@ -26,13 +26,34 @@ __constant uint K[64] = {
@@ -26,13 +26,34 @@ __constant uint K[64] = {
} ;
typedef struct {
uint ctx_a ; uint ctx_b; uint ctx_c; uint ctx_d;
uint ctx_e ; uint ctx_f; uint ctx_g; uint ctx_h;
uint cty_a ; uint cty_b; uint cty_c; uint cty_d;
uint cty_e ; uint cty_f; uint cty_g; uint cty_h;
uint merkle ; uint ntime; uint nbits; uint nonce;
uint fW0 ; uint fW1; uint fW2; uint fW3; uint fW15;
uint fW01r ; uint fcty_e; uint fcty_e2;
uint ctx_a ;
uint ctx_b ;
uint ctx_c ;
uint ctx_d ;
uint ctx_e ;
uint ctx_f ;
uint ctx_g ;
uint ctx_h ;
uint cty_a ;
uint cty_b ;
uint cty_c ;
uint cty_d ;
uint cty_e ;
uint cty_f ;
uint cty_g ;
uint cty_h ;
uint merkle ;
uint ntime ;
uint nbits ;
uint nonce ;
uint fW0 ;
uint fW1 ;
uint fW2 ;
uint fW3 ;
uint fW15 ;
uint fW01r ;
uint fcty_e ;
uint fcty_e2 ;
} dev_blk_ctx ;
__kernel __attribute__ ( ( vec_type_hint ( uint ) ) ) WGS void oclminer (
@ -69,227 +90,547 @@ __kernel __attribute__((vec_type_hint(uint))) WGS void oclminer(
@@ -69,227 +90,547 @@ __kernel __attribute__((vec_type_hint(uint))) WGS void oclminer(
const uint tnonce = ctx->nonce + myid ;
W3 = 0 ^ tnonce ;
E = fcty_e + W3 ; A = state0 + E; E = E + fcty_e2;
D = D1 + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C1 ^ ( A & ( B1 ^ C1 ) ) ) + K[ 4] + 0x80000000 ; H = H1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F1) | (G1 & (E | F1)));
C = C1 + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B1 ^ ( H & ( A ^ B1 ) ) ) + K[ 5] ; G = G1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F1 & (D | E)));
B = B1 + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[ 6] ; F = F1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[ 7] ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[ 8] ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[ 9] ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[10] ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[11] ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[12] ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[13] ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[14] ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[15] + 0x00000280 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[16] + fW0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[17] + fW1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
E = fcty_e + W3 ;
A = state0 + E ;
E = E + fcty_e2 ;
D = D1 + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C1 ^ ( A & ( B1 ^ C1 ) ) ) + K[ 4] + 0x80000000 ;
H = H1 + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F1 ) | (G1 & (E | F1 ) ) ) ;
C = C1 + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B1 ^ ( H & ( A ^ B1 ) ) ) + K[ 5] ;
G = G1 + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F1 & (D | E ) ) ) ;
B = B1 + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[ 6] ;
F = F1 + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[ 7] ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[ 8] ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[ 9] ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[10] ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[11] ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[12] ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[13] ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[14] ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[15] + 0x00000280 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[16] + fW0 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[17] + fW1 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W2 = ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + fW2 ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[18] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[18] + W2 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W3 = W3 + fW3 ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[19] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[19] + W3 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W4 = ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) + 0x80000000 ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[20] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[20] + W4 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W5 = ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[21] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[21] + W5 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W6 = ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) + 0x00000280 ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[22] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[22] + W6 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W7 = ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) + fW0 ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[23] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[23] + W7 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W8 = ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) + fW1 ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[24] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[24] + W8 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W9 = W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[25] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[25] + W9 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W10 = W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[26] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[26] + W10 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W11 = W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[27] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[27] + W11 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W12 = W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[28] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[28] + W12 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W13 = W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[29] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[29] + W13 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W14 = 0x00a00055 + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[30] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[30] + W14 