|
|
|
@ -94,8 +94,8 @@ W[19]=d1;
@@ -94,8 +94,8 @@ W[19]=d1;
|
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],b1,c1); |
|
|
|
|
W[19]+=K[4]; |
|
|
|
|
W[19]+=0x80000000; |
|
|
|
|
W[23]=h1; |
|
|
|
|
W[19]+=0x80000000; |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[20]+=fcty_e2; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
@ -117,8 +117,8 @@ W[18]+=Ma2(f1,W[19],W[20]);
@@ -117,8 +117,8 @@ W[18]+=Ma2(f1,W[19],W[20]);
|
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
W[16]+=K[7]; |
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
@ -214,8 +214,8 @@ W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
@@ -214,8 +214,8 @@ W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[21]; |
|
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -295,8 +295,8 @@ W[14]=0x00a00055U;
@@ -295,8 +295,8 @@ W[14]=0x00a00055U;
|
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -306,8 +306,8 @@ W[15]=fw15;
@@ -306,8 +306,8 @@ W[15]=fw15;
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[31]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -315,8 +315,8 @@ W[0]=fw01r;
@@ -315,8 +315,8 @@ W[0]=fw01r;
|
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -336,8 +336,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
@@ -336,8 +336,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[34]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=K[34]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -347,8 +347,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -347,8 +347,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[35]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -356,8 +356,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
@@ -356,8 +356,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[36]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=K[36]; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -367,8 +367,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -367,8 +367,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[37]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -376,8 +376,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
@@ -376,8 +376,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[38]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=K[38]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -387,8 +387,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -387,8 +387,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[39]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -396,8 +396,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
@@ -396,8 +396,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[40]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[40]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -407,8 +407,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -407,8 +407,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[41]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -416,8 +416,8 @@ W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
@@ -416,8 +416,8 @@ W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[42]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=K[42]; |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -427,8 +427,8 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
@@ -427,8 +427,8 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=K[43]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -436,8 +436,8 @@ W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
@@ -436,8 +436,8 @@ W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[44]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=K[44]; |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -447,8 +447,8 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
@@ -447,8 +447,8 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=K[45]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -456,8 +456,8 @@ W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
@@ -456,8 +456,8 @@ W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
|
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[46]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[46]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -467,8 +467,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
@@ -467,8 +467,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[47]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -476,8 +476,8 @@ W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
@@ -476,8 +476,8 @@ W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[48]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=K[48]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -487,8 +487,8 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
@@ -487,8 +487,8 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=K[49]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -496,8 +496,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
@@ -496,8 +496,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[50]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=K[50]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -507,8 +507,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -507,8 +507,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[51]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -516,8 +516,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
@@ -516,8 +516,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[52]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=K[52]; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -527,8 +527,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -527,8 +527,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[53]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -536,8 +536,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
@@ -536,8 +536,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[54]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=K[54]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -547,8 +547,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -547,8 +547,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[55]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -556,8 +556,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
@@ -556,8 +556,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[56]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[56]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -567,8 +567,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -567,8 +567,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[57]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -576,8 +576,8 @@ W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
@@ -576,8 +576,8 @@ W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[58]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=K[58]; |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -587,8 +587,8 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
@@ -587,8 +587,8 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=K[59]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -596,8 +596,8 @@ W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
@@ -596,8 +596,8 @@ W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[60]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=K[60]; |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -607,8 +607,8 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
@@ -607,8 +607,8 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=K[61]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -616,8 +616,8 @@ W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
@@ -616,8 +616,8 @@ W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
|
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[62]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[62]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -627,8 +627,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
@@ -627,8 +627,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[63]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -654,8 +654,8 @@ W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U));
@@ -654,8 +654,8 @@ W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U));
|
|
|
|
|
W[22]+=K[1]; |
|
|
|
