Browse Source

Minor variable symmetry changes in poclbm.

nfactor-troky
Con Kolivas 13 years ago
parent
commit
a7a9dbcf90
  1. 72
      poclbm120222.cl

72
poclbm120222.cl

@ -784,79 +784,88 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); @@ -784,79 +784,88 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=0xC19BF274U;
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
Vals[7]+=W[0];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
Vals[7]+=K[16];
Vals[7]+=W[0];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
W[1]+=0x00a00000U;
Vals[6]+=W[1];
Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[17];
Vals[6]+=W[1];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
Vals[5]+=W[2];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[18];
Vals[5]+=W[2];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
Vals[4]+=W[3];
Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[19];
Vals[4]+=W[3];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
Vals[3]+=W[4];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[20];
Vals[3]+=W[4];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
Vals[2]+=W[5];
Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[21];
Vals[2]+=W[5];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=0x00000100U;
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[1]+=W[6];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
Vals[1]+=K[22];
Vals[1]+=W[6];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
W[7]+=0x11002000U;
W[7]+=W[0];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[0]+=W[7];
Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[23];
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
Vals[0]+=W[7];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]=0x80000000U;
W[8]+=W[1];
@ -865,7 +874,6 @@ Vals[7]+=W[8]; @@ -865,7 +874,6 @@ Vals[7]+=W[8];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[24];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@ -878,6 +886,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); @@ -878,6 +886,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[25];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[10]=W[3];
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
@ -885,7 +894,6 @@ Vals[5]+=W[10]; @@ -885,7 +894,6 @@ Vals[5]+=W[10];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[26];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@ -898,6 +906,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); @@ -898,6 +906,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[27];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[12]=W[5];
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
@ -905,7 +914,6 @@ Vals[3]+=W[12]; @@ -905,7 +914,6 @@ Vals[3]+=W[12];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[28];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@ -918,6 +926,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); @@ -918,6 +926,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[29];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[14]=0x00400022U;
W[14]+=W[7];
@ -926,7 +935,6 @@ Vals[1]+=W[14]; @@ -926,7 +935,6 @@ Vals[1]+=W[14];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[30];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@ -941,6 +949,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); @@ -941,6 +949,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[31];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
@ -949,7 +958,6 @@ Vals[7]+=W[0]; @@ -949,7 +958,6 @@ Vals[7]+=W[0];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[32];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@ -963,6 +971,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); @@ -963,6 +971,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[33];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
@ -971,7 +980,6 @@ Vals[5]+=W[2]; @@ -971,7 +980,6 @@ Vals[5]+=W[2];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[34];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@ -985,6 +993,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); @@ -985,6 +993,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[35];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
@ -993,7 +1002,6 @@ Vals[3]+=W[4]; @@ -993,7 +1002,6 @@ Vals[3]+=W[4];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[36];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@ -1007,6 +1015,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); @@ -1007,6 +1015,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[37];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
@ -1015,7 +1024,6 @@ Vals[1]+=W[6]; @@ -1015,7 +1024,6 @@ Vals[1]+=W[6];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[38];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@ -1029,6 +1037,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); @@ -1029,6 +1037,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[39];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
@ -1037,7 +1046,6 @@ Vals[7]+=W[8]; @@ -1037,7 +1046,6 @@ Vals[7]+=W[8];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[40];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@ -1051,6 +1059,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); @@ -1051,6 +1059,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[41];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
W[10]+=W[3];
@ -1059,7 +1068,6 @@ Vals[5]+=W[10]; @@ -1059,7 +1068,6 @@ Vals[5]+=W[10];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[42];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@ -1073,6 +1081,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); @@ -1073,6 +1081,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[43];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
W[12]+=W[5];
@ -1081,7 +1090,6 @@ Vals[3]+=W[12]; @@ -1081,7 +1090,6 @@ Vals[3]+=W[12];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[44];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@ -1095,6 +1103,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); @@ -1095,6 +1103,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[45];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
W[14]+=W[7];
@ -1103,7 +1112,6 @@ Vals[1]+=W[14]; @@ -1103,7 +1112,6 @@ Vals[1]+=W[14];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[46];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@ -1117,6 +1125,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); @@ -1117,6 +1125,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[47];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
W[0]+=W[9];
@ -1125,7 +1134,6 @@ Vals[7]+=W[0]; @@ -1125,7 +1134,6 @@ Vals[7]+=W[0];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[48];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
@ -1139,6 +1147,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]); @@ -1139,6 +1147,7 @@ Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
Vals[6]+=K[49];
Vals[2]+=Vals[6];
Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
W[2]+=W[11];
@ -1147,7 +1156,6 @@ Vals[5]+=W[2]; @@ -1147,7 +1156,6 @@ Vals[5]+=W[2];
Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
Vals[5]+=K[50];
Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
Vals[1]+=Vals[5];
Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
@ -1161,6 +1169,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]); @@ -1161,6 +1169,7 @@ Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
Vals[4]+=K[51];
Vals[0]+=Vals[4];
Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
W[4]+=W[13];
@ -1169,7 +1178,6 @@ Vals[3]+=W[4]; @@ -1169,7 +1178,6 @@ Vals[3]+=W[4];
Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
Vals[3]+=K[52];
Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
Vals[7]+=Vals[3];
Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
@ -1183,6 +1191,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]); @@ -1183,6 +1191,7 @@ Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
Vals[2]+=K[53];
Vals[6]+=Vals[2];
Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
W[6]+=W[15];
@ -1191,7 +1200,6 @@ Vals[1]+=W[6]; @@ -1191,7 +1200,6 @@ Vals[1]+=W[6];
Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
Vals[1]+=K[54];
Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
Vals[5]+=Vals[1];
Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
@ -1205,6 +1213,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]); @@ -1205,6 +1213,7 @@ Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
Vals[0]+=K[55];
Vals[4]+=Vals[0];
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
W[8]+=W[1];
@ -1213,7 +1222,6 @@ Vals[7]+=W[8]; @@ -1213,7 +1222,6 @@ Vals[7]+=W[8];
Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
Vals[7]+=K[56];
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
Vals[3]+=Vals[7];
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));

Loading…
Cancel
Save