mirror of
https://github.com/GOSTSec/sgminer
synced 2025-01-09 06:18:06 +00:00
Simplify lyra2re algos
This commit is contained in:
parent
fecc92be89
commit
c855a8d2d2
@ -73,7 +73,7 @@ sgminer_SOURCES += algorithm/whirlcoin.c algorithm/whirlcoin.h
|
|||||||
sgminer_SOURCES += algorithm/neoscrypt.c algorithm/neoscrypt.h
|
sgminer_SOURCES += algorithm/neoscrypt.c algorithm/neoscrypt.h
|
||||||
sgminer_SOURCES += algorithm/whirlpoolx.c algorithm/whirlpoolx.h
|
sgminer_SOURCES += algorithm/whirlpoolx.c algorithm/whirlpoolx.h
|
||||||
sgminer_SOURCES += algorithm/lyra2re.c algorithm/lyra2re.h algorithm/lyra2.c algorithm/lyra2.h algorithm/sponge.c algorithm/sponge.h
|
sgminer_SOURCES += algorithm/lyra2re.c algorithm/lyra2re.h algorithm/lyra2.c algorithm/lyra2.h algorithm/sponge.c algorithm/sponge.h
|
||||||
sgminer_SOURCES += algorithm/lyra2re_old.c algorithm/lyra2re_old.h algorithm/lyra2_old.c algorithm/lyra2_old.h algorithm/sponge_old.c algorithm/sponge_old.h
|
sgminer_SOURCES += algorithm/lyra2re_old.c algorithm/lyra2re_old.h
|
||||||
sgminer_SOURCES += algorithm/pluck.c algorithm/pluck.h
|
sgminer_SOURCES += algorithm/pluck.c algorithm/pluck.h
|
||||||
sgminer_SOURCES += algorithm/credits.c algorithm/credits.h
|
sgminer_SOURCES += algorithm/credits.c algorithm/credits.h
|
||||||
sgminer_SOURCES += algorithm/yescrypt.h algorithm/yescrypt.c algorithm/yescrypt_core.h algorithm/yescrypt-opt.c algorithm/yescryptcommon.c algorithm/sysendian.h
|
sgminer_SOURCES += algorithm/yescrypt.h algorithm/yescrypt.c algorithm/yescrypt_core.h algorithm/yescrypt-opt.c algorithm/yescryptcommon.c algorithm/sysendian.h
|
||||||
|
@ -1,208 +0,0 @@
|
|||||||
/**
|
|
||||||
* Implementation of the Lyra2 Password Hashing Scheme (PHS).
|
|
||||||
*
|
|
||||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
|
||||||
*
|
|
||||||
* This software is hereby placed in the public domain.
|
|
||||||
*
|
|
||||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
|
||||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
||||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
||||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
|
||||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
||||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
||||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
||||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
||||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
||||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
||||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
*/
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
#include <string.h>
|
|
||||||
#include <time.h>
|
|
||||||
#include "lyra2_old.h"
|
|
||||||
#include "sponge_old.h"
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords
|
|
||||||
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits,
|
|
||||||
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all
|
|
||||||
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value
|
|
||||||
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols).
|
|
||||||
*
|
|
||||||
* @param K The derived key to be output by the algorithm
|
|
||||||
* @param kLen Desired key length
|
|
||||||
* @param pwd User password
|
|
||||||
* @param pwdlen Password length
|
|
||||||
* @param salt Salt
|
|
||||||
* @param saltlen Salt length
|
|
||||||
* @param timeCost Parameter to determine the processing time (T)
|
|
||||||
* @param nRows Number or rows of the memory matrix (R)
|
|
||||||
* @param nCols Number of columns of the memory matrix (C)
|
|
||||||
*
|
|
||||||
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
|
|
||||||
*/
|
|
||||||
int LYRA2O(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols) {
|
|
||||||
|
|
||||||
//============================= Basic variables ============================//
|
|
||||||
int64_t row = 2; //index of row to be processed
|
|
||||||
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
|
||||||
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
|
||||||
int64_t tau; //Time Loop iterator
|
|
||||||
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
|
||||||
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
|
||||||
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
|
||||||
int64_t i; //auxiliary iteration counter
