2, clState->buffer2);
//inactive kernel
// num = 0;
// CL_NEXTKERNEL_SET_ARG_N(0, clState->buffer1);
// CL_SET_ARG_N(1, clState->buffer2);
//mix2_2
//pbkdf and finalization //pbkdf and finalization
CL_NEXTKERNEL_SET_ARG_0(clState->CLbuffer0); num=0;
CL_NEXTKERNEL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer); CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->buffer2); CL_SET_ARG(clState->buffer2);
CL_SET_ARG(clState->buffer3); CL_SET_ARG(clState->buffer3);
@ -819,10 +851,10 @@ static algorithm_settings_t algos[] = {
A_YESCRYPT("yescrypt"), A_YESCRYPT("yescrypt"),
#undef A_YESCRYPT #undef A_YESCRYPT
//#define A_YESCRYPT(a) \ #define A_YESCRYPT_MULTI(a) \
// { a, ALGO_YESCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 3, -1,CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE , yescrypt_regenhash, queue_yescrypt_multikernel, gen_hash, append_neoscrypt_compiler_options} { a, ALGO_YESCRYPT_MULTI, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 4,-1,CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE , yescrypt_regenhash, queue_yescrypt_multikernel, gen_hash, append_neoscrypt_compiler_options}
// A_YESCRYPT("yescrypt"), A_YESCRYPT_MULTI("yescrypt-multi"),
//#undef A_YESCRYPT #undef A_YESCRYPT_MULTI
// kernels starting from this will have difficulty calculated by using quarkcoin algorithm // kernels starting from this will have difficulty calculated by using quarkcoin algorithm

3
algorithm.h

@ -28,7 +28,8 @@ typedef enum {
ALGO_NEOSCRYPT, ALGO_NEOSCRYPT,
ALGO_LYRA2RE, ALGO_LYRA2RE,
ALGO_PLUCK, ALGO_PLUCK,
ALGO_YESCRYPT ALGO_YESCRYPT,
ALGO_YESCRYPT_MULTI,
} algorithm_type_t; } algorithm_type_t;
extern const char *algorithm_type_str[]; extern const char *algorithm_type_str[];

8
driver-opencl.c

@ -1431,7 +1431,7 @@ static int64_t opencl_scanhash(struct thr_info *thr, struct work *work,
status = clEnqueueNDRangeKernel(clState->commandQueue, clState->extra_kernels[i], 1, p_global_work_offset, status = clEnqueueNDRangeKernel(clState->commandQueue, clState->extra_kernels[i], 1, p_global_work_offset,
globalThreads, localThreads, 0, NULL, NULL); globalThreads, localThreads, 0, NULL, NULL);
if (unlikely(status != CL_SUCCESS)) { if (unlikely(status != CL_SUCCESS)) {
applog(LOG_ERR, "Error %d: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel)", status); applog(LOG_ERR, "Error %d: Enqueueing kernel onto command queue. (clEnqueueNDRangeKernel) %d", status,i);
return -1; return -1;
} }
} }
@ -1483,6 +1483,12 @@ static void opencl_thread_shutdown(struct thr_info *thr)
clFinish(clState->commandQueue); clFinish(clState->commandQueue);
clReleaseMemObject(clState->outputBuffer); clReleaseMemObject(clState->outputBuffer);
clReleaseMemObject(clState->CLbuffer0); clReleaseMemObject(clState->CLbuffer0);
if (clState->buffer1)
clReleaseMemObject(clState->buffer1);
if (clState->buffer2)
clReleaseMemObject(clState->buffer2);
if (clState->buffer3)
clReleaseMemObject(clState->buffer3);
if (clState->padbuffer8) if (clState->padbuffer8)
clReleaseMemObject(clState->padbuffer8); clReleaseMemObject(clState->padbuffer8);
clReleaseKernel(clState->kernel); clReleaseKernel(clState->kernel);

