Browse Source

Added Pluck algo

windows
troky 10 years ago
parent
commit
8cb4fc9d6e
  1. 1
      AUTHORS.md
  2. 1
      Makefile.am
  3. 183
      algorithm.c
  4. 11
      algorithm.h
  5. 482
      algorithm/pluck.c
  6. 10
      algorithm/pluck.h
  7. 463
      kernel/pluck.cl
  8. 146
      ocl.c
  9. 2
      sgminer.c
  10. 2
      winbuild/sgminer.vcxproj
  11. 6
      winbuild/sgminer.vcxproj.filters

1
AUTHORS.md

@ -53,6 +53,7 @@ updated by many others. @@ -53,6 +53,7 @@ updated by many others.
* Perry Huang <perryh>
* Joseph Bruggeman <jbruggeman>
* Badman74 <badman74>
* djm34 <djm4>
...and many others. See:

1
Makefile.am

@ -70,6 +70,7 @@ sgminer_SOURCES += algorithm/whirlcoin.c algorithm/whirlcoin.h @@ -70,6 +70,7 @@ sgminer_SOURCES += algorithm/whirlcoin.c algorithm/whirlcoin.h
sgminer_SOURCES += algorithm/neoscrypt.c algorithm/neoscrypt.h
sgminer_SOURCES += algorithm/whirlpoolx.c algorithm/whirlpoolx.h
sgminer_SOURCES += algorithm/lyra2re.c algorithm/lyra2re.h algorithm/lyra2.c algorithm/lyra2.h algorithm/sponge.c algorithm/sponge.h
sgminer_SOURCES += algorithm/pluck.c algorithm/pluck.h
bin_SCRIPTS = $(top_srcdir)/kernel/*.cl

183
algorithm.c

@ -33,6 +33,7 @@ @@ -33,6 +33,7 @@
#include "algorithm/neoscrypt.h"
#include "algorithm/whirlpoolx.h"
#include "algorithm/lyra2re.h"
#include "algorithm/pluck.h"
#include "compat.h"
@ -56,7 +57,8 @@ const char *algorithm_type_str[] = { @@ -56,7 +57,8 @@ const char *algorithm_type_str[] = {
"Whirlcoin",
"Neoscrypt",
"WhirlpoolX",
"Lyra2RE"
"Lyra2RE",
"Pluck"
};
void sha256(const unsigned char *message, unsigned int len, unsigned char *digest)
@ -104,10 +106,10 @@ static void append_neoscrypt_compiler_options(struct _build_kernel_data *data, s @@ -104,10 +106,10 @@ static void append_neoscrypt_compiler_options(struct _build_kernel_data *data, s
{
char buf[255];
sprintf(buf, " %s-D MAX_GLOBAL_THREADS=%lu ",
((cgpu->lookup_gap > 0)?" -D LOOKUP_GAP=2 ":""), (unsigned long)cgpu->thread_concurrency);
((cgpu->lookup_gap > 0) ? " -D LOOKUP_GAP=2 " : ""), (unsigned long)cgpu->thread_concurrency);
strcat(data->compiler_options, buf);
sprintf(buf, "%stc%lu", ((cgpu->lookup_gap > 0)?"lg":""), (unsigned long)cgpu->thread_concurrency);
sprintf(buf, "%stc%lu", ((cgpu->lookup_gap > 0) ? "lg" : ""), (unsigned long)cgpu->thread_concurrency);
strcat(data->binary_filename, buf);
}
@ -115,10 +117,10 @@ static void append_x11_compiler_options(struct _build_kernel_data *data, struct @@ -115,10 +117,10 @@ static void append_x11_compiler_options(struct _build_kernel_data *data, struct
{
char buf[255];
sprintf(buf, " -D SPH_COMPACT_BLAKE_64=%d -D SPH_LUFFA_PARALLEL=%d -D SPH_KECCAK_UNROLL=%u ",
((opt_blake_compact)?1:0), ((opt_luffa_parallel)?1:0), (unsigned int)opt_keccak_unroll);
((opt_blake_compact) ? 1 : 0), ((opt_luffa_parallel) ? 1 : 0), (unsigned int)opt_keccak_unroll);
strcat(data->compiler_options, buf);
sprintf(buf, "ku%u%s%s", (unsigned int)opt_keccak_unroll, ((opt_blake_compact)?"bc":""), ((opt_luffa_parallel)?"lp":""));
sprintf(buf, "ku%u%s%s", (unsigned int)opt_keccak_unroll, ((opt_blake_compact) ? "bc" : ""), ((opt_luffa_parallel) ? "lp" : ""));
strcat(data->binary_filename, buf);
}
@ -130,10 +132,10 @@ static void append_x13_compiler_options(struct _build_kernel_data *data, struct @@ -130,10 +132,10 @@ static void append_x13_compiler_options(struct _build_kernel_data *data, struct
append_x11_compiler_options(data, cgpu, algorithm);
sprintf(buf, " -D SPH_HAMSI_EXPAND_BIG=%d -D SPH_HAMSI_SHORT=%d ",