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
//========== Initializing the Memory Matrix and pointers to it =============//
|
|
||||||
//Tries to allocate enough space for the whole memory matrix
|
|
||||||
i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES);
|
|
||||||
uint64_t *wholeMatrix = malloc(i);
|
|
||||||
if (wholeMatrix == NULL) {
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
memset(wholeMatrix, 0, i);
|
|
||||||
|
|
||||||
//Allocates pointers to each row of the matrix
|
|
||||||
uint64_t **memMatrix = malloc(nRows * sizeof (uint64_t*));
|
|
||||||
if (memMatrix == NULL) {
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
//Places the pointers in the correct positions
|
|
||||||
uint64_t *ptrWord = wholeMatrix;
|
|
||||||
for (i = 0; i < nRows; i++) {
|
|
||||||
memMatrix[i] = ptrWord;
|
|
||||||
ptrWord += ROW_LEN_INT64;
|
|
||||||
}
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
//============= Getting the password + salt + basil padded with 10*1 ===============//
|
|
||||||
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
|
||||||
//but this ensures that the password copied locally will be overwritten as soon as possible
|
|
||||||
|
|
||||||
//First, we clean enough blocks for the password, salt, basil and padding
|
|
||||||
uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
|
|
||||||
byte *ptrByte = (byte*) wholeMatrix;
|
|
||||||
memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES);
|
|
||||||
|
|
||||||
//Prepends the password
|
|
||||||
memcpy(ptrByte, pwd, pwdlen);
|
|
||||||
ptrByte += pwdlen;
|
|
||||||
|
|
||||||
//Concatenates the salt
|
|
||||||
memcpy(ptrByte, salt, saltlen);
|
|
||||||
ptrByte += saltlen;
|
|
||||||
|
|
||||||
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
|
||||||
memcpy(ptrByte, &kLen, sizeof (uint64_t));
|
|
||||||
ptrByte += sizeof (uint64_t);
|
|
||||||
memcpy(ptrByte, &pwdlen, sizeof (uint64_t));
|
|
||||||
ptrByte += sizeof (uint64_t);
|
|
||||||
memcpy(ptrByte, &saltlen, sizeof (uint64_t));
|
|
||||||
ptrByte += sizeof (uint64_t);
|
|
||||||
memcpy(ptrByte, &timeCost, sizeof (uint64_t));
|
|
||||||
ptrByte += sizeof (uint64_t);
|
|
||||||
memcpy(ptrByte, &nRows, sizeof (uint64_t));
|
|
||||||
ptrByte += sizeof (uint64_t);
|
|
||||||
memcpy(ptrByte, &nCols, sizeof (uint64_t));
|
|
||||||
ptrByte += sizeof (uint64_t);
|
|
||||||
|
|
||||||
//Now comes the padding
|
|
||||||
*ptrByte = 0x80; //first byte of padding: right after the password
|
|
||||||
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
|
||||||
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
|
||||||
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
//======================= Initializing the Sponge State ====================//
|
|
||||||
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
|
||||||
uint64_t *state = malloc(16 * sizeof (uint64_t));
|
|
||||||
if (state == NULL) {
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
initStateO(state);
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
//================================ Setup Phase =============================//
|
|
||||||
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
|
||||||
ptrWord = wholeMatrix;
|
|
||||||
for (i = 0; i < nBlocksInput; i++) {
|
|
||||||
absorbBlockBlake2SafeO(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
|
|
||||||
ptrWord += BLOCK_LEN_BLAKE2_SAFE_BYTES; //goes to next block of pad(pwd || salt || basil)
|
|
||||||
}
|
|
||||||
|
|
||||||
//Initializes M[0] and M[1]
|
|
||||||
reducedSqueezeRow0O(state, memMatrix[0]); //The locally copied password is most likely overwritten here
|
|
||||||
reducedDuplexRow1O(state, memMatrix[0], memMatrix[1]);
|
|
||||||
|
|
||||||
do {
|
|
||||||
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
|
||||||
reducedDuplexRowSetupO(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
|
|
||||||
|
|
||||||
|
|
||||||
//updates the value of row* (deterministically picked during Setup))
|
|
||||||
rowa = (rowa + step) & (window - 1);
|
|
||||||
//update prev: it now points to the last row ever computed
|
|
||||||
prev = row;
|
|
||||||
//updates row: goes to the next row to be computed
|
|
||||||
row++;
|
|
||||||
|
|
||||||
//Checks if all rows in the window where visited.
