Browse Source

Add an avalon-auto option which enables dynamic overclocking based on hardware error rate for maximum effective hashrate.

nfactor-troky
Con Kolivas 11 years ago
parent
commit
e811c4dc77
  1. 16
      ASIC-README
  2. 1
      README
  3. 3
      cgminer.c
  4. 88
      driver-avalon.c
  5. 11
      driver-avalon.h

16
ASIC-README

@ -84,15 +84,17 @@ degrees.
Avalon commands: Avalon commands:
--avalon-auto Adjust avalon overclock frequency dynamically for best hashrate
--avalon-cutoff <arg> Set avalon overheat cut off temperature (default: 60) --avalon-cutoff <arg> Set avalon overheat cut off temperature (default: 60)
--avalon-options <arg> Set avalon options baud:miners:asic:timeout:freq --avalon-options <arg> Set avalon options baud:miners:asic:timeout:freq
--avalon-temp <arg> Set avalon target temperature (default: 50) --avalon-temp <arg> Set avalon target temperature (default: 50)
eg:
--avalon-cutoff 65
This will cut off the avalon should it get up to 65 degrees and will then Avalon auto will enable dynamic overclocking gradually increasing and
re-enable it when it gets to the target temperature as specified by avalon-temp. decreasing the frequency till the highest hashrate that keeps hardware errors
around 1% is achieved. This WILL run your avalon beyond its normal specification
so the usual warnings apply. When avalon-auto is enabled, the avalon-options
for frequency and timeout are used as the starting point only.
eg: eg:
--avalon-temp 55 --avalon-temp 55
@ -103,6 +105,12 @@ very low such as 0 will achieve this. This option can be added to the "More
options" entry in the web interface if you do not have a direct way of setting options" entry in the web interface if you do not have a direct way of setting
it. it.
eg:
--avalon-cutoff 65
This will cut off the avalon should it get up to 65 degrees and will then
re-enable it when it gets to the target temperature as specified by avalon-temp.
eg: eg:
--avalon-options 115200:24:10:45:282 --avalon-options 115200:24:10:45:282

1
README

@ -233,6 +233,7 @@ See SCRYPT-README for more information regarding litecoin mining.
ASIC and FPGA mining boards (BFL ASIC, BitForce, Icarus, ModMiner, Ztex) ASIC and FPGA mining boards (BFL ASIC, BitForce, Icarus, ModMiner, Ztex)
only options: only options:
--avalon-auto Adjust avalon overclock frequency dynamically for best hashrate
--avalon-cutoff <arg> Set avalon overheat cut off temperature (default: 60) --avalon-cutoff <arg> Set avalon overheat cut off temperature (default: 60)
--avalon-options <arg> Set avalon options baud:miners:asic:timeout:freq --avalon-options <arg> Set avalon options baud:miners:asic:timeout:freq
--avalon-temp <arg> Set avalon target temperature (default: 50) --avalon-temp <arg> Set avalon target temperature (default: 50)

3
cgminer.c

@ -1057,6 +1057,9 @@ static struct opt_table opt_config_table[] = {
opt_hidden), opt_hidden),
#endif #endif
#ifdef USE_AVALON #ifdef USE_AVALON
OPT_WITHOUT_ARG("--avalon-auto",
opt_set_bool, &opt_avalon_auto,
"Adjust avalon overclock frequency dynamically for best hashrate"),
OPT_WITH_ARG("--avalon-cutoff", OPT_WITH_ARG("--avalon-cutoff",
set_int_0_to_100, opt_show_intval, &opt_avalon_overheat, set_int_0_to_100, opt_show_intval, &opt_avalon_overheat,
"Set avalon overheat cut off temperature"), "Set avalon overheat cut off temperature"),

