Browse Source

Simplify lyra2re algos

from-djm34
elbandi 9 years ago
parent
commit
c855a8d2d2
  1. 2
      Makefile.am
  2. 208
      algorithm/lyra2_old.c
  3. 50
      algorithm/lyra2_old.h
  4. 7
      algorithm/lyra2re.c
  5. 14
      algorithm/lyra2re_old.c
  6. 405
      algorithm/sponge_old.c
  7. 98
      algorithm/sponge_old.h

2
Makefile.am

@ -73,7 +73,7 @@ sgminer_SOURCES += algorithm/whirlcoin.c algorithm/whirlcoin.h
sgminer_SOURCES += algorithm/neoscrypt.c algorithm/neoscrypt.h sgminer_SOURCES += algorithm/neoscrypt.c algorithm/neoscrypt.h
sgminer_SOURCES += algorithm/whirlpoolx.c algorithm/whirlpoolx.h sgminer_SOURCES += algorithm/whirlpoolx.c algorithm/whirlpoolx.h
sgminer_SOURCES += algorithm/lyra2re.c algorithm/lyra2re.h algorithm/lyra2.c algorithm/lyra2.h algorithm/sponge.c algorithm/sponge.h sgminer_SOURCES += algorithm/lyra2re.c algorithm/lyra2re.h algorithm/lyra2.c algorithm/lyra2.h algorithm/sponge.c algorithm/sponge.h
sgminer_SOURCES += algorithm/lyra2re_old.c algorithm/lyra2re_old.h algorithm/lyra2_old.c algorithm/lyra2_old.h algorithm/sponge_old.c algorithm/sponge_old.h sgminer_SOURCES += algorithm/lyra2re_old.c algorithm/lyra2re_old.h
sgminer_SOURCES += algorithm/pluck.c algorithm/pluck.h sgminer_SOURCES += algorithm/pluck.c algorithm/pluck.h
sgminer_SOURCES += algorithm/credits.c algorithm/credits.h sgminer_SOURCES += algorithm/credits.c algorithm/credits.h
sgminer_SOURCES += algorithm/yescrypt.h algorithm/yescrypt.c algorithm/yescrypt_core.h algorithm/yescrypt-opt.c algorithm/yescryptcommon.c algorithm/sysendian.h sgminer_SOURCES += algorithm/yescrypt.h algorithm/yescrypt.c algorithm/yescrypt_core.h algorithm/yescrypt-opt.c algorithm/yescryptcommon.c algorithm/sysendian.h

208
algorithm/lyra2_old.c

@ -1,208 +0,0 @@
/**
* Implementation of the Lyra2 Password Hashing Scheme (PHS).
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "lyra2_old.h"
#include "sponge_old.h"
/**
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits,
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols).
*
* @param K The derived key to be output by the algorithm
* @param kLen Desired key length
* @param pwd User password
* @param pwdlen Password length
* @param salt Salt
* @param saltlen Salt length
* @param timeCost Parameter to determine the processing time (T)
* @param nRows Number or rows of the memory matrix (R)
* @param nCols Number of columns of the memory matrix (C)
*
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
*/
int LYRA2O(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols) {
//============================= Basic variables ============================//
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
int64_t i; //auxiliary iteration counter
//==========================================================================/
//========== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES);
uint64_t *wholeMatrix = malloc(i);
if (wholeMatrix == NULL) {
return -1;
}
memset(wholeMatrix, 0, i);
//Allocates pointers to each row of the matrix
uint64_t **memMatrix = malloc(nRows * sizeof (uint64_t*));
if (memMatrix == NULL) {
return -1;
}
//Places the pointers in the correct positions
uint64_t *ptrWord = wholeMatrix;
for (i = 0; i < nRows; i++) {
memMatrix[i] = ptrWord;
ptrWord += ROW_LEN_INT64;
}
//==========================================================================/
//============= Getting the password + salt + basil padded with 10*1 ===============//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
//but this ensures that the password copied locally will be overwritten as soon as possible
//First, we clean enough blocks for the password, salt, basil and padding
uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
byte *ptrByte = (byte*) wholeMatrix;
memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES);
//Prepends the password
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &pwdlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &saltlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &timeCost, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nRows, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nCols, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
//==========================================================================/
//======================= Initializing the Sponge State ====================//
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
uint64_t *state = malloc(16 * sizeof (uint64_t));
if (state == NULL) {
return -1;
}
initStateO(state);
//==========================================================================/
//================================ Setup Phase =============================//
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
ptrWord = wholeMatrix;
for (i = 0; i < nBlocksInput; i++) {
absorbBlockBlake2SafeO(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN_BLAKE2_SAFE_BYTES; //goes to next block of pad(pwd || salt || basil)
}
//Initializes M[0] and M[1]
reducedSqueezeRow0O(state, memMatrix[0]); //The locally copied password is most likely overwritten here
reducedDuplexRow1O(state, memMatrix[0], memMatrix[1]);
do {
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetupO(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
//updates the value of row* (deterministically picked during Setup))
rowa = (rowa + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa == 0) {
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//==========================================================================/
//============================ Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= timeCost; tau++) {
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
do {
//Selects a pseudorandom index row*
//------------------------------------------------------------------------------------------
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
reducedDuplexRowO(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//------------------------------------------------------------------------------------------
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//------------------------------------------------------------------------------------------
} while (row != 0);
}
//==========================================================================/
//============================ Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlockO(state, memMatrix[rowa]);
//Squeezes the key
squeezeO(state, K, kLen);
//==========================================================================/
//========================= Freeing the memory =============================//
free(memMatrix);
free(wholeMatrix);
//Wiping out the sponge's internal state before freeing it
memset(state, 0, 16 * sizeof (uint64_t));
free(state);
//==========================================================================/
return 0;
}