|
|
||||||
if (rowa == 0) {
|
|
||||||
step = window + gap; //changes the step: approximately doubles its value
|
|
||||||
window *= 2; //doubles the size of the re-visitation window
|
|
||||||
gap = -gap; //inverts the modifier to the step
|
|
||||||
}
|
|
||||||
|
|
||||||
} while (row < nRows);
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
//============================ Wandering Phase =============================//
|
|
||||||
row = 0; //Resets the visitation to the first row of the memory matrix
|
|
||||||
for (tau = 1; tau <= timeCost; tau++) {
|
|
||||||
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
|
||||||
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
|
|
||||||
do {
|
|
||||||
//Selects a pseudorandom index row*
|
|
||||||
//------------------------------------------------------------------------------------------
|
|
||||||
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
|
||||||
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
|
||||||
//------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
|
||||||
reducedDuplexRowO(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]);
|
|
||||||
|
|
||||||
//update prev: it now points to the last row ever computed
|
|
||||||
prev = row;
|
|
||||||
|
|
||||||
//updates row: goes to the next row to be computed
|
|
||||||
//------------------------------------------------------------------------------------------
|
|
||||||
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
|
||||||
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
|
||||||
//------------------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
} while (row != 0);
|
|
||||||
}
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
//============================ Wrap-up Phase ===============================//
|
|
||||||
//Absorbs the last block of the memory matrix
|
|
||||||
absorbBlockO(state, memMatrix[rowa]);
|
|
||||||
|
|
||||||
//Squeezes the key
|
|
||||||
squeezeO(state, K, kLen);
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
//========================= Freeing the memory =============================//
|
|
||||||
free(memMatrix);
|
|
||||||
free(wholeMatrix);
|
|
||||||
|
|
||||||
//Wiping out the sponge's internal state before freeing it
|
|
||||||
memset(state, 0, 16 * sizeof (uint64_t));
|
|
||||||
free(state);
|
|
||||||
//==========================================================================/
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
@ -1,50 +0,0 @@
|
|||||||
/**
|
|
||||||
* Header file for the Lyra2 Password Hashing Scheme (PHS).
|
|
||||||
*
|
|
||||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
|
||||||
*
|
|
||||||
* This software is hereby placed in the public domain.
|
|
||||||
*
|
|
||||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
|
||||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
||||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
||||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
|
||||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
||||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
||||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
||||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
||||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
||||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
||||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
*/
|
|
||||||
#ifndef LYRA2OLD_H_
|
|
||||||
#define LYRA2OLD_H_
|
|
||||||
|
|
||||||
#include <stdint.h>
|
|
||||||
|
|
||||||
typedef unsigned char byte;
|
|
||||||
|
|
||||||
//Block length required so Blake2's Initialization Vector (IV) is not overwritten (THIS SHOULD NOT BE MODIFIED)
|
|
||||||
#define BLOCK_LEN_BLAKE2_SAFE_INT64 8 //512 bits (=64 bytes, =8 uint64_t)
|
|
||||||
#define BLOCK_LEN_BLAKE2_SAFE_BYTES (BLOCK_LEN_BLAKE2_SAFE_INT64 * 8) //same as above, in bytes
|
|
||||||
|
|
||||||
|
|
||||||
#ifdef BLOCK_LEN_BITS
|
|
||||||
#define BLOCK_LEN_INT64 (BLOCK_LEN_BITS/64) //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
|
||||||
#define BLOCK_LEN_BYTES (BLOCK_LEN_BITS/8) //Block length, in bytes
|
|
||||||
#else //default block lenght: 768 bits
|
|
||||||
#define BLOCK_LEN_INT64 12 //Block length: 768 bits (=96 bytes, =12 uint64_t)
|
|
||||||
#define BLOCK_LEN_BYTES (BLOCK_LEN_INT64 * 8) //Block length, in bytes
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifndef N_COLS
|
|
||||||
#define N_COLS 8 //Number of columns in the memory matrix: fixed to 64 by default
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define ROW_LEN_INT64 (BLOCK_LEN_INT64 * N_COLS) //Total length of a row: N_COLS blocks
|
|
||||||
#define ROW_LEN_BYTES (ROW_LEN_INT64 * 8) //Number of bytes per row
|
|
||||||
|
|
||||||
|
|
||||||
int LYRA2O(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols);
|
|
||||||
|
|
||||||
#endif /* LYRA2_H_ */
|
|
@ -68,9 +68,6 @@ inline void lyra2rehash(void *state, const void *input)
|
|||||||
sph_blake256 (&ctx_blake, input, 80);
|
sph_blake256 (&ctx_blake, input, 80);