88
driver-avalon.c

@ -42,6 +42,8 @@
int opt_avalon_temp = AVALON_TEMP_TARGET; int opt_avalon_temp = AVALON_TEMP_TARGET;
int opt_avalon_overheat = AVALON_TEMP_OVERHEAT; int opt_avalon_overheat = AVALON_TEMP_OVERHEAT;
bool opt_avalon_auto;
static int option_offset = -1; static int option_offset = -1;
struct device_drv avalon_drv; struct device_drv avalon_drv;
@ -51,6 +53,7 @@ static int avalon_init_task(struct avalon_task *at,
uint8_t miner_num, uint8_t nonce_elf, uint8_t miner_num, uint8_t nonce_elf,
uint8_t gate_miner, int frequency) uint8_t gate_miner, int frequency)
{ {
uint16_t *lefreq16;
uint8_t *buf; uint8_t *buf;
static bool first = true; static bool first = true;
@ -98,37 +101,8 @@ static int avalon_init_task(struct avalon_task *at,
buf[9] = 0x01; buf[9] = 0x01;
buf[10] = 0x00; buf[10] = 0x00;
buf[11] = 0x00; buf[11] = 0x00;
switch (frequency) { lefreq16 = (uint16_t *)&buf[6];
case 256: *lefreq16 = htole16(frequency * 8);
buf[6] = 0x03;
buf[7] = 0x08;
break;
default:
case 270:
buf[6] = 0x73;
buf[7] = 0x08;
break;
case 282:
buf[6] = 0xd3;
buf[7] = 0x08;
break;
case 300:
buf[6] = 0x63;
buf[7] = 0x09;
break;
case 325:
buf[6] = 0x28;
buf[7] = 0x0a;
break;
case 350:
buf[6] = 0xf0;
buf[7] = 0x0a;
break;
case 375:
buf[6] = 0xb8;
buf[7] = 0x0b;
break;
}
return 0; return 0;
} }
@ -731,6 +705,11 @@ static void avalon_parse_results(struct cgpu_info *avalon, struct avalon_info *i
mutex_lock(&info->lock); mutex_lock(&info->lock);
if (!info->nonces++) if (!info->nonces++)
gettemp = true; gettemp = true;
info->auto_nonces++;
mutex_unlock(&info->lock);
} else if (opt_avalon_auto) {
mutex_lock(&info->lock);
info->auto_hw++;
mutex_unlock(&info->lock); mutex_unlock(&info->lock);
} }
@ -842,6 +821,31 @@ static void avalon_rotate_array(struct cgpu_info *avalon)
avalon->work_array = 0; avalon->work_array = 0;
} }
static void avalon_set_timeout(struct avalon_info *info)
{
info->timeout = AVALON_TIMEOUT_FACTOR / info->frequency;
}
static void avalon_inc_freq(struct avalon_info *info)
{
info->frequency += 2;
if (info->frequency > AVALON_MAX_FREQUENCY)
info->frequency = AVALON_MAX_FREQUENCY;
avalon_set_timeout(info);
applog(LOG_NOTICE, "Avalon increasing frequency to %d, timeout %d",
info->frequency, info->timeout);
}
static void avalon_dec_freq(struct avalon_info *info)
{
info->frequency -= 1;
if (info->frequency < AVALON_MIN_FREQUENCY)
info->frequency = AVALON_MIN_FREQUENCY;
avalon_set_timeout(info);
applog(LOG_NOTICE, "Avalon decreasing frequency to %d, timeout %d",
info->frequency, info->timeout);
}
static void *avalon_send_tasks(void *userdata) static void *avalon_send_tasks(void *userdata)
{ {
struct cgpu_info *avalon = (struct cgpu_info *)userdata; struct cgpu_info *avalon = (struct cgpu_info *)userdata;
@ -860,6 +864,24 @@ static void *avalon_send_tasks(void *userdata)
while (avalon_buffer_full(avalon)) while (avalon_buffer_full(avalon))
cgsem_wait(&info->write_sem); cgsem_wait(&info->write_sem);
if (opt_avalon_auto && info->auto_queued >= AVALON_AUTO_CYCLE) {
mutex_lock(&info->lock);
if (info->auto_nonces >= (AVALON_AUTO_CYCLE * 19 / 20) &&
info->auto_nonces <= (AVALON_AUTO_CYCLE * 21 / 20)) {
int total = info->auto_nonces + info->auto_hw;
/* Try to keep hw errors ~1-1.5% */
if (info->auto_hw * 100 < total)
avalon_inc_freq(info);
else if (info->auto_hw * 66 > total)
avalon_dec_freq(info);
}
info->auto_queued =
info->auto_nonces =
info->auto_hw = 0;
mutex_unlock(&info->lock);
}
mutex_lock(&info->qlock); mutex_lock(&info->qlock);
start_count = avalon->work_array * avalon_get_work_count; start_count = avalon->work_array * avalon_get_work_count;
end_count = start_count + avalon_get_work_count; end_count = start_count + avalon_get_work_count;
@ -877,11 +899,15 @@ static void *avalon_send_tasks(void *userdata)
info->timeout, info->asic_count, info->timeout, info->asic_count,
info->miner_count, 1, 0, info->frequency); info->miner_count, 1, 0, info->frequency);
avalon_create_task(&at, avalon->works[i]); avalon_create_task(&at, avalon->works[i]);
info->auto_queued++;
} else { } else {
idled++; idled++;
avalon_init_task(&at, 0, 0, info->fan_pwm, avalon_init_task(&at, 0, 0, info->fan_pwm,
info->timeout, info->asic_count, info->timeout, info->asic_count,
info->miner_count, 1, 1, info->frequency); info->miner_count, 1, 1, info->frequency);
/* Reset the auto_queued count if we end up
* idling any miners. */
info->auto_queued = 0;
} }
ret = avalon_send_task(&at, avalon); ret = avalon_send_task(&at, avalon);