4
example.bat

@ -6,7 +6,7 @@ del *.bin
@rem sgminer.exe --no-submit-stale --kernel Lyra2RE -o stratum+tcp://pool.verters.com:4444 -u djm34t.user -p password --gpu-platform 2 @rem sgminer.exe --no-submit-stale --kernel Lyra2RE -o stratum+tcp://pool.verters.com:4444 -u djm34t.user -p password --gpu-platform 2
@rem sgminer.exe --no-submit-stale --kernel pluck -o stratum+tcp://sup.suprnova.cc:7777 -u djm34.2 -p password --gpu-platform 2 --thread-concurrency 8192 -w 4 -I 12 @rem sgminer.exe --no-submit-stale --kernel pluck -o stratum+tcp://sup.suprnova.cc:7777 -u djm34.2 -p password --gpu-platform 2 --thread-concurrency 8192 -w 4 -I 12
@rem sgminer.exe --no-submit-stale --kernel yescrypt -o stratum+tcp://mine2.bsty.nonce-pool.com:4095 -u djm34.1 -p password --gpu-platform 1 -w 32 --thread-concurrency 512 --text-only --debug @rem sgminer.exe --no-submit-stale --kernel yescrypt -o stratum+tcp://mine2.bsty.nonce-pool.com:4095 -u djm34.1 -p password --gpu-platform 1 -w 32 --thread-concurrency 512 --text-only --debug
@rem sgminer.exe --no-submit-stale --kernel yescrypt -o stratum+tcp://mine2.bsty.nonce-pool.com:4095 -u djm34.1 -p password --gpu-platform 1 -w 32 --thread-concurrency 512 --text-only -D sgminer.exe --no-submit-stale --kernel yescrypt -o stratum+tcp://mine2.bsty.nonce-pool.com:4095 -u djm34.1 -p password --gpu-platform 1 -w 8 --thread-concurrency 1024 -I 9
sgminer.exe --no-submit-stale --kernel yescrypt -o stratum+tcp://mine2.bsty.nonce-pool.com:4095 -u djm34.1 -p password --gpu-platform 0 -w 16 -g 2 @rem sgminer.exe --no-submit-stale --kernel yescrypt-multi -o stratum+tcp://mine2.bsty.nonce-pool.com:4095 -u djm34.1 -p password --gpu-platform 0 -w 4 -g 2
pause pause