50
algorithm/lyra2_old.h

@ -1,50 +0,0 @@
/**
* Header file for the Lyra2 Password Hashing Scheme (PHS).
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef LYRA2OLD_H_
#define LYRA2OLD_H_
#include <stdint.h>
typedef unsigned char byte;
//Block length required so Blake2's Initialization Vector (IV) is not overwritten (THIS SHOULD NOT BE MODIFIED)
#define BLOCK_LEN_BLAKE2_SAFE_INT64 8 //512 bits (=64 bytes, =8 uint64_t)
#define BLOCK_LEN_BLAKE2_SAFE_BYTES (BLOCK_LEN_BLAKE2_SAFE_INT64 * 8) //same as above, in bytes
#ifdef BLOCK_LEN_BITS
#define BLOCK_LEN_INT64 (BLOCK_LEN_BITS/64) //Block length: 768 bits (=96 bytes, =12 uint64_t)
#define BLOCK_LEN_BYTES (BLOCK_LEN_BITS/8) //Block length, in bytes
#else //default block lenght: 768 bits
#define BLOCK_LEN_INT64 12 //Block length: 768 bits (=96 bytes, =12 uint64_t)
#define BLOCK_LEN_BYTES (BLOCK_LEN_INT64 * 8) //Block length, in bytes
#endif
#ifndef N_COLS
#define N_COLS 8 //Number of columns in the memory matrix: fixed to 64 by default
#endif
#define ROW_LEN_INT64 (BLOCK_LEN_INT64 * N_COLS) //Total length of a row: N_COLS blocks
#define ROW_LEN_BYTES (ROW_LEN_INT64 * 8) //Number of bytes per row
int LYRA2O(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols);
#endif /* LYRA2_H_ */

7
algorithm/lyra2re.c

@ -68,9 +68,6 @@ inline void lyra2rehash(void *state, const void *input)
sph_blake256 (&ctx_blake, input, 80); sph_blake256 (&ctx_blake, input, 80);
sph_blake256_close (&ctx_blake, hashA); sph_blake256_close (&ctx_blake, hashA);
sph_keccak256_init(&ctx_keccak); sph_keccak256_init(&ctx_keccak);
sph_keccak256 (&ctx_keccak,hashA, 32); sph_keccak256 (&ctx_keccak,hashA, 32);
sph_keccak256_close(&ctx_keccak, hashB); sph_keccak256_close(&ctx_keccak, hashB);
@ -93,9 +90,7 @@ inline void lyra2rehash(void *state, const void *input)
sph_bmw256 (&ctx_bmw, hashB, 32); sph_bmw256 (&ctx_bmw, hashB, 32);
sph_bmw256_close(&ctx_bmw, hashA); sph_bmw256_close(&ctx_bmw, hashA);
//printf("cpu hash %08x %08x %08x %08x\n",hashA[0],hashA[1],hashA[2],hashA[3]); memcpy(state, hashA, 32);
memcpy(state, hashA, 32);
} }
static const uint32_t diff1targ = 0x0000ffff; static const uint32_t diff1targ = 0x0000ffff;