(unsigned int)opt_hamsi_expand_big, ((opt_hamsi_short)?1:0));
(unsigned int)opt_hamsi_expand_big, ((opt_hamsi_short) ? 1 : 0));
strcat(data->compiler_options, buf);
sprintf(buf, "big%u%s", (unsigned int)opt_hamsi_expand_big, ((opt_hamsi_short)?"hs":""));
sprintf(buf, "big%u%s", (unsigned int)opt_hamsi_expand_big, ((opt_hamsi_short) ? "hs" : ""));
strcat(data->binary_filename, buf);
}
@ -147,7 +149,7 @@ static cl_int queue_scrypt_kernel(struct __clState *clState, struct _dev_blk_ctx @@ -147,7 +149,7 @@ static cl_int queue_scrypt_kernel(struct __clState *clState, struct _dev_blk_ctx
le_target = *(cl_uint *)(blk->work->device_target + 28);
memcpy(clState->cldata, blk->work->data, 80);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
@ -172,7 +174,7 @@ static cl_int queue_neoscrypt_kernel(_clState *clState, dev_blk_ctx *blk, __mayb @@ -172,7 +174,7 @@ static cl_int queue_neoscrypt_kernel(_clState *clState, dev_blk_ctx *blk, __mayb
* The compiler will get rid of it anyway. */
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
memcpy(clState->cldata, blk->work->data, 80);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
@ -189,7 +191,7 @@ static cl_int queue_maxcoin_kernel(struct __clState *clState, struct _dev_blk_ct @@ -189,7 +191,7 @@ static cl_int queue_maxcoin_kernel(struct __clState *clState, struct _dev_blk_ct
cl_int status = 0;
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
@ -206,7 +208,7 @@ static cl_int queue_sph_kernel(struct __clState *clState, struct _dev_blk_ctx *b @@ -206,7 +208,7 @@ static cl_int queue_sph_kernel(struct __clState *clState, struct _dev_blk_ctx *b
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
@ -224,7 +226,7 @@ static cl_int queue_darkcoin_mod_kernel(struct __clState *clState, struct _dev_b @@ -224,7 +226,7 @@ static cl_int queue_darkcoin_mod_kernel(struct __clState *clState, struct _dev_b
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -268,7 +270,7 @@ static cl_int queue_bitblock_kernel(struct __clState *clState, struct _dev_blk_c @@ -268,7 +270,7 @@ static cl_int queue_bitblock_kernel(struct __clState *clState, struct _dev_blk_c
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -320,7 +322,7 @@ static cl_int queue_bitblockold_kernel(struct __clState *clState, struct _dev_bl @@ -320,7 +322,7 @@ static cl_int queue_bitblockold_kernel(struct __clState *clState, struct _dev_bl
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -365,7 +367,7 @@ static cl_int queue_marucoin_mod_kernel(struct __clState *clState, struct _dev_b @@ -365,7 +367,7 @@ static cl_int queue_marucoin_mod_kernel(struct __clState *clState, struct _dev_b
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -413,7 +415,7 @@ static cl_int queue_marucoin_mod_old_kernel(struct __clState *clState, struct _d @@ -413,7 +415,7 @@ static cl_int queue_marucoin_mod_old_kernel(struct __clState *clState, struct _d
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -457,7 +459,7 @@ static cl_int queue_talkcoin_mod_kernel(struct __clState *clState, struct _dev_b @@ -457,7 +459,7 @@ static cl_int queue_talkcoin_mod_kernel(struct __clState *clState, struct _dev_b
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -489,7 +491,7 @@ static cl_int queue_x14_kernel(struct __clState *clState, struct _dev_blk_ctx *b @@ -489,7 +491,7 @@ static cl_int queue_x14_kernel(struct __clState *clState, struct _dev_blk_ctx *b
