|
|
@ -1,5 +1,4 @@ |
|
|
|
typedef uint z; |
|
|
|
typedef uint z; |
|
|
|
#define BITALIGN |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef BITALIGN |
|
|
|
#ifdef BITALIGN |
|
|
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
|
|
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
|
|
@ -93,268 +92,268 @@ __kernel __attribute__((vec_type_hint(uint))) WGS void oclminer( |
|
|
|
E = fcty_e + W3; |
|
|
|
E = fcty_e + W3; |
|
|
|
A = state0 + E; |
|
|
|
A = state0 + E; |
|
|
|
E = E + fcty_e2; |
|
|
|
E = E + fcty_e2; |
|
|
|
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C1 ^ (A & (B1 ^ C1))) + K[ 4] + 0x80000000; |
|
|
|
D = D1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B1, C1) + K[ 4] + 0x80000000; |
|
|
|
H = H1 + D; |
|
|
|
H = H1 + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1))); |
|
|
|
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B1 ^ (H & (A ^ B1))) + K[ 5]; |
|
|
|
C = C1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B1) + K[ 5]; |
|
|
|
G = G1 + C; |
|
|
|
G = G1 + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E))); |
|
|
|
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6]; |
|
|
|
B = B1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6]; |
|
|
|
F = F1 + B; |
|
|
|
F = F1 + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7]; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7]; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8]; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8]; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9]; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10]; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11]; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12]; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13]; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14]; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000280; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] + fW0; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fW0; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] + fW1; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fW1; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2; |
|
|
|
W2 = (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + fW2; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] + W2; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W3 = W3 + fW3; |
|
|
|
W3 = W3 + fW3; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] + W3; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000; |
|
|
|
W4 = (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)) + 0x80000000; |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] + W4; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
W5 = (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] + W5; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280; |
|
|
|
W6 = (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)) + 0x00000280; |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] + W6; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0; |
|
|
|
W7 = (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)) + fW0; |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] + W7; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1; |
|
|
|
W8 = (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)) + fW1; |
|
|
|
|
|
|
|
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] + W8; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] + W9; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
W14 = 0x00a00055 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
W15 = fW15 + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
W0 = fW01r + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] + W0; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
W1 = fW1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] + W1; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] + W2; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] + W3; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] + W4; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] + W5; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] + W6; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] + W7; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] + W8; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] + W9; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] + W0; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] + W1; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] + W2; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] + W3; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] + W4; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] + W5; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] + W6; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] + W7; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] + W8; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] + W9; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[61] + W13; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W13; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[62] + W14; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W14; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[63] + W15; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W15; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
|
|
|
|
|
|
|
@ -372,265 +371,263 @@ H = H + 0x08909ae5; |
|
|
|
G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1; |
|
|
|
G = 0x1f83d9ab + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688c ^ (D & 0xca0b3af3)) + K[ 1] + W1; |
|
|
|
C = 0x3c6ef372 + G; |
|
|
|
C = 0x3c6ef372 + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667))); |
|
|
|
F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (0x510e527f ^ (C & (D ^ 0x510e527f))) + K[ 2] + W2; |
|
|
|
F = 0x9b05688c + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527f) + K[ 2] + W2; |
|
|
|
B = 0xbb67ae85 + F; |
|
|
|
B = 0xbb67ae85 + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H))); |
|
|
|
E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[ 3] + W3; |
|
|
|
E = 0x510e527f + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W3; |
|
|
|
A = 0x6a09e667 + E; |
|
|
|
A = 0x6a09e667 + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[ 4] + W4; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W4; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[ 5] + W5; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W5; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[ 6] + W6; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W6; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[ 7] + W7; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W7; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[ 8] + 0x80000000; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[ 9]; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[10]; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[11]; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[12]; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[13]; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[14]; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[15] + 0x00000100; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[16] + W0; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W0; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000; |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + 0x00a00000; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[17] + W1; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W1; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[18] + W2; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W2; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[19] + W3; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W3; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[20] + W4; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W4; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[21] + W5; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W5; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + 0x00000100 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[22] + W6; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W6; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
W7 = W7 + 0x11002000 + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[23] + W7; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W7; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
W8 = 0x80000000 + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[24] + W8; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W8; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