11
driver-avalon.h

@ -25,15 +25,21 @@
#define AVALON_FAN_FACTOR 120 #define AVALON_FAN_FACTOR 120
#define AVALON_DEFAULT_FAN_MAX_PWM 0xA0 /* 100% */ #define AVALON_DEFAULT_FAN_MAX_PWM 0xA0 /* 100% */
#define AVALON_DEFAULT_FAN_MIN_PWM 0x20 /* 20% */ #define AVALON_DEFAULT_FAN_MIN_PWM 0x20 /* 20% */
#define AVALON_TEMP_TARGET 50 #define AVALON_TEMP_TARGET 50
#define AVALON_TEMP_HYSTERESIS 3 #define AVALON_TEMP_HYSTERESIS 3
#define AVALON_TEMP_OVERHEAT 60 #define AVALON_TEMP_OVERHEAT 60
#define AVALON_DEFAULT_TIMEOUT 0x2D #define AVALON_DEFAULT_TIMEOUT 0x2D
#define AVALON_MIN_FREQUENCY 256
#define AVALON_MAX_FREQUENCY 450
#define AVALON_TIMEOUT_FACTOR 12000
#define AVALON_DEFAULT_FREQUENCY 282 #define AVALON_DEFAULT_FREQUENCY 282
#define AVALON_DEFAULT_MINER_NUM 0x20 #define AVALON_DEFAULT_MINER_NUM 0x20
#define AVALON_DEFAULT_ASIC_NUM 0xA #define AVALON_DEFAULT_ASIC_NUM 0xA
#define AVALON_AUTO_CYCLE 1024
#define AVALON_FTDI_READSIZE 510 #define AVALON_FTDI_READSIZE 510
#define AVALON_USB_PACKETSIZE 512 #define AVALON_USB_PACKETSIZE 512
#define AVALON_READBUF_SIZE 8192 #define AVALON_READBUF_SIZE 8192
@ -118,6 +124,10 @@ struct avalon_info {
cgsem_t write_sem; cgsem_t write_sem;
int nonces; int nonces;
int auto_queued;
int auto_nonces;
int auto_hw;
bool idle; bool idle;
bool reset; bool reset;
bool overheat; bool overheat;
@ -142,6 +152,7 @@ ASSERT1(sizeof(uint32_t) == 4);
extern struct avalon_info **avalon_info; extern struct avalon_info **avalon_info;
extern int opt_avalon_temp; extern int opt_avalon_temp;
extern int opt_avalon_overheat; extern int opt_avalon_overheat;
extern bool opt_avalon_auto;
#endif /* USE_AVALON */ #endif /* USE_AVALON */
#endif /* AVALON_H */ #endif /* AVALON_H */

Loading…
Cancel
Save