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -539,7 +541,7 @@ static cl_int queue_x14_old_kernel(struct __clState *clState, struct _dev_blk_ct @@ -539,7 +541,7 @@ static cl_int queue_x14_old_kernel(struct __clState *clState, struct _dev_blk_ct
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// blake - search
kernel = &clState->kernel;
@ -583,7 +585,7 @@ static cl_int queue_fresh_kernel(struct __clState *clState, struct _dev_blk_ctx @@ -583,7 +585,7 @@ static cl_int queue_fresh_kernel(struct __clState *clState, struct _dev_blk_ctx
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
// shavite 1 - search
kernel = &clState->kernel;
@ -614,22 +616,22 @@ static cl_int queue_whirlcoin_kernel(struct __clState *clState, struct _dev_blk_ @@ -614,22 +616,22 @@ static cl_int queue_whirlcoin_kernel(struct __clState *clState, struct _dev_blk_
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
//clbuffer, hashes
kernel = &clState->kernel;
CL_SET_ARG_N(0,clState->CLbuffer0);
CL_SET_ARG_N(1,clState->padbuffer8);
CL_SET_ARG_N(0, clState->CLbuffer0);
CL_SET_ARG_N(1, clState->padbuffer8);
kernel = clState->extra_kernels;
CL_SET_ARG_N(0,clState->padbuffer8);
CL_SET_ARG_N(0, clState->padbuffer8);
CL_NEXTKERNEL_SET_ARG_N(0,clState->padbuffer8);
CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
//hashes, output, target
CL_NEXTKERNEL_SET_ARG_N(0,clState->padbuffer8);
CL_SET_ARG_N(1,clState->outputBuffer);
CL_SET_ARG_N(2,le_target);
CL_NEXTKERNEL_SET_ARG_N(0, clState->padbuffer8);
CL_SET_ARG_N(1, clState->outputBuffer);
CL_SET_ARG_N(2, le_target);
return status;
}
@ -642,15 +644,15 @@ static cl_int queue_whirlpoolx_kernel(struct __clState *clState, struct _dev_blk @@ -642,15 +644,15 @@ static cl_int queue_whirlpoolx_kernel(struct __clState *clState, struct _dev_blk
le_target = *(cl_ulong *)(blk->work->device_target + 24);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL,NULL);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
//clbuffer, hashes
kernel = &clState->kernel;
CL_SET_ARG_N(0,clState->CLbuffer0);
CL_SET_ARG_N(1,clState->padbuffer8);
CL_SET_ARG_N(0, clState->CLbuffer0);
CL_SET_ARG_N(1, clState->padbuffer8);
CL_SET_ARG_N(2,clState->outputBuffer);
CL_SET_ARG_N(3,le_target);
CL_SET_ARG_N(2, clState->outputBuffer);
CL_SET_ARG_N(3, le_target);
return status;
}
@ -699,6 +701,25 @@ static cl_int queue_lyra2RE_kernel(struct __clState *clState, struct _dev_blk_ct @@ -699,6 +701,25 @@ static cl_int queue_lyra2RE_kernel(struct __clState *clState, struct _dev_blk_ct
return status;
}
static cl_int queue_pluck_kernel(_clState *clState, dev_blk_ctx *blk, __maybe_unused cl_uint threads)
{
cl_kernel *kernel = &clState->kernel;
unsigned int num = 0;
cl_uint le_target;
cl_int status = 0;
le_target = (cl_uint)le32toh(((uint32_t *)blk->work->/*device_*/target)[7]);
flip80(clState->cldata, blk->work->data);
status = clEnqueueWriteBuffer(clState->commandQueue, clState->CLbuffer0, true, 0, 80, clState->cldata, 0, NULL, NULL);
CL_SET_ARG(clState->CLbuffer0);
CL_SET_ARG(clState->outputBuffer);
CL_SET_ARG(clState->padbuffer8);
CL_SET_ARG(le_target);
return status;
}
typedef struct _algorithm_settings_t {
const char *name; /* Human-readable identifier */
algorithm_type_t type; //common algorithm type
@ -714,81 +735,85 @@ typedef struct _algorithm_settings_t { @@ -714,81 +735,85 @@ typedef struct _algorithm_settings_t {
size_t n_extra_kernels;
long rw_buffer_size;
cl_command_queue_properties cq_properties;
void (*regenhash)(struct work *);
cl_int (*queue_kernel)(struct __clState *, struct _dev_blk_ctx *, cl_uint);
void (*gen_hash)(const unsigned char *, unsigned int, unsigned char *);