W9 = W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[25] + W9; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W9; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
W10 = W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[26] + W10; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W10; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
W11 = W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[27] + W11; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W11; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
W12 = W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[28] + W12; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W12; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
W13 = W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[29] + W13; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W13; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
W14 = 0x00400022 + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[30] + W14; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W14; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
W15 = 0x00000100 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[31] + W15; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W15; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[32] + W0; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W0; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[33] + W1; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W1; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[34] + W2; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W2; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[35] + W3; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W3; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[36] + W4; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W4; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[37] + W5; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W5; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[38] + W6; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W6; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[39] + W7; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W7; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[40] + W8; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W8; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[41] + W9; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W9; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[42] + W10; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W10; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[43] + W11; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W11; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[44] + W12; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W12; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
W13 = W13 + (rotr(W14, 7) ^ rotr(W14, 18) ^ (W14 >> 3)) + W6 + (rotr(W11, 17) ^ rotr(W11, 19) ^ (W11 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[45] + W13; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W13; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
W14 = W14 + (rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >> 3)) + W7 + (rotr(W12, 17) ^ rotr(W12, 19) ^ (W12 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[46] + W14; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W14; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
W15 = W15 + (rotr(W0, 7) ^ rotr(W0, 18) ^ (W0 >> 3)) + W8 + (rotr(W13, 17) ^ rotr(W13, 19) ^ (W13 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[47] + W15; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W15; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
W0 = W0 + (rotr(W1, 7) ^ rotr(W1, 18) ^ (W1 >> 3)) + W9 + (rotr(W14, 17) ^ rotr(W14, 19) ^ (W14 >> 10)); |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[48] + W0; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W0; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
W1 = W1 + (rotr(W2, 7) ^ rotr(W2, 18) ^ (W2 >> 3)) + W10 + (rotr(W15, 17) ^ rotr(W15, 19) ^ (W15 >> 10)); |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[49] + W1; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W1; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A))); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
W2 = W2 + (rotr(W3, 7) ^ rotr(W3, 18) ^ (W3 >> 3)) + W11 + (rotr(W0, 17) ^ rotr(W0, 19) ^ (W0 >> 10)); |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[50] + W2; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W2; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H))); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
W3 = W3 + (rotr(W4, 7) ^ rotr(W4, 18) ^ (W4 >> 3)) + W12 + (rotr(W1, 17) ^ rotr(W1, 19) ^ (W1 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[51] + W3; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W3; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G))); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
W4 = W4 + (rotr(W5, 7) ^ rotr(W5, 18) ^ (W5 >> 3)) + W13 + (rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[52] + W4; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W4; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F))); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
W5 = W5 + (rotr(W6, 7) ^ rotr(W6, 18) ^ (W6 >> 3)) + W14 + (rotr(W3, 17) ^ rotr(W3, 19) ^ (W3 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + (B ^ (H & (A ^ B))) + K[53] + W5; |
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W5; |
|
|
|
G = G + C; |
|
|
|
G = G + C; |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E))); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
W6 = W6 + (rotr(W7, 7) ^ rotr(W7, 18) ^ (W7 >> 3)) + W15 + (rotr(W4, 17) ^ rotr(W4, 19) ^ (W4 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + (A ^ (G & (H ^ A))) + K[54] + W6; |
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W6; |
|
|
|
F = F + B; |
|
|
|
F = F + B; |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D))); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
W7 = W7 + (rotr(W8, 7) ^ rotr(W8, 18) ^ (W8 >> 3)) + W0 + (rotr(W5, 17) ^ rotr(W5, 19) ^ (W5 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + (H ^ (F & (G ^ H))) + K[55] + W7; |
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W7; |
|
|
|
E = E + A; |
|
|
|
E = E + A; |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C))); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
W8 = W8 + (rotr(W9, 7) ^ rotr(W9, 18) ^ (W9 >> 3)) + W1 + (rotr(W6, 17) ^ rotr(W6, 19) ^ (W6 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + (G ^ (E & (F ^ G))) + K[56] + W8; |
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W8; |
|
|
|
D = D + H; |
|
|
|
D = D + H; |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B))); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
W9 = W9 + (rotr(W10, 7) ^ rotr(W10, 18) ^ (W10 >> 3)) + W2 + (rotr(W7, 17) ^ rotr(W7, 19) ^ (W7 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (F ^ (D & (E ^ F))) + K[57] + W9; |
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W9; |
|
|
|
C = C + G; |
|
|
|
C = C + G; |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
W10 = W10 + (rotr(W11, 7) ^ rotr(W11, 18) ^ (W11 >> 3)) + W3 + (rotr(W8, 17) ^ rotr(W8, 19) ^ (W8 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + (E ^ (C & (D ^ E))) + K[58] + W10; |
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W10; |
|
|
|
B = B + F; |
|
|
|
B = B + F; |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
W11 = W11 + (rotr(W12, 7) ^ rotr(W12, 18) ^ (W12 >> 3)) + W4 + (rotr(W9, 17) ^ rotr(W9, 19) ^ (W9 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + K[59] + W11; |
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W11; |
|
|
|
A = A + E; |
|
|
|
A = A + E; |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
W12 = W12 + (rotr(W13, 7) ^ rotr(W13, 18) ^ (W13 >> 3)) + W5 + (rotr(W10, 17) ^ rotr(W10, 19) ^ (W10 >> 10)); |
|
|
|
|
|
|
|
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + (C ^ (A & (B ^ C))) + K[60] + W12; |
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W12; |
|
|
|
H = H + D; |
|
|
|
H = H + D; |
|
|
|
|
|
|
|
|
|
|
|
if (H==0xa41f32e7) { |
|
|
|
if (H==0xa41f32e7) { |
|
|
|
for (it = 0; |
|
|
|
for (it = 0; it != 128; it++) { |
|
|
|
it != 128; |
|
|
|
|
|
|
|
it++) { |
|
|
|
|
|
|
|
if (!output[it]) { |
|
|
|
if (!output[it]) { |
|
|
|
output[it] = tnonce; |
|
|
|
output[it] = tnonce; |
|
|
|
break; |
|
|
|
break; |
|
|
|