|
||||||
sph_blake256_close (&ctx_blake, hashA);
|
sph_blake256_close (&ctx_blake, hashA);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sph_keccak256_init(&ctx_keccak);
|
sph_keccak256_init(&ctx_keccak);
|
||||||
sph_keccak256 (&ctx_keccak,hashA, 32);
|
sph_keccak256 (&ctx_keccak,hashA, 32);
|
||||||
sph_keccak256_close(&ctx_keccak, hashB);
|
sph_keccak256_close(&ctx_keccak, hashB);
|
||||||
@ -93,8 +90,6 @@ inline void lyra2rehash(void *state, const void *input)
|
|||||||
sph_bmw256 (&ctx_bmw, hashB, 32);
|
sph_bmw256 (&ctx_bmw, hashB, 32);
|
||||||
sph_bmw256_close(&ctx_bmw, hashA);
|
sph_bmw256_close(&ctx_bmw, hashA);
|
||||||
|
|
||||||
//printf("cpu hash %08x %08x %08x %08x\n",hashA[0],hashA[1],hashA[2],hashA[3]);
|
|
||||||
|
|
||||||
memcpy(state, hashA, 32);
|
memcpy(state, hashA, 32);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -36,7 +36,7 @@
|
|||||||
#include "sph/sph_groestl.h"
|
#include "sph/sph_groestl.h"
|
||||||
#include "sph/sph_skein.h"
|
#include "sph/sph_skein.h"
|
||||||
#include "sph/sph_keccak.h"
|
#include "sph/sph_keccak.h"
|
||||||
#include "lyra2_old.h"
|
#include "lyra2.h"
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
* Encode a length len/4 vector of (uint32_t) into a length len vector of
|
||||||
@ -65,15 +65,11 @@ inline void lyra2rehash_old(void *state, const void *input)
|
|||||||
sph_blake256 (&ctx_blake, input, 80);
|
sph_blake256 (&ctx_blake, input, 80);
|
||||||
sph_blake256_close (&ctx_blake, hashA);
|
sph_blake256_close (&ctx_blake, hashA);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sph_keccak256_init(&ctx_keccak);
|
sph_keccak256_init(&ctx_keccak);
|
||||||
sph_keccak256 (&ctx_keccak,hashA, 32);
|
sph_keccak256 (&ctx_keccak,hashA, 32);
|
||||||
sph_keccak256_close(&ctx_keccak, hashB);
|
sph_keccak256_close(&ctx_keccak, hashB);
|
||||||
|
|
||||||
LYRA2O(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8);
|
LYRA2(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8);
|
||||||
|
|
||||||
|
|
||||||
sph_skein256_init(&ctx_skein);
|
sph_skein256_init(&ctx_skein);
|
||||||
sph_skein256 (&ctx_skein, hashA, 32);
|
sph_skein256 (&ctx_skein, hashA, 32);
|
||||||
@ -84,8 +80,6 @@ inline void lyra2rehash_old(void *state, const void *input)
|
|||||||
sph_groestl256 (&ctx_groestl, hashB, 32);
|
sph_groestl256 (&ctx_groestl, hashB, 32);
|
||||||
sph_groestl256_close(&ctx_groestl, hashA);
|
sph_groestl256_close(&ctx_groestl, hashA);
|
||||||
|
|
||||||
//printf("cpu hash %08x %08x %08x %08x\n",hashA[0],hashA[1],hashA[2],hashA[3]);
|
|
||||||
|
|
||||||
memcpy(state, hashA, 32);
|
memcpy(state, hashA, 32);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,405 +0,0 @@
|
|||||||
/**
|
|
||||||
* A simple implementation of Blake2b's internal permutation
|
|
||||||
* in the form of a sponge.
|
|
||||||
*
|
|
||||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
|
||||||
*
|
|
||||||
* This software is hereby placed in the public domain.
|
|
||||||
*
|
|
||||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
|
||||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
||||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
||||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
|
||||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
||||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
||||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
||||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
||||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
||||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
||||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
*/
|
|
||||||
#include <string.h>
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <time.h>
|
|
||||||
#include "sponge_old.h"
|
|
||||||
#include "lyra2_old.h"
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
|
|
||||||
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
|
|
||||||
* typically have their internal state initialized with zeros, Blake2b's G function
|
|
||||||
* has a fixed point: if the internal state and message are both filled with zeros. the
|
|
||||||
* resulting permutation will always be a block filled with zeros; this happens because
|
|
||||||
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
|
|
||||||
* relying on the IV for avoiding possible fixed points.
|
|
||||||
*
|
|
||||||
* @param state The 1024-bit array to be initialized
|
|
||||||
*/
|
|
||||||
void initStateO(uint64_t state[/*16*/]) {
|
|
||||||
//First 512 bis are zeros
|
|
||||||
memset(state, 0, 64);
|
|
||||||
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
|
|
||||||
state[8] = blake2b_IV[0];
|
|
||||||
state[9] = blake2b_IV[1];
|
|
||||||
state[10] = blake2b_IV[2];
|
|
||||||
state[11] = blake2b_IV[3];
|
|
||||||
state[12] = blake2b_IV[4];
|
|
||||||
state[13] = blake2b_IV[5];
|
|
||||||
state[14] = blake2b_IV[6];
|
|
||||||
state[15] = blake2b_IV[7];
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Execute Blake2b's G function, with all 12 rounds.