314
kernel/yescrypt-multi.cl

@ -0,0 +1,314 @@
/*
* "yescrypt" kernel implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2015 djm34
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author djm34
*/
#if !defined(cl_khr_byte_addressable_store)
#error "Device does not support unaligned stores"
#endif
#include "yescrypt_essential.cl"
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, __global uchar* buff1, __global uchar* buff2, __global uchar* buff3, const uint target)
{
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16 *prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)*(get_global_id(0) % MAX_GLOBAL_THREADS)));
__global uint8 *sha256tokeep = (__global uint8 *)(buff3 + (8 * sizeof(uint)*(get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
uint nonce = (get_global_id(0));
uint data[20];
uint16 in;
uint8 state1, state2;
// uint8 sha256tokeep;
// ulong16 Bdev[8]; // will require an additional buffer
((uint16 *)data)[0] = ((__global const uint16 *)input)[0];
((uint4 *)data)[4] = ((__global const uint4 *)input)[4];
// for (int i = 0; i<20; i++) { data[i] = SWAP32(data[i]); }
// if (nonce == 10) { printf("data %08x %08x\n", data[0], data[1]); }
uint8 passwd = sha256_80(data, nonce);
//pbkdf
in.lo = pad1.lo ^ passwd;
in.hi = pad1.hi;
state1 = sha256_Transform(in, H256);
in.lo = pad2.lo ^ passwd;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
in = ((uint16*)data)[0];
state1 = sha256_Transform(in, state1);
#pragma unroll 1
for (int i = 0; i<8; i++)
{
uint16 result;
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 1;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.lo = swapvec(sha256_Transform(in, state2));
if (i == 0) sha256tokeep[0] = result.lo;
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 2;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.hi = swapvec(sha256_Transform(in, state2));
Bdev[i].lo = as_ulong8(shuffle(result));
// Bdev[i].lo = as_ulong8(result);
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 3;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.lo = swapvec(sha256_Transform(in, state2));
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 4;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.hi = swapvec(sha256_Transform(in, state2));
Bdev[i].hi = as_ulong8(shuffle(result));
// Bdev[i].hi = as_ulong8(result);
}
//mixing1
prevstate[0] = Bdev[0];
Bdev[0] = blockmix_salsa8_small2(Bdev[0]);
prevstate[1] = Bdev[0];
Bdev[0] = blockmix_salsa8_small2(Bdev[0]);
uint n = 1;
#pragma unroll 1
for (uint i = 2; i < 64; i++)
{
prevstate[i] = Bdev[0];
if ((i&(i - 1)) == 0) n = n << 1;
uint j = as_uint2(Bdev[0].hi.s0).x & (n - 1);
j += i - n;
Bdev[0] ^= prevstate[j];
Bdev[0] = blockmix_salsa8_small2(Bdev[0]);
}
}
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search1(__global uchar *buffer1, __global uchar *buffer2)
{
}
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search2(__global uchar *padcache, __global uchar *buff1, __global uchar *buff2)
{
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16* prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
for (int i = 0; i<8; i++)
hashbuffer[i] = Bdev[i];
blockmix_pwxform((__global ulong8*)Bdev, prevstate);
for (int i = 0; i<8; i++)
hashbuffer[i + 8] = Bdev[i];
blockmix_pwxform((__global ulong8*)Bdev, prevstate);
int n = 1;
#pragma unroll 1
for (int i = 2; i < 2048; i ++)
{
for (int k = 0; k<8; k++)
(hashbuffer + 8 * i)[k] = Bdev[k];
if ((i&(i - 1)) == 0) n = n << 1;
uint j = as_uint2(Bdev[7].hi.s0).x & (n - 1);
j += i - n;
for (int k = 0; k < 8; k++)
Bdev[k] ^= (hashbuffer + 8 * j)[k];
blockmix_pwxform((__global ulong8*)Bdev, prevstate);
}
}
/*
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search3(__global uchar *buffer1, __global uchar *buffer2)
{
}
*/
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search3(__global uchar *padcache, __global uchar *buff1, __global uchar *buff2)
{
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16* prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
#pragma unroll 1
for (int z = 0; z < 684; z++)
{
uint j = as_uint2(Bdev[7].hi.s0).x & 2047;
for (int k = 0; k < 8; k++)
Bdev[k] ^= (hashbuffer + 8 * j)[k];
if (z<682)
for (int k = 0; k<8; k++)
(hashbuffer + 8 * j)[k] = Bdev[k];
blockmix_pwxform((__global ulong8*)Bdev, prevstate);
////
}
}
/*
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search5(__global uchar *buffer1, __global uchar *buffer2)
{
}
*/
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search4(__global const uchar* restrict input, __global uint* restrict output, __global uchar *buff2,__global uchar* buff3, const uint target)
{
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
__global uint8 *sha256tokeep = (__global uint8 *)(buff3 + (8 * sizeof(uint)*(get_global_id(0) % MAX_GLOBAL_THREADS)));
uint nonce = (get_global_id(0));
uint data[20];
((uint16 *)data)[0] = ((__global const uint16 *)input)[0];
((uint4 *)data)[4] = ((__global const uint4 *)input)[4];
// for (int i = 0; i<20; i++) { data[i] = SWAP32(data[i]); }
uint8 swpass = swapvec(sha256tokeep[0]);
uint16 in;
uint8 state1,state2;
in.lo = pad1.lo ^ swpass;
in.hi = pad1.hi;
state1 = sha256_Transform(in, H256);
in.lo = pad2.lo ^ swpass;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
#pragma unroll 1
for (int i = 0; i<8; i++) {
in = unshuffle(Bdev[i].lo);
in = swapvec16(in);
state1 = sha256_Transform(in, state1);
in = unshuffle(Bdev[i].hi);
in = swapvec16(in);
state1 = sha256_Transform(in, state1);
}
in = pad5;
state1 = sha256_Transform(in, state1);
in.lo = state1;
in.hi = pad4;
uint8 res = sha256_Transform(in, state2);
//hmac and final sha
in.lo = pad1.lo ^ res;
in.hi = pad1.hi;
state1 = sha256_Transform(in, H256);
in.lo = pad2.lo ^ res;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
in = ((uint16*)data)[0];
state1 = sha256_Transform(in, state1);
in = padsha80;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = get_global_id(0);
in.sf = 0x480;
state1 = sha256_Transform(in, state1);
in.lo = state1;
in.hi = pad4;
state1 = sha256_Transform(in, state2);
// state2 = H256;
in.lo = state1;
in.hi = pad4;
in.sf = 0x100;
res = sha256_Transform(in, H256);
if (SWAP32(res.s7) <= (target))
output[atomic_inc(output + 0xFF)] = (nonce);
}