|
W[2]=W[18]; |
|
|
|
|
W[2]+=state2; |
|
|
|
|
W[18]=0x3c6ef372U; |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]=0x3c6ef372U; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[23]+=0x08909ae5U; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -665,8 +665,8 @@ W[21]=0x9b05688cU;
@@ -665,8 +665,8 @@ W[21]=0x9b05688cU;
|
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],0x510e527fU); |
|
|
|
|
W[21]+=K[2]; |
|
|
|
|
W[17]=0xbb67ae85U; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[17]=0xbb67ae85U; |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U); |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
@ -676,8 +676,8 @@ W[20]=0x510e527fU;
@@ -676,8 +676,8 @@ W[20]=0x510e527fU;
|
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[3]; |
|
|
|
|
W[16]=0x6a09e667U; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]=0x6a09e667U; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[21]+=Ma2(0x6a09e667U,W[22],W[23]); |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -761,8 +761,8 @@ W[20]+=W[16];
@@ -761,8 +761,8 @@ W[20]+=W[16];
|
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[16]; |
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[23]+=K[16]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -816,8 +816,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
@@ -816,8 +816,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
|
W[6]+=0x00000100U; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[22]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=K[22]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -827,8 +827,8 @@ W[7]+=0x11002000U;
@@ -827,8 +827,8 @@ W[7]+=0x11002000U;
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[23]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -836,8 +836,8 @@ W[8]=0x80000000;
@@ -836,8 +836,8 @@ W[8]=0x80000000;
|
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[24]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[24]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -891,8 +891,8 @@ W[14]=0x00400022U;
@@ -891,8 +891,8 @@ W[14]=0x00400022U;
|
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -912,8 +912,8 @@ W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
@@ -912,8 +912,8 @@ W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -923,8 +923,8 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
@@ -923,8 +923,8 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=K[33]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -932,8 +932,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
@@ -932,8 +932,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[34]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=K[34]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -943,8 +943,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -943,8 +943,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[35]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -952,8 +952,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
@@ -952,8 +952,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[36]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=K[36]; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -963,8 +963,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -963,8 +963,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[37]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -972,8 +972,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
@@ -972,8 +972,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[38]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=K[38]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -983,8 +983,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -983,8 +983,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[39]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -992,8 +992,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
@@ -992,8 +992,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[40]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[40]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -1003,8 +1003,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -1003,8 +1003,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[41]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -1012,8 +1012,8 @@ W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
@@ -1012,8 +1012,8 @@ W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[42]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=K[42]; |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -1023,8 +1023,8 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
@@ -1023,8 +1023,8 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=K[43]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -1032,8 +1032,8 @@ W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
@@ -1032,8 +1032,8 @@ W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[44]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=K[44]; |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -1043,8 +1043,8 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
@@ -1043,8 +1043,8 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=K[45]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -1052,8 +1052,8 @@ W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
@@ -1052,8 +1052,8 @@ W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
|
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[46]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[46]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -1063,8 +1063,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
@@ -1063,8 +1063,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[47]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -1072,8 +1072,8 @@ W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
@@ -1072,8 +1072,8 @@ W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[48]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=K[48]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -1083,8 +1083,8 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
@@ -1083,8 +1083,8 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=K[49]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -1092,8 +1092,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
@@ -1092,8 +1092,8 @@ W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[50]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=K[50]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -1103,8 +1103,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -1103,8 +1103,8 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[51]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -1112,8 +1112,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
@@ -1112,8 +1112,8 @@ W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[52]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=K[52]; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -1123,8 +1123,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -1123,8 +1123,8 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[53]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -1132,8 +1132,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
@@ -1132,8 +1132,8 @@ W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[54]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=K[54]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -1143,8 +1143,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -1143,8 +1143,8 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[55]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -1152,8 +1152,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
@@ -1152,8 +1152,8 @@ W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[56]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[56]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -1163,8 +1163,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -1163,8 +1163,8 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[57]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
@ -1184,8 +1184,8 @@ W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
@@ -1184,8 +1184,8 @@ W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[23]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[23]+=K[60]; |
|
|
|
|