|
|
||||||
*
|
|
||||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
|
||||||
*/
|
|
||||||
static void blake2bLyra(uint64_t *v) {
|
|
||||||
ROUND_LYRA(0);
|
|
||||||
ROUND_LYRA(1);
|
|
||||||
ROUND_LYRA(2);
|
|
||||||
ROUND_LYRA(3);
|
|
||||||
ROUND_LYRA(4);
|
|
||||||
ROUND_LYRA(5);
|
|
||||||
ROUND_LYRA(6);
|
|
||||||
ROUND_LYRA(7);
|
|
||||||
ROUND_LYRA(8);
|
|
||||||
ROUND_LYRA(9);
|
|
||||||
ROUND_LYRA(10);
|
|
||||||
ROUND_LYRA(11);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Executes a reduced version of Blake2b's G function with only one round
|
|
||||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
|
||||||
*/
|
|
||||||
static void reducedBlake2bLyra(uint64_t *v) {
|
|
||||||
ROUND_LYRA(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Performs a squeeze operation, using Blake2b's G function as the
|
|
||||||
* internal permutation
|
|
||||||
*
|
|
||||||
* @param state The current state of the sponge
|
|
||||||
* @param out Array that will receive the data squeezed
|
|
||||||
* @param len The number of bytes to be squeezed into the "out" array
|
|
||||||
*/
|
|
||||||
void squeezeO(uint64_t *state, byte *out, unsigned int len) {
|
|
||||||
int fullBlocks = len / BLOCK_LEN_BYTES;
|
|
||||||
byte *ptr = out;
|
|
||||||
int i;
|
|
||||||
//Squeezes full blocks
|
|
||||||
for (i = 0; i < fullBlocks; i++) {
|
|
||||||
memcpy(ptr, state, BLOCK_LEN_BYTES);
|
|
||||||
blake2bLyra(state);
|
|
||||||
ptr += BLOCK_LEN_BYTES;
|
|
||||||
}
|
|
||||||
|
|
||||||
//Squeezes remaining bytes
|
|
||||||
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
|
|
||||||
* of type uint64_t), using Blake2b's G function as the internal permutation
|
|
||||||
*
|
|
||||||
* @param state The current state of the sponge
|
|
||||||
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
|
|
||||||
*/
|
|
||||||
void absorbBlockO(uint64_t *state, const uint64_t *in) {
|
|
||||||
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
|
|
||||||
state[0] ^= in[0];
|
|
||||||
state[1] ^= in[1];
|
|
||||||
state[2] ^= in[2];
|
|
||||||
state[3] ^= in[3];
|
|
||||||
state[4] ^= in[4];
|
|
||||||
state[5] ^= in[5];
|
|
||||||
state[6] ^= in[6];
|
|
||||||
state[7] ^= in[7];
|
|
||||||
state[8] ^= in[8];
|
|
||||||
state[9] ^= in[9];
|
|
||||||
state[10] ^= in[10];
|
|
||||||
state[11] ^= in[11];
|
|
||||||
|
|
||||||
//Applies the transformation f to the sponge's state
|
|
||||||
blake2bLyra(state);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
|
|
||||||
* words of type uint64_t), using Blake2b's G function as the internal permutation
|
|
||||||
*
|
|
||||||
* @param state The current state of the sponge
|
|
||||||
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
|
|
||||||
*/
|
|
||||||
void absorbBlockBlake2SafeO(uint64_t *state, const uint64_t *in) {
|
|
||||||
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
|
|
||||||
state[0] ^= in[0];
|
|
||||||
state[1] ^= in[1];
|
|
||||||
state[2] ^= in[2];
|
|
||||||
state[3] ^= in[3];
|
|
||||||
state[4] ^= in[4];
|
|
||||||
state[5] ^= in[5];
|
|
||||||
state[6] ^= in[6];
|
|
||||||
state[7] ^= in[7];
|
|
||||||
|
|
||||||
//Applies the transformation f to the sponge's state
|
|
||||||
blake2bLyra(state);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Performs a reduced squeeze operation for a single row, from the highest to
|
|
||||||
* the lowest index, using the reduced-round Blake2b's G function as the
|
|
||||||
* internal permutation
|
|
||||||
*
|
|
||||||
* @param state The current state of the sponge
|
|
||||||
* @param rowOut Row to receive the data squeezed
|
|
||||||
*/
|
|
||||||
void reducedSqueezeRow0O(uint64_t* state, uint64_t* rowOut) {