void (*set_compile_options)(build_kernel_data *, struct cgpu_info *, algorithm_t *);
void(*regenhash)(struct work *);
cl_int(*queue_kernel)(struct __clState *, struct _dev_blk_ctx *, cl_uint);
void(*gen_hash)(const unsigned char *, unsigned int, unsigned char *);
void(*set_compile_options)(build_kernel_data *, struct cgpu_info *, algorithm_t *);
} algorithm_settings_t;
static algorithm_settings_t algos[] = {
// kernels starting from this will have difficulty calculated by using litecoin algorithm
#define A_SCRYPT(a) \
{ a, ALGO_SCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFFFFFFULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, scrypt_regenhash, queue_scrypt_kernel, gen_hash, append_scrypt_compiler_options}
A_SCRYPT( "ckolivas" ),
A_SCRYPT( "alexkarnew" ),
A_SCRYPT( "alexkarnold" ),
A_SCRYPT( "bufius" ),
A_SCRYPT( "psw" ),
A_SCRYPT( "zuikkis" ),
A_SCRYPT( "arebyp" ),
{ a, ALGO_SCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFFFFFFULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, scrypt_regenhash, queue_scrypt_kernel, gen_hash, append_scrypt_compiler_options }
A_SCRYPT("ckolivas"),
A_SCRYPT("alexkarnew"),
A_SCRYPT("alexkarnold"),
A_SCRYPT("bufius"),
A_SCRYPT("psw"),
A_SCRYPT("zuikkis"),
A_SCRYPT("arebyp"),
#undef A_SCRYPT
#define A_NEOSCRYPT(a) \
{ a, ALGO_NEOSCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, neoscrypt_regenhash, queue_neoscrypt_kernel, gen_hash, append_neoscrypt_compiler_options}
{ a, ALGO_NEOSCRYPT, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, neoscrypt_regenhash, queue_neoscrypt_kernel, gen_hash, append_neoscrypt_compiler_options }
A_NEOSCRYPT("neoscrypt"),
#undef A_NEOSCRYPT
#define A_PLUCK(a) \
{ a, ALGO_PLUCK, "", 1, 65536, 65536, 0, 0, 0xFF, 0xFFFF000000000000ULL, 0x0000ffffUL, 0, -1, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, pluck_regenhash, queue_pluck_kernel, gen_hash, append_neoscrypt_compiler_options }
A_PLUCK("pluck"),
#undef A_PLUCK
// kernels starting from this will have difficulty calculated by using quarkcoin algorithm
#define A_QUARK(a, b) \
{ a, ALGO_QUARK, "", 256, 256, 256, 0, 0, 0xFF, 0xFFFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash, append_x11_compiler_options}
A_QUARK( "quarkcoin", quarkcoin_regenhash),
A_QUARK( "qubitcoin", qubitcoin_regenhash),
A_QUARK( "animecoin", animecoin_regenhash),
A_QUARK( "sifcoin", sifcoin_regenhash),
{ a, ALGO_QUARK, "", 256, 256, 256, 0, 0, 0xFF, 0xFFFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash, append_x11_compiler_options }
A_QUARK("quarkcoin", quarkcoin_regenhash),
A_QUARK("qubitcoin", qubitcoin_regenhash),
A_QUARK("animecoin", animecoin_regenhash),
A_QUARK("sifcoin", sifcoin_regenhash),
#undef A_QUARK
// kernels starting from this will have difficulty calculated by using bitcoin algorithm
#define A_DARK(a, b) \
{ a, ALGO_X11, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash, append_x11_compiler_options}
A_DARK( "darkcoin", darkcoin_regenhash),
A_DARK( "inkcoin", inkcoin_regenhash),
A_DARK( "myriadcoin-groestl", myriadcoin_groestl_regenhash),
{ a, ALGO_X11, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, gen_hash, append_x11_compiler_options }
A_DARK("darkcoin", darkcoin_regenhash),
A_DARK("inkcoin", inkcoin_regenhash),
A_DARK("myriadcoin-groestl", myriadcoin_groestl_regenhash),
#undef A_DARK
{ "twecoin", ALGO_TWE, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, twecoin_regenhash, queue_sph_kernel, sha256, NULL},