14
algorithm/lyra2re_old.c

@ -36,7 +36,7 @@
#include "sph/sph_groestl.h" #include "sph/sph_groestl.h"
#include "sph/sph_skein.h" #include "sph/sph_skein.h"
#include "sph/sph_keccak.h" #include "sph/sph_keccak.h"
#include "lyra2_old.h" #include "lyra2.h"
/* /*
* Encode a length len/4 vector of (uint32_t) into a length len vector of * Encode a length len/4 vector of (uint32_t) into a length len vector of
@ -65,17 +65,13 @@ inline void lyra2rehash_old(void *state, const void *input)
sph_blake256 (&ctx_blake, input, 80); sph_blake256 (&ctx_blake, input, 80);
sph_blake256_close (&ctx_blake, hashA); sph_blake256_close (&ctx_blake, hashA);
sph_keccak256_init(&ctx_keccak); sph_keccak256_init(&ctx_keccak);
sph_keccak256 (&ctx_keccak,hashA, 32); sph_keccak256 (&ctx_keccak,hashA, 32);
sph_keccak256_close(&ctx_keccak, hashB); sph_keccak256_close(&ctx_keccak, hashB);
LYRA2O(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8); LYRA2(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8);
sph_skein256_init(&ctx_skein);
sph_skein256_init(&ctx_skein);
sph_skein256 (&ctx_skein, hashA, 32); sph_skein256 (&ctx_skein, hashA, 32);
sph_skein256_close(&ctx_skein, hashB); sph_skein256_close(&ctx_skein, hashB);
@ -84,9 +80,7 @@ inline void lyra2rehash_old(void *state, const void *input)
sph_groestl256 (&ctx_groestl, hashB, 32); sph_groestl256 (&ctx_groestl, hashB, 32);
sph_groestl256_close(&ctx_groestl, hashA); sph_groestl256_close(&ctx_groestl, hashA);
//printf("cpu hash %08x %08x %08x %08x\n",hashA[0],hashA[1],hashA[2],hashA[3]); memcpy(state, hashA, 32);
memcpy(state, hashA, 32);
} }
static const uint32_t diff1targ = 0x0000ffff; static const uint32_t diff1targ = 0x0000ffff;

