|
|
@ -784,79 +784,88 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
Vals[0]+=0xC19BF274U; |
|
|
|
Vals[0]+=0xC19BF274U; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
|
|
|
Vals[7]+=W[0]; |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
|
|
|
Vals[7]+=K[16]; |
|
|
|
Vals[7]+=K[16]; |
|
|
|
Vals[7]+=W[0]; |
|
|
|
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
|
|
|
|
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
W[1]+=0x00a00000U; |
|
|
|
W[1]+=0x00a00000U; |
|
|
|
|
|
|
|
Vals[6]+=W[1]; |
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25)); |
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
Vals[6]+=K[17]; |
|
|
|
Vals[6]+=K[17]; |
|
|
|
Vals[6]+=W[1]; |
|
|
|
|
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
|
|
|
Vals[5]+=W[2]; |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=K[18]; |
|
|
|
Vals[5]+=K[18]; |
|
|
|
Vals[5]+=W[2]; |
|
|
|
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
|
|
|
|
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
|
|
|
Vals[4]+=W[3]; |
|
|
|
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); |
|
|
|
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25)); |
|
|
|
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
Vals[4]+=K[19]; |
|
|
|
Vals[4]+=K[19]; |
|
|
|
Vals[4]+=W[3]; |
|
|
|
|
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
|
|
|
Vals[3]+=W[4]; |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=K[20]; |
|
|
|
Vals[3]+=K[20]; |
|
|
|
Vals[3]+=W[4]; |
|
|
|
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
|
|
|
|
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
|
|
|
Vals[2]+=W[5]; |
|
|
|
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); |
|
|
|
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25)); |
|
|
|
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
Vals[2]+=K[21]; |
|
|
|
Vals[2]+=K[21]; |
|
|
|
Vals[2]+=W[5]; |
|
|
|
|
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
W[6]+=0x00000100U; |
|
|
|
W[6]+=0x00000100U; |
|
|
|
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
|
|
|
Vals[1]+=W[6]; |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
|
|
|
Vals[1]+=K[22]; |
|
|
|
Vals[1]+=K[22]; |
|
|
|
Vals[1]+=W[6]; |
|
|
|
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
|
|
|
|
|
|
|
|
W[7]+=0x11002000U; |
|
|
|
W[7]+=0x11002000U; |
|
|
|
W[7]+=W[0]; |
|
|
|
W[7]+=W[0]; |
|
|
|
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
|
|
|
Vals[0]+=W[7]; |
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25)); |
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
Vals[0]+=K[23]; |
|
|
|
Vals[0]+=K[23]; |
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
|
|
|
Vals[0]+=W[7]; |
|
|
|
|
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
|
|
W[8]=0x80000000U; |
|
|
|
W[8]=0x80000000U; |
|
|
|
W[8]+=W[1]; |
|
|
|
W[8]+=W[1]; |
|
|
@ -865,7 +874,6 @@ Vals[7]+=W[8]; |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=K[24]; |
|
|
|
Vals[7]+=K[24]; |
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
@ -878,6 +886,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
Vals[6]+=K[25]; |
|
|
|
Vals[6]+=K[25]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
|
|
W[10]=W[3]; |
|
|
|
W[10]=W[3]; |
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
@ -885,7 +894,6 @@ Vals[5]+=W[10]; |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=K[26]; |
|
|
|
Vals[5]+=K[26]; |
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
@ -898,6 +906,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
Vals[4]+=K[27]; |
|
|
|
Vals[4]+=K[27]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
|
|
W[12]=W[5]; |
|
|
|
W[12]=W[5]; |
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
@ -905,7 +914,6 @@ Vals[3]+=W[12]; |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=K[28]; |
|
|
|
Vals[3]+=K[28]; |
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
@ -918,6 +926,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
Vals[2]+=K[29]; |
|
|
|
Vals[2]+=K[29]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
|
|
W[14]=0x00400022U; |
|
|
|
W[14]=0x00400022U; |
|
|
|
W[14]+=W[7]; |
|
|
|
W[14]+=W[7]; |
|
|
@ -926,7 +935,6 @@ Vals[1]+=W[14]; |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=K[30]; |
|
|
|
Vals[1]+=K[30]; |
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
@ -941,6 +949,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
Vals[0]+=K[31]; |
|
|
|
Vals[0]+=K[31]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
W[0]+=W[9]; |
|
|
|
W[0]+=W[9]; |
|
|
@ -949,7 +958,6 @@ Vals[7]+=W[0]; |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=K[32]; |
|
|
|
Vals[7]+=K[32]; |
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
@ -963,6 +971,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
Vals[6]+=K[33]; |
|
|
|
Vals[6]+=K[33]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
W[2]+=W[11]; |
|
|
|
W[2]+=W[11]; |
|
|
@ -971,7 +980,6 @@ Vals[5]+=W[2]; |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=K[34]; |
|
|
|
Vals[5]+=K[34]; |
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
@ -985,6 +993,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
Vals[4]+=K[35]; |
|
|
|
Vals[4]+=K[35]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
W[4]+=W[13]; |
|
|
|
W[4]+=W[13]; |
|
|
@ -993,7 +1002,6 @@ Vals[3]+=W[4]; |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=K[36]; |
|
|
|
Vals[3]+=K[36]; |
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
@ -1007,6 +1015,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
Vals[2]+=K[37]; |
|
|
|
Vals[2]+=K[37]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