{ "maxcoin", ALGO_KECCAK, "", 1, 256, 1, 4, 15, 0x0F, 0xFFFFULL, 0x000000ffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, maxcoin_regenhash, queue_maxcoin_kernel, sha256, NULL},
{ "twecoin", ALGO_TWE, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, twecoin_regenhash, queue_sph_kernel, sha256, NULL },
{ "maxcoin", ALGO_KECCAK, "", 1, 256, 1, 4, 15, 0x0F, 0xFFFFULL, 0x000000ffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, maxcoin_regenhash, queue_maxcoin_kernel, sha256, NULL },
{ "darkcoin-mod", ALGO_X11, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, darkcoin_regenhash, queue_darkcoin_mod_kernel, gen_hash, append_x11_compiler_options},
{ "darkcoin-mod", ALGO_X11, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, darkcoin_regenhash, queue_darkcoin_mod_kernel, gen_hash, append_x11_compiler_options },
{ "marucoin", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, marucoin_regenhash, queue_sph_kernel, gen_hash, append_x13_compiler_options},
{ "marucoin-mod", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 12, 8 * 16 * 4194304, 0, marucoin_regenhash, queue_marucoin_mod_kernel, gen_hash, append_x13_compiler_options},
{ "marucoin-modold", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, marucoin_regenhash, queue_marucoin_mod_old_kernel, gen_hash, append_x13_compiler_options},
{ "marucoin", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, marucoin_regenhash, queue_sph_kernel, gen_hash, append_x13_compiler_options },
{ "marucoin-mod", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 12, 8 * 16 * 4194304, 0, marucoin_regenhash, queue_marucoin_mod_kernel, gen_hash, append_x13_compiler_options },
{ "marucoin-modold", ALGO_X13, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, marucoin_regenhash, queue_marucoin_mod_old_kernel, gen_hash, append_x13_compiler_options },
{ "x14", ALGO_X14, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 13, 8 * 16 * 4194304, 0, x14_regenhash, queue_x14_kernel, gen_hash, append_x13_compiler_options},
{ "x14old", ALGO_X14, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, x14_regenhash, queue_x14_old_kernel, gen_hash, append_x13_compiler_options},
{ "x14", ALGO_X14, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 13, 8 * 16 * 4194304, 0, x14_regenhash, queue_x14_kernel, gen_hash, append_x13_compiler_options },
{ "x14old", ALGO_X14, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 8 * 16 * 4194304, 0, x14_regenhash, queue_x14_old_kernel, gen_hash, append_x13_compiler_options },
{ "bitblock", ALGO_X15, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 14, 4 * 16 * 4194304, 0, bitblock_regenhash, queue_bitblock_kernel, gen_hash, append_x13_compiler_options},
{ "bitblockold", ALGO_X15, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 4 * 16 * 4194304, 0, bitblock_regenhash, queue_bitblockold_kernel, gen_hash, append_x13_compiler_options},
{ "bitblock", ALGO_X15, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 14, 4 * 16 * 4194304, 0, bitblock_regenhash, queue_bitblock_kernel, gen_hash, append_x13_compiler_options },
{ "bitblockold", ALGO_X15, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 10, 4 * 16 * 4194304, 0, bitblock_regenhash, queue_bitblockold_kernel, gen_hash, append_x13_compiler_options },
{ "talkcoin-mod", ALGO_NIST, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 8 * 16 * 4194304, 0, talkcoin_regenhash, queue_talkcoin_mod_kernel, gen_hash, append_x11_compiler_options},
