|
|
|
@ -94,8 +94,8 @@ W[19]=d1;
@@ -94,8 +94,8 @@ W[19]=d1;
|
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],b1,c1); |
|
|
|
|
W[19]+=K[4]; |
|
|
|
|
W[23]=h1; |
|
|
|
|
W[19]+=0x80000000; |
|
|
|
|
W[23]=h1; |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[20]+=fcty_e2; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
@ -117,8 +117,8 @@ W[18]+=Ma2(f1,W[19],W[20]);
@@ -117,8 +117,8 @@ W[18]+=Ma2(f1,W[19],W[20]);
|
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[7]; |
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
W[16]+=K[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
@ -214,8 +214,8 @@ W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
@@ -214,8 +214,8 @@ W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22));
|
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[21]; |
|
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[21]; |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
@ -293,10 +293,10 @@ W[22]+=W[18];
@@ -293,10 +293,10 @@ W[22]+=W[18];
|
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[14]=0x00a00055U; |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -306,17 +306,17 @@ W[15]=fw15;
@@ -306,17 +306,17 @@ W[15]=fw15;
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[31]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[31]; |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[0]=fw01r; |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -334,10 +334,10 @@ W[18]+=W[22];
@@ -334,10 +334,10 @@ W[18]+=W[22];
|
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[34]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -347,17 +347,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -347,17 +347,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[35]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[35]; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[36]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -367,17 +367,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -367,17 +367,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[37]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[37]; |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[38]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -387,17 +387,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -387,17 +387,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[39]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[39]; |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[40]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -407,17 +407,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -407,17 +407,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[41]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[41]; |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[42]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -427,17 +427,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
@@ -427,17 +427,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[43]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=K[43]; |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[44]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -447,17 +447,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
@@ -447,17 +447,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[45]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=K[45]; |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[46]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -467,17 +467,17 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
@@ -467,17 +467,17 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[47]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[47]; |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[48]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -487,17 +487,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
@@ -487,17 +487,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[49]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=K[49]; |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[50]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -507,17 +507,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -507,17 +507,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[51]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[51]; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[52]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -527,17 +527,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -527,17 +527,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[53]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[53]; |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[54]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -547,17 +547,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -547,17 +547,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[55]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[55]; |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[56]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -567,17 +567,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -567,17 +567,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[57]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[57]; |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[58]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -587,17 +587,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
@@ -587,17 +587,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[59]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=K[59]; |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[60]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -607,17 +607,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
@@ -607,17 +607,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[61]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=K[61]; |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[62]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -627,8 +627,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
@@ -627,8 +627,8 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[63]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[63]; |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
@ -652,10 +652,10 @@ W[22]=0x1f83d9abU;
@@ -652,10 +652,10 @@ W[22]=0x1f83d9abU;
|
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U)); |
|
|
|
|
W[22]+=K[1]; |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[2]=W[18]; |
|
|
|
|
W[2]+=state2; |
|
|
|
|
W[18]=0x3c6ef372U; |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[23]+=0x08909ae5U; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
@ -665,8 +665,8 @@ W[21]=0x9b05688cU;
@@ -665,8 +665,8 @@ W[21]=0x9b05688cU;
|
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],0x510e527fU); |
|
|
|
|
W[21]+=K[2]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[17]=0xbb67ae85U; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U); |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
@ -676,8 +676,8 @@ W[20]=0x510e527fU;
@@ -676,8 +676,8 @@ W[20]=0x510e527fU;
|
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[3]; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]=0x6a09e667U; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[21]+=Ma2(0x6a09e667U,W[22],W[23]); |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
@ -759,10 +759,10 @@ W[16]+=K[15];
@@ -759,10 +759,10 @@ W[16]+=K[15];
|
|
|
|
|
W[16]+=0x00000100U; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[16]; |
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -814,10 +814,10 @@ W[22]+=W[18];
@@ -814,10 +814,10 @@ W[22]+=W[18];
|
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=0x00000100U; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[22]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -827,17 +827,17 @@ W[7]+=0x11002000U;
@@ -827,17 +827,17 @@ W[7]+=0x11002000U;
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[23]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[23]; |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[8]=0x80000000; |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[24]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -889,10 +889,10 @@ W[22]+=W[18];
@@ -889,10 +889,10 @@ W[22]+=W[18];
|
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[14]=0x00400022U; |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -910,10 +910,10 @@ W[20]+=W[16];
@@ -910,10 +910,10 @@ W[20]+=W[16];
|
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -923,17 +923,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
@@ -923,17 +923,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[33]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=K[33]; |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[34]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -943,17 +943,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -943,17 +943,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[35]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[35]; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[36]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -963,17 +963,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -963,17 +963,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[37]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[37]; |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[38]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -983,17 +983,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -983,17 +983,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[39]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[39]; |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[40]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -1003,17 +1003,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -1003,17 +1003,17 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[41]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[41]; |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[42]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -1023,17 +1023,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
@@ -1023,17 +1023,17 @@ W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[43]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=K[43]; |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[44]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -1043,17 +1043,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
@@ -1043,17 +1043,17 @@ W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[45]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=K[45]; |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[46]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -1063,17 +1063,17 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
@@ -1063,17 +1063,17 @@ W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[47]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=K[47]; |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[48]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -1083,17 +1083,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
@@ -1083,17 +1083,17 @@ W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[49]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=K[49]; |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[50]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
@ -1103,17 +1103,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
@@ -1103,17 +1103,17 @@ W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[51]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=K[51]; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[52]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
@ -1123,17 +1123,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
@@ -1123,17 +1123,17 @@ W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[53]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=K[53]; |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[54]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
@ -1143,17 +1143,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
@@ -1143,17 +1143,17 @@ W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[55]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=K[55]; |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[56]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
@ -1163,20 +1163,20 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
@@ -1163,20 +1163,20 @@ W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[57]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=K[57]; |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[58]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[59]; |
|
|
|
@ -1184,12 +1184,12 @@ W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
@@ -1184,12 +1184,12 @@ W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[23]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[23]+=K[60]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[23]+=W[12]; |
|
|
|
|
|
|
|
|
|
#define FOUND (0x80) |
|
|
|
|