|
|
||||||
uint64_t* ptrWord = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
|
|
||||||
int i;
|
|
||||||
//M[row][C-1-col] = H.reduced_squeeze()
|
|
||||||
for (i = 0; i < N_COLS; i++) {
|
|
||||||
ptrWord[0] = state[0];
|
|
||||||
ptrWord[1] = state[1];
|
|
||||||
ptrWord[2] = state[2];
|
|
||||||
ptrWord[3] = state[3];
|
|
||||||
ptrWord[4] = state[4];
|
|
||||||
ptrWord[5] = state[5];
|
|
||||||
ptrWord[6] = state[6];
|
|
||||||
ptrWord[7] = state[7];
|
|
||||||
ptrWord[8] = state[8];
|
|
||||||
ptrWord[9] = state[9];
|
|
||||||
ptrWord[10] = state[10];
|
|
||||||
ptrWord[11] = state[11];
|
|
||||||
|
|
||||||
//Goes to next block (column) that will receive the squeezed data
|
|
||||||
ptrWord -= BLOCK_LEN_INT64;
|
|
||||||
|
|
||||||
//Applies the reduced-round transformation f to the sponge's state
|
|
||||||
reducedBlake2bLyra(state);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Performs a reduced duplex operation for a single row, from the highest to
|
|
||||||
* the lowest index, using the reduced-round Blake2b's G function as the
|
|
||||||
* internal permutation
|
|
||||||
*
|
|
||||||
* @param state The current state of the sponge
|
|
||||||
* @param rowIn Row to feed the sponge
|
|
||||||
* @param rowOut Row to receive the sponge's output
|
|
||||||
*/
|
|
||||||
void reducedDuplexRow1O(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut) {
|
|
||||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
|
||||||
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
|
||||||
int i;
|
|
||||||
|
|
||||||
for (i = 0; i < N_COLS; i++) {
|
|
||||||
|
|
||||||
//Absorbing "M[prev][col]"
|
|
||||||
state[0] ^= (ptrWordIn[0]);
|
|
||||||
state[1] ^= (ptrWordIn[1]);
|
|
||||||
state[2] ^= (ptrWordIn[2]);
|
|
||||||
state[3] ^= (ptrWordIn[3]);
|
|
||||||
state[4] ^= (ptrWordIn[4]);
|
|
||||||
state[5] ^= (ptrWordIn[5]);
|
|
||||||
state[6] ^= (ptrWordIn[6]);
|
|
||||||
state[7] ^= (ptrWordIn[7]);
|
|
||||||
state[8] ^= (ptrWordIn[8]);
|
|
||||||
state[9] ^= (ptrWordIn[9]);
|
|
||||||
state[10] ^= (ptrWordIn[10]);
|
|
||||||
state[11] ^= (ptrWordIn[11]);
|
|
||||||
|
|
||||||
//Applies the reduced-round transformation f to the sponge's state
|
|
||||||
reducedBlake2bLyra(state);
|
|
||||||
|
|
||||||
//M[row][C-1-col] = M[prev][col] XOR rand
|
|
||||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
|
||||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
|
||||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
|
||||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
|
||||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
|
||||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
|
||||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
|
||||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
|
||||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
|
||||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
|
||||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
|
||||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
|
||||||
|
|
||||||
|
|
||||||
//Input: next column (i.e., next block in sequence)
|
|
||||||
ptrWordIn += BLOCK_LEN_INT64;
|
|
||||||
//Output: goes to previous column
|
|
||||||
ptrWordOut -= BLOCK_LEN_INT64;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
|
||||||
* the wordwise addition of two columns, ignoring carries between words). The
|
|
||||||
* output of this operation, "rand", is then used to make
|
|
||||||
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
|
|
||||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
|
||||||
* rotation to the left and N_COLS is a system parameter.