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W15 = fW15 + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[31] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[31] + W15 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W0 = fW01r + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[32] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[32] + W0 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W1 = fW1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[33] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[33] + W1 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[34] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[34] + W2 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[35] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[35] + W3 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[36] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[36] + W4 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[37] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[37] + W5 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[38] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[38] + W6 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[39] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[39] + W7 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[40] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[40] + W8 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[41] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[41] + W9 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[42] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[42] + W10 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[43] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[43] + W11 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[44] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[44] + W12 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W13 = W13 + ( rotr ( W14, 7 ) ^ rotr ( W14, 18 ) ^ ( W14 >> 3 ) ) + W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[45] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[45] + W13 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W14 = W14 + ( rotr ( W15, 7 ) ^ rotr ( W15, 18 ) ^ ( W15 >> 3 ) ) + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[46] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[46] + W14 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W15 = W15 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[47] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[47] + W15 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[48] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[48] + W0 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[49] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[49] + W1 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[50] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[50] + W2 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[51] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[51] + W3 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[52] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[52] + W4 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[53] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[53] + W5 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[54] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[54] + W6 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[55] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[55] + W7 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[56] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[56] + W8 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[57] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[57] + W9 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[58] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[58] + W10 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[59] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[59] + W11 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[60] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[60] + W12 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W13 = W13 + ( rotr ( W14, 7 ) ^ rotr ( W14, 18 ) ^ ( W14 >> 3 ) ) + W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[61] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[61] + W13 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W14 = W14 + ( rotr ( W15, 7 ) ^ rotr ( W15, 18 ) ^ ( W15 >> 3 ) ) + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[62] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[62] + W14 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W15 = W15 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[63] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
W0 = A + state0 ; W1 = B + state1;
W2 = C + state2 ; W3 = D + state3;
W4 = E + state4 ; W5 = F + state5;
W6 = G + state6 ; W7 = H + state7;
H = 0xb0edbdd0 + K[ 0] + W0 ; D = 0xa54ff53a + H; H = H + 0x08909ae5;
G = 0x1f83d9ab + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( 0x9b05688c ^ ( D & 0xca0b3af3 ) ) + K[ 1] + W1 ; C = 0x3c6ef372 + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & 0x6a09e667) | (0xbb67ae85 & (H | 0x6a09e667)));
F = 0x9b05688c + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( 0x510e527f ^ ( C & ( D ^ 0x510e527f ) ) ) + K[ 2] + W2 ; B = 0xbb67ae85 + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (0x6a09e667 & (G | H)));
E = 0x510e527f + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[ 3] + W3 ; A = 0x6a09e667 + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[ 4] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[ 5] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[ 6] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[ 7] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[ 8] + 0x80000000 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[ 9] ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[10] ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[11] ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[12] ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[13] ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[14] ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[15] + 0x00000100 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[63] + W15 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W0 = A + state0 ;