336
kernel/yescrypt.cl

@ -35,237 +35,219 @@
#include "yescrypt_essential.cl" #include "yescrypt_essential.cl"
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, __global uchar* buff2, const uint target) __kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, __global uchar* buff1, __global uchar* buff2, const uint target)
{ {
__global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048*128 *sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS))); __global ulong16 *hashbuffer = (__global ulong16 *)(padcache + (2048 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16 *prevstate = (__global ulong16 *)(buff2 + (64 * 128 * sizeof(ulong)*(get_global_id(0) % MAX_GLOBAL_THREADS))); __global ulong16 *prevstate = (__global ulong16 *)(buff1 + (64 * 128 * sizeof(ulong)*(get_global_id(0) % MAX_GLOBAL_THREADS)));
__global ulong16 *Bdev = (__global ulong16 *)(buff2 + (8 * 128 * sizeof(ulong)* (get_global_id(0) % MAX_GLOBAL_THREADS)));
uint nonce = (get_global_id(0)); uint nonce = (get_global_id(0));
uint data[20]; uint data[20];
uint16 in; uint16 in;
uint8 state1, state2; uint8 state1, state2;
uint8 sha256tokeep; uint8 sha256tokeep;
ulong16 Bdev[8]; // will require an additional buffer
((uint16 *)data)[0] = ((__global const uint16 *)input)[0]; ((uint16 *)data)[0] = ((__global const uint16 *)input)[0];
((uint4 *)data)[4] = ((__global const uint4 *)input)[4]; ((uint4 *)data)[4] = ((__global const uint4 *)input)[4];
for (int i = 0; i<20; i++) { data[i] = SWAP32(data[i]); } for (int i = 0; i<20; i++) { data[i] = SWAP32(data[i]); }
// if (nonce == 10) { printf("data %08x %08x\n", data[0], data[1]); } // if (nonce == 10) { printf("data %08x %08x\n", data[0], data[1]); }
uint8 passwd = sha256_80(data, nonce); uint8 passwd = sha256_80(data, nonce);
//pbkdf //pbkdf
in.lo = pad1.lo ^ passwd; in.lo = pad1.lo ^ passwd;
in.hi = pad1.hi; in.hi = pad1.hi;
state1 = sha256_Transform(in, H256); state1 = sha256_Transform(in, H256);
in.lo = pad2.lo ^ passwd;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
in = ((uint16*)data)[0];
state1 = sha256_Transform(in, state1);
for (int i = 0; i<8; i++)
{
uint16 result;
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4*i+1;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.lo = swapvec(sha256_Transform(in, state2));
if (i == 0) sha256tokeep = result.lo;
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 2;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.hi = swapvec(sha256_Transform(in, state2));
Bdev[i].lo = as_ulong8(shuffle(result));
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 3;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.lo = swapvec(sha256_Transform(in, state2));
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 4;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.hi = swapvec(sha256_Transform(in, state2));
Bdev[i].hi = as_ulong8(shuffle(result));
}
//mixing1
prevstate[0] = Bdev[0];
Bdev[0]=blockmix_salsa8_small2(Bdev[0]);
prevstate[1] = Bdev[0];
Bdev[0] = blockmix_salsa8_small2(Bdev[0]);