{ "talkcoin-mod", ALGO_NIST, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 8 * 16 * 4194304, 0, talkcoin_regenhash, queue_talkcoin_mod_kernel, gen_hash, append_x11_compiler_options },
{ "fresh", ALGO_FRESH, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 4 * 16 * 4194304, 0, fresh_regenhash, queue_fresh_kernel, gen_hash, NULL},
{ "fresh", ALGO_FRESH, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 4 * 16 * 4194304, 0, fresh_regenhash, queue_fresh_kernel, gen_hash, NULL },
{ "lyra2re", ALGO_LYRA2RE, "", 1, 128, 128, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 2 * 8 * 4194304 , 0, lyra2re_regenhash, queue_lyra2RE_kernel, gen_hash, NULL},
{ "lyra2re", ALGO_LYRA2RE, "", 1, 128, 128, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 4, 2 * 8 * 4194304, 0, lyra2re_regenhash, queue_lyra2RE_kernel, gen_hash, NULL },
// kernels starting from this will have difficulty calculated by using fuguecoin algorithm
#define A_FUGUE(a, b, c) \
{ a, ALGO_FUGUE, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, c, NULL}
{ a, ALGO_FUGUE, "", 1, 256, 256, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, b, queue_sph_kernel, c, NULL }
A_FUGUE("fuguecoin", fuguecoin_regenhash, sha256),
A_FUGUE("groestlcoin", groestlcoin_regenhash, sha256),
A_FUGUE("diamond", groestlcoin_regenhash, gen_hash),
#undef A_FUGUE
#undef A_FUGUE
{ "whirlcoin", ALGO_WHIRL, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 3, 8 * 16 * 4194304, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, whirlcoin_regenhash, queue_whirlcoin_kernel, sha256, NULL},
{ "whirlcoin", ALGO_WHIRL, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 3, 8 * 16 * 4194304, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, whirlcoin_regenhash, queue_whirlcoin_kernel, sha256, NULL },
{ "whirlpoolx", ALGO_WHIRL, "", 1, 1, 1, 0, 0, 0xFF, 0xFFFFULL, 0x0000ffffUL, 0, 0, 0, whirlpoolx_regenhash, queue_sph_kernel, gen_hash, NULL },
// Terminator (do not remove)
{ NULL, ALGO_UNK, "", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL}
{ NULL, ALGO_UNK, "", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL }
};
void copy_algorithm_settings(algorithm_t* dest, const char* algo)
@ -833,9 +858,9 @@ void copy_algorithm_settings(algorithm_t* dest, const char* algo) @@ -833,9 +858,9 @@ void copy_algorithm_settings(algorithm_t* dest, const char* algo)
static const char *lookup_algorithm_alias(const char *lookup_alias, uint8_t *nfactor)
{
#define ALGO_ALIAS_NF(alias, name, nf) \
#define ALGO_ALIAS_NF(alias, name, nf) \
if (strcasecmp(alias, lookup_alias) == 0) { *nfactor = nf; return name; }
#define ALGO_ALIAS(alias, name) \
#define ALGO_ALIAS(alias, name) \
if (strcasecmp(alias, lookup_alias) == 0) return name;
ALGO_ALIAS_NF("scrypt", "ckolivas", 10);
@ -862,8 +887,8 @@ static const char *lookup_algorithm_alias(const char *lookup_alias, uint8_t *nfa @@ -862,8 +887,8 @@ static const char *lookup_algorithm_alias(const char *lookup_alias, uint8_t *nfa
ALGO_ALIAS("Lyra2RE", "lyra2re");
ALGO_ALIAS("lyra2", "lyra2re");
#undef ALGO_ALIAS
#undef ALGO_ALIAS_NF
#undef ALGO_ALIAS
#undef ALGO_ALIAS_NF
return NULL;
}
@ -873,7 +898,7 @@ void set_algorithm(algorithm_t* algo, const char* newname_alias) @@ -873,7 +898,7 @@ void set_algorithm(algorithm_t* algo, const char* newname_alias)
const char *newname;
//load previous algorithm nfactor in case nfactor was applied before algorithm... or default to 10
uint8_t old_nfactor = ((algo->nfactor)?algo->nfactor:0);
uint8_t old_nfactor = ((algo->nfactor) ? algo->nfactor : 0);
//load previous kernel file name if was applied before algorithm...