W1 = B + state1 ;
W2 = C + state2 ;
W3 = D + state3 ;
W4 = E + state4 ;
W5 = F + state5 ;
W6 = G + state6 ;
W7 = H + state7 ;
H = 0xb0edbdd0 + K[ 0] + W0 ;
D = 0xa54ff53a + H ;
H = H + 0x08909ae5 ;
G = 0x1f83d9ab + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( 0x9b05688c ^ ( D & 0xca0b3af3 ) ) + K[ 1] + W1 ;
C = 0x3c6ef372 + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & 0x6a09e667 ) | (0xbb67ae85 & (H | 0x6a09e667 ) ) ) ;
F = 0x9b05688c + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( 0x510e527f ^ ( C & ( D ^ 0x510e527f ) ) ) + K[ 2] + W2 ;
B = 0xbb67ae85 + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (0x6a09e667 & (G | H ) ) ) ;
E = 0x510e527f + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[ 3] + W3 ;
A = 0x6a09e667 + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[ 4] + W4 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[ 5] + W5 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[ 6] + W6 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[ 7] + W7 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[ 8] + 0x80000000 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[ 9] ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[10] ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[11] ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[12] ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[13] ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[14] ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[15] + 0x00000100 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[16] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[16] + W0 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + 0x00a00000 ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[17] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[17] + W1 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[18] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[18] + W2 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[19] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[19] + W3 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[20] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[20] + W4 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[21] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[21] + W5 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + 0x00000100 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[22] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[22] + W6 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W7 = W7 + 0x11002000 + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[23] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[23] + W7 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W8 = 0x80000000 + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[24] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[24] + W8 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W9 = W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[25] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[25] + W9 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W10 = W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[26] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[26] + W10 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W11 = W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[27] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[27] + W11 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W12 = W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[28] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[28] + W12 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W13 = W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[29] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[29] + W13 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W14 = 0x00400022 + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[30] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[30] + W14 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W15 = 0x00000100 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[31] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[31] + W15 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[32] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[32] + W0 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[33] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[33] + W1 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[34] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[34] + W2 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[35] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[35] + W3 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[36] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[36] + W4 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[37] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[37] + W5 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[38] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[38] + W6 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[39] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[39] + W7 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[40] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[40] + W8 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[41] + W9 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[41] + W9 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[42] + W10 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[42] + W10 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[43] + W11 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[43] + W11 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[44] + W12 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[44] + W12 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W13 = W13 + ( rotr ( W14, 7 ) ^ rotr ( W14, 18 ) ^ ( W14 >> 3 ) ) + W6 + ( rotr ( W11, 17 ) ^ rotr ( W11, 19 ) ^ ( W11 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[45] + W13 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[45] + W13 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W14 = W14 + ( rotr ( W15, 7 ) ^ rotr ( W15, 18 ) ^ ( W15 >> 3 ) ) + W7 + ( rotr ( W12, 17 ) ^ rotr ( W12, 19 ) ^ ( W12 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[46] + W14 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[46] + W14 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W15 = W15 + ( rotr ( W0, 7 ) ^ rotr ( W0, 18 ) ^ ( W0 >> 3 ) ) + W8 + ( rotr ( W13, 17 ) ^ rotr ( W13, 19 ) ^ ( W13 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[47] + W15 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[47] + W15 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W0 = W0 + ( rotr ( W1, 7 ) ^ rotr ( W1, 18 ) ^ ( W1 >> 3 ) ) + W9 + ( rotr ( W14, 17 ) ^ rotr ( W14, 19 ) ^ ( W14 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[48] + W0 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[48] + W0 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W1 = W1 + ( rotr ( W2, 7 ) ^ rotr ( W2, 18 ) ^ ( W2 >> 3 ) ) + W10 + ( rotr ( W15, 17 ) ^ rotr ( W15, 19 ) ^ ( W15 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[49] + W1 ; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + ((H & A) | (B & (H | A)));
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[49] + W1 ;
C = C + G ;
G = G + ( rotr ( H, 2 ) ^ rotr ( H, 13 ) ^ rotr ( H, 22 ) ) + ( ( H & A ) | (B & (H | A ) ) ) ;
W2 = W2 + ( rotr ( W3, 7 ) ^ rotr ( W3, 18 ) ^ ( W3 >> 3 ) ) + W11 + ( rotr ( W0, 17 ) ^ rotr ( W0, 19 ) ^ ( W0 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[50] + W2 ; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + ((G & H) | (A & (G | H)));
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[50] + W2 ;
B = B + F ;
F = F + ( rotr ( G, 2 ) ^ rotr ( G, 13 ) ^ rotr ( G, 22 ) ) + ( ( G & H ) | (A & (G | H ) ) ) ;
W3 = W3 + ( rotr ( W4, 7 ) ^ rotr ( W4, 18 ) ^ ( W4 >> 3 ) ) + W12 + ( rotr ( W1, 17 ) ^ rotr ( W1, 19 ) ^ ( W1 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[51] + W3 ; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[51] + W3 ;
A = A + E ;
E = E + ( rotr ( F, 2 ) ^ rotr ( F, 13 ) ^ rotr ( F, 22 ) ) + ( ( F & G ) | (H & (F | G ) ) ) ;
W4 = W4 + ( rotr ( W5, 7 ) ^ rotr ( W5, 18 ) ^ ( W5 >> 3 ) ) + W13 + ( rotr ( W2, 17 ) ^ rotr ( W2, 19 ) ^ ( W2 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[52] + W4 ; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + ((E & F) | (G & (E | F)));
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[52] + W4 ;
H = H + D ;
D = D + ( rotr ( E, 2 ) ^ rotr ( E, 13 ) ^ rotr ( E, 22 ) ) + ( ( E & F ) | (G & (E | F ) ) ) ;
W5 = W5 + ( rotr ( W6, 7 ) ^ rotr ( W6, 18 ) ^ ( W6 >> 3 ) ) + W14 + ( rotr ( W3, 17 ) ^ rotr ( W3, 19 ) ^ ( W3 >> 10 ) ) ;
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[53] + W5 ; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + ((D & E) | (F & (D | E)));
C = C + ( rotr ( H, 6 ) ^ rotr ( H, 11 ) ^ rotr ( H, 25 ) ) + ( B ^ ( H & ( A ^ B ) ) ) + K[53] + W5 ;
G = G + C ;
C = C + ( rotr ( D, 2 ) ^ rotr ( D, 13 ) ^ rotr ( D, 22 ) ) + ( ( D & E ) | (F & (D | E ) ) ) ;
W6 = W6 + ( rotr ( W7, 7 ) ^ rotr ( W7, 18 ) ^ ( W7 >> 3 ) ) + W15 + ( rotr ( W4, 17 ) ^ rotr ( W4, 19 ) ^ ( W4 >> 10 ) ) ;
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[54] + W6 ; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + ((C & D) | (E & (C | D)));
B = B + ( rotr ( G, 6 ) ^ rotr ( G, 11 ) ^ rotr ( G, 25 ) ) + ( A ^ ( G & ( H ^ A ) ) ) + K[54] + W6 ;
F = F + B ;
B = B + ( rotr ( C, 2 ) ^ rotr ( C, 13 ) ^ rotr ( C, 22 ) ) + ( ( C & D ) | (E & (C | D ) ) ) ;
W7 = W7 + ( rotr ( W8, 7 ) ^ rotr ( W8, 18 ) ^ ( W8 >> 3 ) ) + W0 + ( rotr ( W5, 17 ) ^ rotr ( W5, 19 ) ^ ( W5 >> 10 ) ) ;
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[55] + W7 ; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + ((B & C) | (D & (B | C)));
A = A + ( rotr ( F, 6 ) ^ rotr ( F, 11 ) ^ rotr ( F, 25 ) ) + ( H ^ ( F & ( G ^ H ) ) ) + K[55] + W7 ;
E = E + A ;
A = A + ( rotr ( B, 2 ) ^ rotr ( B, 13 ) ^ rotr ( B, 22 ) ) + ( ( B & C ) | (D & (B | C ) ) ) ;
W8 = W8 + ( rotr ( W9, 7 ) ^ rotr ( W9, 18 ) ^ ( W9 >> 3 ) ) + W1 + ( rotr ( W6, 17 ) ^ rotr ( W6, 19 ) ^ ( W6 >> 10 ) ) ;
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[56] + W8 ; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + ((A & B) | (C & (A | B)));
H = H + ( rotr ( E, 6 ) ^ rotr ( E, 11 ) ^ rotr ( E, 25 ) ) + ( G ^ ( E & ( F ^ G ) ) ) + K[56] + W8 ;
D = D + H ;
H = H + ( rotr ( A, 2 ) ^ rotr ( A, 13 ) ^ rotr ( A, 22 ) ) + ( ( A & B ) | (C & (A | B ) ) ) ;
W9 = W9 + ( rotr ( W10, 7 ) ^ rotr ( W10, 18 ) ^ ( W10 >> 3 ) ) + W2 + ( rotr ( W7, 17 ) ^ rotr ( W7, 19 ) ^ ( W7 >> 10 ) ) ;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[57] + W9 ; C = C + G;
G = G + ( rotr ( D, 6 ) ^ rotr ( D, 11 ) ^ rotr ( D, 25 ) ) + ( F ^ ( D & ( E ^ F ) ) ) + K[57] + W9 ;
C = C + G ;
W10 = W10 + ( rotr ( W11, 7 ) ^ rotr ( W11, 18 ) ^ ( W11 >> 3 ) ) + W3 + ( rotr ( W8, 17 ) ^ rotr ( W8, 19 ) ^ ( W8 >> 10 ) ) ;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[58] + W10 ; B = B + F;
F = F + ( rotr ( C, 6 ) ^ rotr ( C, 11 ) ^ rotr ( C, 25 ) ) + ( E ^ ( C & ( D ^ E ) ) ) + K[58] + W10 ;
B = B + F ;
W11 = W11 + ( rotr ( W12, 7 ) ^ rotr ( W12, 18 ) ^ ( W12 >> 3 ) ) + W4 + ( rotr ( W9, 17 ) ^ rotr ( W9, 19 ) ^ ( W9 >> 10 ) ) ;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[59] + W11 ; A = A + E;
E = E + ( rotr ( B, 6 ) ^ rotr ( B, 11 ) ^ rotr ( B, 25 ) ) + ( D ^ ( B & ( C ^ D ) ) ) + K[59] + W11 ;
A = A + E ;
W12 = W12 + ( rotr ( W13, 7 ) ^ rotr ( W13, 18 ) ^ ( W13 >> 3 ) ) + W5 + ( rotr ( W10, 17 ) ^ rotr ( W10, 19 ) ^ ( W10 >> 10 ) ) ;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[60] + W12 ; H = H + D;
D = D + ( rotr ( A, 6 ) ^ rotr ( A, 11 ) ^ rotr ( A, 25 ) ) + ( C ^ ( A & ( B ^ C ) ) ) + K[60] + W12 ;
H = H + D ;
if ( H==0xa41f32e7 ) {
for ( it = 0 ; it != 128; it++) {
for ( it = 0 ;
it != 128 ;
it++ ) {
if ( !output[it] ) {
output[it] = tnonce ;
break ;