|
|
||||||
*
|
|
||||||
* @param state The current state of the sponge
|
|
||||||
* @param rowIn Row used only as input
|
|
||||||
* @param rowInOut Row used as input and to receive output after rotation
|
|
||||||
* @param rowOut Row receiving the output
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
void reducedDuplexRowSetupO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
|
||||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
|
||||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
|
||||||
uint64_t* ptrWordOut = rowOut + (N_COLS-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
|
||||||
int i;
|
|
||||||
|
|
||||||
for (i = 0; i < N_COLS; i++) {
|
|
||||||
//Absorbing "M[prev] [+] M[row*]"
|
|
||||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
|
||||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
|
||||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
|
||||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
|
||||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
|
||||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
|
||||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
|
||||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
|
||||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
|
||||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
|
||||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
|
||||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
|
||||||
|
|
||||||
//Applies the reduced-round transformation f to the sponge's state
|
|
||||||
reducedBlake2bLyra(state);
|
|
||||||
|
|
||||||
//M[row][col] = M[prev][col] XOR rand
|
|
||||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
|
||||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
|
||||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
|
||||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
|
||||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
|
||||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
|
||||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
|
||||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
|
||||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
|
||||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
|
||||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
|
||||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
|
||||||
|
|
||||||
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
|
||||||
ptrWordInOut[0] ^= state[11];
|
|
||||||
ptrWordInOut[1] ^= state[0];
|
|
||||||
ptrWordInOut[2] ^= state[1];
|
|
||||||
ptrWordInOut[3] ^= state[2];
|
|
||||||
ptrWordInOut[4] ^= state[3];
|
|
||||||
ptrWordInOut[5] ^= state[4];
|
|
||||||
ptrWordInOut[6] ^= state[5];
|
|
||||||
ptrWordInOut[7] ^= state[6];
|
|
||||||
ptrWordInOut[8] ^= state[7];
|
|
||||||
ptrWordInOut[9] ^= state[8];
|
|
||||||
ptrWordInOut[10] ^= state[9];
|
|
||||||
ptrWordInOut[11] ^= state[10];
|
|
||||||
|
|
||||||
//Inputs: next column (i.e., next block in sequence)
|
|
||||||
ptrWordInOut += BLOCK_LEN_INT64;
|
|
||||||
ptrWordIn += BLOCK_LEN_INT64;
|
|
||||||
//Output: goes to previous column
|
|
||||||
ptrWordOut -= BLOCK_LEN_INT64;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
|
||||||
* the wordwise addition of two columns, ignoring carries between words). The
|
|
||||||
* output of this operation, "rand", is then used to make
|
|
||||||
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
|
|
||||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
|
||||||
* rotation to the left.
|
|
||||||
*
|
|
||||||
* @param state The current state of the sponge
|
|
||||||
* @param rowIn Row used only as input
|
|
||||||
* @param rowInOut Row used as input and to receive output after rotation
|
|
||||||
* @param rowOut Row receiving the output
|
|
||||||
*
|
|
||||||
*/
|
|
||||||
void reducedDuplexRowO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut) {
|
|
||||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
|
||||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
|
||||||
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
|
||||||
int i;
|
|
||||||
|
|
||||||
for (i = 0; i < N_COLS; i++) {
|
|
||||||
|
|
||||||
//Absorbing "M[prev] [+] M[row*]"
|
|
||||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
|
||||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
|
||||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
|
||||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
|
||||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
|
||||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
|
||||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
|
||||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
|
||||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
|
||||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
|
||||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
|
||||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
|
||||||
|
|
||||||
//Applies the reduced-round transformation f to the sponge's state
|
|
||||||
reducedBlake2bLyra(state);
|
|
||||||
|
|
||||||
//M[rowOut][col] = M[rowOut][col] XOR rand
|
|
||||||
ptrWordOut[0] ^= state[0];
|
|
||||||
ptrWordOut[1] ^= state[1];
|
|
||||||
ptrWordOut[2] ^= state[2];
|
|
||||||
ptrWordOut[3] ^= state[3];
|
|
||||||
ptrWordOut[4] ^= state[4];
|
|
||||||
ptrWordOut[5] ^= state[5];
|
|
||||||
ptrWordOut[6] ^= state[6];
|
|
||||||
ptrWordOut[7] ^= state[7];
|
|
||||||
ptrWordOut[8] ^= state[8];
|
|
||||||
ptrWordOut[9] ^= state[9];
|
|
||||||
ptrWordOut[10] ^= state[10];
|
|
||||||
ptrWordOut[11] ^= state[11];
|
|
||||||
|
|
||||||
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
|
||||||
ptrWordInOut[0] ^= state[11];
|
|
||||||
ptrWordInOut[1] ^= state[0];
|
|
||||||
ptrWordInOut[2] ^= state[1];
|
|
||||||
ptrWordInOut[3] ^= state[2];
|
|
||||||
ptrWordInOut[4] ^= state[3];
|
|
||||||
ptrWordInOut[5] ^= state[4];
|
|
||||||
ptrWordInOut[6] ^= state[5];
|
|
||||||
ptrWordInOut[7] ^= state[6];
|
|
||||||
ptrWordInOut[8] ^= state[7];
|
|
||||||
ptrWordInOut[9] ^= state[8];
|
|
||||||
ptrWordInOut[10] ^= state[9];
|
|
||||||
ptrWordInOut[11] ^= state[10];
|
|
||||||
|
|
||||||
//Goes to next block
|
|
||||||
ptrWordOut += BLOCK_LEN_INT64;
|
|
||||||
ptrWordInOut += BLOCK_LEN_INT64;
|
|
||||||
ptrWordIn += BLOCK_LEN_INT64;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
/**
|
|
||||||
Prints an array of unsigned chars
|
|
||||||
*/
|
|
||||||
void printArrayO(unsigned char *array, unsigned int size, char *name) {
|
|
||||||
int i;
|
|
||||||
printf("%s: ", name);
|
|
||||||
for (i = 0; i < size; i++) {
|
|
||||||
printf("%2x|", array[i]);
|
|
||||||
}
|
|
||||||
printf("\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
@ -1,98 +0,0 @@
|
|||||||
/**
|
|
||||||
* Header file for Blake2b's internal permutation in the form of a sponge.