in.lo = pad2.lo ^ passwd;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
in = ((uint16*)data)[0];
uint n = 1; state1 = sha256_Transform(in, state1);
#pragma unroll 1 #pragma unroll 1
for (uint i = 2; i < 64; i++) for (int i = 0; i<8; i++)
{ {
uint16 result;
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 1;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.lo = swapvec(sha256_Transform(in, state2));
if (i == 0) sha256tokeep = result.lo;
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 2;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.hi = swapvec(sha256_Transform(in, state2));
Bdev[i].lo = as_ulong8(shuffle(result));
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 3;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.lo = swapvec(sha256_Transform(in, state2));
in = pad3;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.s4 = 4 * i + 4;
in.lo = sha256_Transform(in, state1);
in.hi = pad4;
result.hi = swapvec(sha256_Transform(in, state2));
prevstate[i] = Bdev[0];
if ((i&(i - 1)) == 0) n = n << 1; Bdev[i].hi = as_ulong8(shuffle(result));
}
uint j = as_uint2(Bdev[0].hi.s0).x & (n - 1); //mixing1
j += i - n; prevstate[0] = Bdev[0];
Bdev[0] ^= prevstate[j]; Bdev[0] = blockmix_salsa8_small2(Bdev[0]);
prevstate[1] = Bdev[0];
Bdev[0] = blockmix_salsa8_small2(Bdev[0]);
Bdev[0] = blockmix_salsa8_small2(Bdev[0]); uint n = 1;
} #pragma unroll 1
//mixing1_2 for (uint i = 2; i < 64; i++)
{
for (int i = 0; i<8; i++) prevstate[i] = Bdev[0];
hashbuffer[i] = Bdev[i];
blockmix_pwxform((ulong8*)Bdev,prevstate); if ((i&(i - 1)) == 0) n = n << 1;
uint j = as_uint2(Bdev[0].hi.s0).x & (n - 1);
for (int i = 0; i<8; i++) j += i - n;
hashbuffer[i + 8] = Bdev[i]; Bdev[0] ^= prevstate[j];
blockmix_pwxform((ulong8*)Bdev,prevstate); Bdev[0] = blockmix_salsa8_small2(Bdev[0]);
n = 1; }
#pragma unroll 1
for (int i = 2; i < 2048; i++)
{
for (int k = 0; k<8; k++) for (int i = 0; i<8; i++)
(hashbuffer + 8 * i)[k] = Bdev[k]; hashbuffer[i] = Bdev[i];
blockmix_pwxform((__global ulong8*)Bdev, prevstate);
if ((i&(i - 1)) == 0) n = n << 1;
uint j = as_uint2(Bdev[7].hi.s0).x & (n - 1); for (int i = 0; i<8; i++)
j += i - n; hashbuffer[i + 8] = Bdev[i];
for (int k = 0; k < 8; k++) blockmix_pwxform((__global ulong8*)Bdev, prevstate);
Bdev[k] ^= (hashbuffer + 8 * j)[k]; n = 1;
#pragma unroll 1
for (int i = 2; i < 2048; i++)
{
for (int k = 0; k<8; k++)
(hashbuffer + 8 * i)[k] = Bdev[k];
blockmix_pwxform( (ulong8*)Bdev,prevstate);
} if ((i&(i - 1)) == 0) n = n << 1;
/////////////////////////
////mix2_2 uint j = as_uint2(Bdev[7].hi.s0).x & (n - 1);
j += i - n;
for (int k = 0; k < 8; k++)
Bdev[k] ^= (hashbuffer + 8 * j)[k];
//#pragma unroll
#pragma unroll 1
for (int z = 0; z < 684; z++)
{
uint j = as_uint2(Bdev[7].hi.s0).x & 2047; blockmix_pwxform((__global ulong8*)Bdev, prevstate);
}
for (int k = 0; k < 8; k++) #pragma unroll 1
Bdev[k] ^= (hashbuffer + 8 * j)[k]; for (int z = 0; z < 684; z++)
{
if (z<682) uint j = as_uint2(Bdev[7].hi.s0).x & 2047;