W[6]+=W[15]; |
|
|
|
W[6]+=W[15]; |
|
|
@ -1015,7 +1024,6 @@ Vals[1]+=W[6]; |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=K[38]; |
|
|
|
Vals[1]+=K[38]; |
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
@ -1029,6 +1037,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
Vals[0]+=K[39]; |
|
|
|
Vals[0]+=K[39]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
W[8]+=W[1]; |
|
|
|
W[8]+=W[1]; |
|
|
@ -1037,7 +1046,6 @@ Vals[7]+=W[8]; |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=K[40]; |
|
|
|
Vals[7]+=K[40]; |
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
@ -1051,6 +1059,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
Vals[6]+=K[41]; |
|
|
|
Vals[6]+=K[41]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
W[10]+=W[3]; |
|
|
|
W[10]+=W[3]; |
|
|
@ -1059,7 +1068,6 @@ Vals[5]+=W[10]; |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=K[42]; |
|
|
|
Vals[5]+=K[42]; |
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
@ -1073,6 +1081,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
Vals[4]+=K[43]; |
|
|
|
Vals[4]+=K[43]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
W[12]+=W[5]; |
|
|
|
W[12]+=W[5]; |
|
|
@ -1081,7 +1090,6 @@ Vals[3]+=W[12]; |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=K[44]; |
|
|
|
Vals[3]+=K[44]; |
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
@ -1095,6 +1103,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
Vals[2]+=K[45]; |
|
|
|
Vals[2]+=K[45]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
W[14]+=W[7]; |
|
|
|
W[14]+=W[7]; |
|
|
@ -1103,7 +1112,6 @@ Vals[1]+=W[14]; |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=K[46]; |
|
|
|
Vals[1]+=K[46]; |
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
@ -1117,6 +1125,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
Vals[0]+=K[47]; |
|
|
|
Vals[0]+=K[47]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
W[0]+=W[9]; |
|
|
|
W[0]+=W[9]; |
|
|
@ -1125,7 +1134,6 @@ Vals[7]+=W[0]; |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=K[48]; |
|
|
|
Vals[7]+=K[48]; |
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22)); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
|
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]); |
|
|
@ -1139,6 +1147,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); |
|
|
|
Vals[6]+=K[49]; |
|
|
|
Vals[6]+=K[49]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[2]+=Vals[6]; |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22)); |
|
|
|
|
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
W[2]+=W[11]; |
|
|
|
W[2]+=W[11]; |
|
|
@ -1147,7 +1156,6 @@ Vals[5]+=W[2]; |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25)); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]); |
|
|
|
Vals[5]+=K[50]; |
|
|
|
Vals[5]+=K[50]; |
|
|
|
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]); |
|
|
|
|
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[1]+=Vals[5]; |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22)); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
|
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]); |
|
|
@ -1161,6 +1169,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); |
|
|
|
Vals[4]+=K[51]; |
|
|
|
Vals[4]+=K[51]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[0]+=Vals[4]; |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22)); |
|
|
|
|
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
W[4]+=W[13]; |
|
|
|
W[4]+=W[13]; |
|
|
@ -1169,7 +1178,6 @@ Vals[3]+=W[4]; |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25)); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]); |
|
|
|
Vals[3]+=K[52]; |
|
|
|
Vals[3]+=K[52]; |
|
|
|
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]); |
|
|
|
|
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[7]+=Vals[3]; |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22)); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
|
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]); |
|
|
@ -1183,6 +1191,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); |
|
|
|
Vals[2]+=K[53]; |
|
|
|
Vals[2]+=K[53]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[6]+=Vals[2]; |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22)); |
|
|
|
|
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
W[6]+=W[15]; |
|
|
|
W[6]+=W[15]; |
|
|
@ -1191,7 +1200,6 @@ Vals[1]+=W[6]; |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25)); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]); |
|
|
|
Vals[1]+=K[54]; |
|
|
|
Vals[1]+=K[54]; |
|
|
|
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]); |
|
|
|
|
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[5]+=Vals[1]; |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22)); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
|
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]); |
|
|
@ -1205,6 +1213,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); |
|
|
|
Vals[0]+=K[55]; |
|
|
|
Vals[0]+=K[55]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[4]+=Vals[0]; |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22)); |
|
|
|
|
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
W[8]+=W[1]; |
|
|
|
W[8]+=W[1]; |
|
|
@ -1213,7 +1222,6 @@ Vals[7]+=W[8]; |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25)); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]); |
|
|
|
Vals[7]+=K[56]; |
|
|
|
Vals[7]+=K[56]; |
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]); |
|
|
|
|
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
Vals[3]+=Vals[7]; |
|
|
|
|
|
|
|
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
|
|