405
algorithm/sponge_old.c

@ -1,405 +0,0 @@
/**
* A simple implementation of Blake2b's internal permutation
* in the form of a sponge.
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "sponge_old.h"
#include "lyra2_old.h"
/**
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
* typically have their internal state initialized with zeros, Blake2b's G function
* has a fixed point: if the internal state and message are both filled with zeros. the
* resulting permutation will always be a block filled with zeros; this happens because
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
* relying on the IV for avoiding possible fixed points.
*
* @param state The 1024-bit array to be initialized
*/
void initStateO(uint64_t state[/*16*/]) {
//First 512 bis are zeros
memset(state, 0, 64);
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
state[8] = blake2b_IV[0];
state[9] = blake2b_IV[1];
state[10] = blake2b_IV[2];
state[11] = blake2b_IV[3];
state[12] = blake2b_IV[4];
state[13] = blake2b_IV[5];
state[14] = blake2b_IV[6];
state[15] = blake2b_IV[7];
}
/**
* Execute Blake2b's G function, with all 12 rounds.
*
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
static void blake2bLyra(uint64_t *v) {
ROUND_LYRA(0);
ROUND_LYRA(1);
ROUND_LYRA(2);
ROUND_LYRA(3);
ROUND_LYRA(4);
ROUND_LYRA(5);
ROUND_LYRA(6);
ROUND_LYRA(7);
ROUND_LYRA(8);
ROUND_LYRA(9);
ROUND_LYRA(10);
ROUND_LYRA(11);
}
/**
* Executes a reduced version of Blake2b's G function with only one round
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
static void reducedBlake2bLyra(uint64_t *v) {
ROUND_LYRA(0);
}
/**
* Performs a squeeze operation, using Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param out Array that will receive the data squeezed
* @param len The number of bytes to be squeezed into the "out" array
*/
void squeezeO(uint64_t *state, byte *out, unsigned int len) {
int fullBlocks = len / BLOCK_LEN_BYTES;
byte *ptr = out;
int i;
//Squeezes full blocks
for (i = 0; i < fullBlocks; i++) {
memcpy(ptr, state, BLOCK_LEN_BYTES);
blake2bLyra(state);
ptr += BLOCK_LEN_BYTES;
}
//Squeezes remaining bytes
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
* of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
*/
void absorbBlockO(uint64_t *state, const uint64_t *in) {
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
state[8] ^= in[8];
state[9] ^= in[9];
state[10] ^= in[10];
state[11] ^= in[11];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
* words of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
*/
void absorbBlockBlake2SafeO(uint64_t *state, const uint64_t *in) {
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
//Applies the transformation f to the sponge's state
blake2bLyra(state);
}
/**
* Performs a reduced squeeze operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowOut Row to receive the data squeezed
*/
void reducedSqueezeRow0O(uint64_t* state, uint64_t* rowOut) {
uint64_t* ptrWord = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
int i;
//M[row][C-1-col] = H.reduced_squeeze()
for (i = 0; i < N_COLS; i++) {
ptrWord[0] = state[0];
ptrWord[1] = state[1];
ptrWord[2] = state[2];
ptrWord[3] = state[3];
ptrWord[4] = state[4];
ptrWord[5] = state[5];
ptrWord[6] = state[6];
ptrWord[7] = state[7];
ptrWord[8] = state[8];
ptrWord[9] = state[9];
ptrWord[10] = state[10];
ptrWord[11] = state[11];
//Goes to next block (column) that will receive the squeezed data
ptrWord -= BLOCK_LEN_INT64;
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
}
}
/**
* Performs a reduced duplex operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowIn Row to feed the sponge
* @param rowOut Row to receive the sponge's output
*/
void reducedDuplexRow1O(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev][col]"
state[0] ^= (ptrWordIn[0]);
state[1] ^= (ptrWordIn[1]);
state[2] ^= (ptrWordIn[2]);
state[3] ^= (ptrWordIn[3]);
state[4] ^= (ptrWordIn[4]);
state[5] ^= (ptrWordIn[5]);
state[6] ^= (ptrWordIn[6]);
state[7] ^= (ptrWordIn[7]);
state[8] ^= (ptrWordIn[8]);
state[9] ^= (ptrWordIn[9]);
state[10] ^= (ptrWordIn[10]);
state[11] ^= (ptrWordIn[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][C-1-col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//Input: next column (i.e., next block in sequence)
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left and N_COLS is a system parameter.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRowSetupO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][col] = M[prev][col] XOR rand
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Inputs: next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRowO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
int i;
for (i = 0; i < N_COLS; i++) {
//Absorbing "M[prev] [+] M[row*]"
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[rowOut][col] = M[rowOut][col] XOR rand
ptrWordOut[0] ^= state[0];
ptrWordOut[1] ^= state[1];
ptrWordOut[2] ^= state[2];
ptrWordOut[3] ^= state[3];
ptrWordOut[4] ^= state[4];
ptrWordOut[5] ^= state[5];
ptrWordOut[6] ^= state[6];
ptrWordOut[7] ^= state[7];
ptrWordOut[8] ^= state[8];
ptrWordOut[9] ^= state[9];
ptrWordOut[10] ^= state[10];
ptrWordOut[11] ^= state[11];
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
Prints an array of unsigned chars
*/
void printArrayO(unsigned char *array, unsigned int size, char *name) {
int i;
printf("%s: ", name);
for (i = 0; i < size; i++) {
printf("%2x|", array[i]);
}
printf("\n");
}
////////////////////////////////////////////////////////////////////////////////////////////////

98
algorithm/sponge_old.h

@ -1,98 +0,0 @@
/**
* Header file for Blake2b's internal permutation in the form of a sponge.
* This code is based on the original Blake2b's implementation provided by
* Samuel Neves (https://blake2.net/)
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SPONGEOLD_H_
#define SPONGEOLD_H_
#include <stdint.h>
#if defined(__GNUC__)
#define ALIGN __attribute__ ((aligned(32)))
#elif defined(_MSC_VER)
#define ALIGN __declspec(align(32))
#else
#define ALIGN
#endif
/*Blake2b IV Array*/
static const uint64_t blake2b_IV[8] =
{
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
};
/*Blake2b's rotation*/
static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
return ( w >> c ) | ( w << ( 64 - c ) );
}
/*Blake2b's G function*/
#define G(r,i,a,b,c,d) \
do { \
a = a + b; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while(0)
/*One Round of the Blake2b's compression function*/
#define ROUND_LYRA(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
//---- Housekeeping
void initStateO(uint64_t state[/*16*/]);
//---- Squeezes
void squeezeO(uint64_t *state, unsigned char *out, unsigned int len);
void reducedSqueezeRow0O(uint64_t* state, uint64_t* row);
//---- Absorbs
void absorbBlockO(uint64_t *state, const uint64_t *in);
void absorbBlockBlake2SafeO(uint64_t *state, const uint64_t *in);
//---- Duplexes
void reducedDuplexRow1O(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut);
void reducedDuplexRowSetupO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
void reducedDuplexRowO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
//---- Misc
void printArrayO(unsigned char *array, unsigned int size, char *name);
////////////////////////////////////////////////////////////////////////////////////////////////
#endif /* SPONGE_H_ */
Loading…
Cancel
Save