for (int k = 0; k<8; k++)
(hashbuffer+8 * j)[k] = Bdev[k];
blockmix_pwxform((ulong8*)Bdev,prevstate);
} for (int k = 0; k < 8; k++)
Bdev[k] ^= (hashbuffer + 8 * j)[k];
if (z<682)
for (int k = 0; k<8; k++)
(hashbuffer + 8 * j)[k] = Bdev[k];
for (int i = 0; i<8; i++) { blockmix_pwxform((__global ulong8*)Bdev, prevstate);
Bdev[i].lo = as_ulong8(unshuffle(Bdev[i].lo)); ////
Bdev[i].hi = as_ulong8(unshuffle(Bdev[i].hi)); }
}
/////////////////////////////////////
///////// pbkdf final
uint8 swpass = swapvec(sha256tokeep);
in.lo = pad1.lo ^ swpass;
in.hi = pad1.hi;
state1 = sha256_Transform(in, H256); uint8 swpass = swapvec(sha256tokeep);
// uint16 in;
// uint8 state1, state2;
in.lo = pad1.lo ^ swpass;
in.hi = pad1.hi;
in.lo = pad2.lo ^ swpass;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
for (int i = 0; i<8; i++) { state1 = sha256_Transform(in, H256);
in = as_uint16(Bdev[i].lo);
in = swapvec16(in);
state1 = sha256_Transform(in, state1);
in = as_uint16(Bdev[i].hi);
in = swapvec16(in);
state1 = sha256_Transform(in, state1);
}
in = pad5;
state1 = sha256_Transform(in, state1);
in.lo = state1;
in.hi = pad4;
uint8 res = sha256_Transform(in, state2);
//hmac and final sha in.lo = pad2.lo ^ swpass;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
in.lo = pad1.lo ^ res; #pragma unroll 1
in.hi = pad1.hi; for (int i = 0; i<8; i++) {
state1 = sha256_Transform(in, H256); in = unshuffle(Bdev[i].lo);
in.lo = pad2.lo ^ res; in = swapvec16(in);
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
in = ((uint16*)data)[0];
state1 = sha256_Transform(in, state1); state1 = sha256_Transform(in, state1);
in = padsha80; in = unshuffle(Bdev[i].hi);
in.s0 = data[16]; in = swapvec16(in);
in.s1 = data[17];
in.s2 = data[18];
in.s3 = nonce;
in.sf = 0x480;
state1 = sha256_Transform(in, state1); state1 = sha256_Transform(in, state1);
in.lo = state1; }
in.hi = pad4; in = pad5;
state1 = sha256_Transform(in, state2); state1 = sha256_Transform(in, state1);
// state2 = H256; in.lo = state1;
in.lo = state1; in.hi = pad4;
in.hi = pad4; uint8 res = sha256_Transform(in, state2);
in.sf = 0x100;
res = sha256_Transform(in, H256); //hmac and final sha
// return(swapvec(res));
in.lo = pad1.lo ^ res;
in.hi = pad1.hi;
state1 = sha256_Transform(in, H256);
in.lo = pad2.lo ^ res;
in.hi = pad2.hi;
state2 = sha256_Transform(in, H256);
in = ((uint16*)data)[0];
state1 = sha256_Transform(in, state1);
in = padsha80;
in.s0 = data[16];
in.s1 = data[17];
in.s2 = data[18];
in.s3 = get_global_id(0);
in.sf = 0x480;
state1 = sha256_Transform(in, state1);
in.lo = state1;
in.hi = pad4;
state1 = sha256_Transform(in, state2);
// state2 = H256;
in.lo = state1;
in.hi = pad4;
in.sf = 0x100;
res = sha256_Transform(in, H256);
if (SWAP32(res.s7) <= (target))
output[atomic_inc(output + 0xFF)] = (nonce);
// if (nonce == 10) { }
if ( SWAP32(res.s7) <= (target)) {
output[atomic_inc(output + 0xFF)] = (nonce);
//printf("gpu hashbuffer %08x nonce %08x\n",((__global uint *)hashbuffer)[7] ,SWAP32(get_global_id(0)));
} }
}