|
|
||||||
* This code is based on the original Blake2b's implementation provided by
|
|
||||||
* Samuel Neves (https://blake2.net/)
|
|
||||||
*
|
|
||||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
|
||||||
*
|
|
||||||
* This software is hereby placed in the public domain.
|
|
||||||
*
|
|
||||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
|
||||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
||||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
||||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
|
||||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
||||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
||||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
||||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
||||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
||||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
||||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
*/
|
|
||||||
#ifndef SPONGEOLD_H_
|
|
||||||
#define SPONGEOLD_H_
|
|
||||||
|
|
||||||
#include <stdint.h>
|
|
||||||
|
|
||||||
#if defined(__GNUC__)
|
|
||||||
#define ALIGN __attribute__ ((aligned(32)))
|
|
||||||
#elif defined(_MSC_VER)
|
|
||||||
#define ALIGN __declspec(align(32))
|
|
||||||
#else
|
|
||||||
#define ALIGN
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
/*Blake2b IV Array*/
|
|
||||||
static const uint64_t blake2b_IV[8] =
|
|
||||||
{
|
|
||||||
0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL,
|
|
||||||
0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL,
|
|
||||||
0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL,
|
|
||||||
0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
|
|
||||||
};
|
|
||||||
|
|
||||||
/*Blake2b's rotation*/
|
|
||||||
static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
|
||||||
return ( w >> c ) | ( w << ( 64 - c ) );
|
|
||||||
}
|
|
||||||
|
|
||||||
/*Blake2b's G function*/
|
|
||||||
#define G(r,i,a,b,c,d) \
|
|
||||||
do { \
|
|
||||||
a = a + b; \
|
|
||||||
d = rotr64(d ^ a, 32); \
|
|
||||||
c = c + d; \
|
|
||||||
b = rotr64(b ^ c, 24); \
|
|
||||||
a = a + b; \
|
|
||||||
d = rotr64(d ^ a, 16); \
|
|
||||||
c = c + d; \
|
|
||||||
b = rotr64(b ^ c, 63); \
|
|
||||||
} while(0)
|
|
||||||
|
|
||||||
|
|
||||||
/*One Round of the Blake2b's compression function*/
|
|
||||||
#define ROUND_LYRA(r) \
|
|
||||||
G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \
|
|
||||||
G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \
|
|
||||||
G(r,2,v[ 2],v[ 6],v[10],v[14]); \
|
|
||||||
G(r,3,v[ 3],v[ 7],v[11],v[15]); \
|
|
||||||
G(r,4,v[ 0],v[ 5],v[10],v[15]); \
|
|
||||||
G(r,5,v[ 1],v[ 6],v[11],v[12]); \
|
|
||||||
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
|
|
||||||
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
|
|
||||||
|
|
||||||
|
|
||||||
//---- Housekeeping
|
|
||||||
void initStateO(uint64_t state[/*16*/]);
|
|
||||||
|
|
||||||
//---- Squeezes
|
|
||||||
void squeezeO(uint64_t *state, unsigned char *out, unsigned int len);
|
|
||||||
void reducedSqueezeRow0O(uint64_t* state, uint64_t* row);
|
|
||||||
|
|
||||||
//---- Absorbs
|
|
||||||
void absorbBlockO(uint64_t *state, const uint64_t *in);
|
|
||||||
void absorbBlockBlake2SafeO(uint64_t *state, const uint64_t *in);
|
|
||||||
|
|
||||||
//---- Duplexes
|
|
||||||
void reducedDuplexRow1O(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut);
|
|
||||||
void reducedDuplexRowSetupO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
|
||||||
void reducedDuplexRowO(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut);
|
|
||||||
|
|
||||||
//---- Misc
|
|
||||||
void printArrayO(unsigned char *array, unsigned int size, char *name);
|
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
|
|
||||||
|
|
||||||
#endif /* SPONGE_H_ */
|
|
Loading…
Reference in New Issue
Block a user