16
kernel/yescrypt_essential.cl

@ -140,6 +140,8 @@ inline uint8 swapvec(uint8 buf)
return vec; return vec;
} }
inline uint16 swapvec16(uint16 buf) inline uint16 swapvec16(uint16 buf)
{ {
uint16 vec; uint16 vec;
@ -173,6 +175,18 @@ uint t;
return(as_ulong8(st + Bx)); return(as_ulong8(st + Bx));
} }
ulong8 salsa20_8n(uint16 Bx)
{
uint t;
uint16 st = Bx;
SALSA_CORE(st);
SALSA_CORE(st);
SALSA_CORE(st);
SALSA_CORE(st);
return(as_ulong8(st + Bx));
}
ulong16 blockmix_salsa8_small2(ulong16 Bin) ulong16 blockmix_salsa8_small2(ulong16 Bin)
{ {
ulong8 X = Bin.hi; ulong8 X = Bin.hi;
@ -346,7 +360,7 @@ inline ulong8 block_pwxform_long(ulong8 Bout, __global ulong2 *prevstate)
inline void blockmix_pwxform( ulong8 *Bin, __global ulong16 *prevstate) inline void blockmix_pwxform(__global ulong8 *Bin, __global ulong16 *prevstate)
{ {
Bin[0] ^= Bin[15]; Bin[0] ^= Bin[15];
Bin[0] = block_pwxform_long_old(Bin[0], prevstate); Bin[0] = block_pwxform_long_old(Bin[0], prevstate);

27
ocl.c

@ -516,7 +516,8 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency)); applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency));
} }
else if (!safe_cmp(cgpu->algorithm.name, "yescrypt") && !cgpu->opt_tc) { else if ((!safe_cmp(cgpu->algorithm.name, "yescrypt") ||
!safe_cmp(algorithm->name, "yescrypt-multi")) && !cgpu->opt_tc) {
size_t glob_thread_count; size_t glob_thread_count;
long max_int; long max_int;
unsigned char type = 0; unsigned char type = 0;
@ -702,6 +703,12 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
} }
size_t bufsize; size_t bufsize;
size_t buf1size;
size_t buf3size;
size_t buf2size;
size_t readbufsize = 128; size_t readbufsize = 128;
if (algorithm->rw_buffer_size < 0) { if (algorithm->rw_buffer_size < 0) {
@ -717,10 +724,12 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
applog(LOG_DEBUG, "Neoscrypt buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize); applog(LOG_DEBUG, "Neoscrypt buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
// scrypt/n-scrypt // scrypt/n-scrypt
} }
else if (!safe_cmp(algorithm->name, "yescrypt")) { else if (!safe_cmp(algorithm->name, "yescrypt") || !safe_cmp(algorithm->name, "yescrypt-multi")) {
/* The scratch/pad-buffer needs 32kBytes memory per thread. */ /* The scratch/pad-buffer needs 32kBytes memory per thread. */
bufsize = YESCRYPT_SCRATCHBUF_SIZE * cgpu->thread_concurrency; bufsize = YESCRYPT_SCRATCHBUF_SIZE * cgpu->thread_concurrency;
buf1size = PLUCK_SECBUF_SIZE * cgpu->thread_concurrency;
buf2size = 128 * 8 * 8 * cgpu->thread_concurrency;
buf3size= 8 * 8 * 4 * cgpu->thread_concurrency;
/* This is the input buffer. For yescrypt this is guaranteed to be /* This is the input buffer. For yescrypt this is guaranteed to be
* 80 bytes only. */ * 80 bytes only. */
readbufsize = 80; readbufsize = 80;
@ -753,6 +762,10 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
} }
clState->padbuffer8 = NULL; clState->padbuffer8 = NULL;
clState->buffer1 = NULL;
clState->buffer2 = NULL;
clState->buffer3 = NULL;
if (bufsize > 0) { if (bufsize > 0) {
applog(LOG_DEBUG, "Creating read/write buffer sized %lu", (unsigned long)bufsize); applog(LOG_DEBUG, "Creating read/write buffer sized %lu", (unsigned long)bufsize);
@ -765,20 +778,20 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
} }
if (!safe_cmp(algorithm->name, "yescrypt")) { if (!safe_cmp(algorithm->name, "yescrypt") || !safe_cmp(algorithm->name, "yescrypt-multi")) {
// need additionnal buffers // need additionnal buffers
clState->buffer1 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, PLUCK_SECBUF_SIZE * cgpu->thread_concurrency, NULL, &status); clState->buffer1 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, buf1size, NULL, &status);
if (status != CL_SUCCESS && !clState->buffer1) { if (status != CL_SUCCESS && !clState->buffer1) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer1), decrease TC or increase LG", status); applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer1), decrease TC or increase LG", status);
return NULL;} return NULL;}
clState->buffer2 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, 128 * 8 * 8 * cgpu->thread_concurrency, NULL, &status); clState->buffer2 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, buf2size, NULL, &status);
if (status != CL_SUCCESS && !clState->buffer2) { if (status != CL_SUCCESS && !clState->buffer2) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer2), decrease TC or increase LG", status); applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer2), decrease TC or increase LG", status);
return NULL; return NULL;
} }
clState->buffer3 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, 8 * 8 * 4 * cgpu->thread_concurrency, NULL, &status); clState->buffer3 = clCreateBuffer(clState->context, CL_MEM_READ_WRITE, buf3size, NULL, &status);
if (status != CL_SUCCESS && !clState->buffer3) { if (status != CL_SUCCESS && !clState->buffer3) {
applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer3), decrease TC or increase LG", status); applog(LOG_DEBUG, "Error %d: clCreateBuffer (buffer3), decrease TC or increase LG", status);
return NULL; return NULL;

4
sgminer.c

@ -7082,7 +7082,9 @@ bool test_nonce(struct work *work, uint32_t nonce)
// for Neoscrypt, the diff1targ value is in work->target // for Neoscrypt, the diff1targ value is in work->target
if (!safe_cmp(work->pool->algorithm.name, "neoscrypt") || !safe_cmp(work->pool->algorithm.name, "pluck") if (!safe_cmp(work->pool->algorithm.name, "neoscrypt") || !safe_cmp(work->pool->algorithm.name, "pluck")
|| !safe_cmp(work->pool->algorithm.name, "yescrypt") ) { || !safe_cmp(work->pool->algorithm.name, "yescrypt")
|| !safe_cmp(work->pool->algorithm.name, "yescrypt-multi")
) {
diff1targ = ((uint32_t *)work->target)[7]; diff1targ = ((uint32_t *)work->target)[7];
} }
else { else {

BIN
sgminer.exe

Binary file not shown.
Loading…
Cancel
Save