const char *kernelfile = algo->kernelfile;
uint8_t nfactor = 10;
@ -905,13 +930,13 @@ void set_algorithm_nfactor(algorithm_t* algo, const uint8_t nfactor) @@ -905,13 +930,13 @@ void set_algorithm_nfactor(algorithm_t* algo, const uint8_t nfactor)
{
case ALGO_SCRYPT:
//if nfactor isnt 10, switch to NSCRYPT
if(algo->nfactor != 10)
if (algo->nfactor != 10)
algo->type = ALGO_NSCRYPT;
break;
//nscrypt
case ALGO_NSCRYPT:
//if nfactor is 10, switch to SCRYPT
if(algo->nfactor == 10)
if (algo->nfactor == 10)
algo->type = ALGO_SCRYPT;
break;
//ignore rest

11
algorithm.h

@ -26,7 +26,8 @@ typedef enum { @@ -26,7 +26,8 @@ typedef enum {
ALGO_FRESH,
ALGO_WHIRL,
ALGO_NEOSCRYPT,
ALGO_LYRA2RE
ALGO_LYRA2RE,
ALGO_PLUCK
} algorithm_type_t;
extern const char *algorithm_type_str[];
@ -59,10 +60,10 @@ typedef struct _algorithm_t { @@ -59,10 +60,10 @@ typedef struct _algorithm_t {
size_t n_extra_kernels;
long rw_buffer_size;
cl_command_queue_properties cq_properties;
void (*regenhash)(struct work *);
cl_int (*queue_kernel)(struct __clState *, struct _dev_blk_ctx *, cl_uint);
void (*gen_hash)(const unsigned char *, unsigned int, unsigned char *);
void (*set_compile_options)(struct _build_kernel_data *, struct cgpu_info *, struct _algorithm_t *);
void(*regenhash)(struct work *);
cl_int(*queue_kernel)(struct __clState *, struct _dev_blk_ctx *, cl_uint);
void(*gen_hash)(const unsigned char *, unsigned int, unsigned char *);
void(*set_compile_options)(struct _build_kernel_data *, struct cgpu_info *, struct _algorithm_t *);
} algorithm_t;
/* Set default parameters based on name. */

482
algorithm/pluck.c

@ -0,0 +1,482 @@ @@ -0,0 +1,482 @@
/*-
* Copyright 2014 James Lovejoy
* Copyright 2014 phm
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "miner.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
static const uint32_t sha256_h[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
static const uint32_t sha256_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
void sha256_init(uint32_t *state)
{
memcpy(state, sha256_h, 32);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
do { \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1; \
} while (0)
/* Adjusted round function for rotating state */
#define RNDr(S, W, i) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + sha256_k[i])
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
void sha256_transform(uint32_t *state, const uint32_t *block, int swap)
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
if (swap) {
for (i = 0; i < 16; i++)
W[i] = swab32(block[i]);
}
else
memcpy(W, block, 64);
for (i = 16; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
W[i + 1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
}
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0);
RNDr(S, W, 1);
RNDr(S, W, 2);
RNDr(S, W, 3);
RNDr(S, W, 4);
RNDr(S, W, 5);
RNDr(S, W, 6);
RNDr(S, W, 7);
RNDr(S, W, 8);
RNDr(S, W, 9);
RNDr(S, W, 10);
RNDr(S, W, 11);
RNDr(S, W, 12);
RNDr(S, W, 13);
RNDr(S, W, 14);
RNDr(S, W, 15);
RNDr(S, W, 16);
RNDr(S, W, 17);
RNDr(S, W, 18);
RNDr(S, W, 19);
RNDr(S, W, 20);
RNDr(S, W, 21);
RNDr(S, W, 22);
RNDr(S, W, 23);
RNDr(S, W, 24);
RNDr(S, W, 25);
RNDr(S, W, 26);
RNDr(S, W, 27);
RNDr(S, W, 28);
RNDr(S, W, 29);
RNDr(S, W, 30);
RNDr(S, W, 31);
RNDr(S, W, 32);
RNDr(S, W, 33);
RNDr(S, W, 34);
RNDr(S, W, 35);
RNDr(S, W, 36);
RNDr(S, W, 37);
RNDr(S, W, 38);
RNDr(S, W, 39);
RNDr(S, W, 40);
RNDr(S, W, 41);
RNDr(S, W, 42);
RNDr(S, W, 43);
RNDr(S, W, 44);
RNDr(S, W, 45);
RNDr(S, W, 46);
RNDr(S, W, 47);
RNDr(S, W, 48);
RNDr(S, W, 49);
RNDr(S, W, 50);
RNDr(S, W, 51);
RNDr(S, W, 52);
RNDr(S, W, 53);
RNDr(S, W, 54);
RNDr(S, W, 55);
RNDr(S, W, 56);
RNDr(S, W, 57);
RNDr(S, W, 58);
RNDr(S, W, 59);
RNDr(S, W, 60);
RNDr(S, W, 61);
RNDr(S, W, 62);
RNDr(S, W, 63);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static inline void
be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len)
{
uint32_t i;
for (i = 0; i < len; i++)
dst[i] = htobe32(src[i]);
}
static inline void be32enc(void *pp, uint32_t x)
{
uint8_t *p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static inline uint32_t be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
//note, this is 64 bytes
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
{
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
uint32_t x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15;
int i;
x00 = (B[0] ^= Bx[0]);
x01 = (B[1] ^= Bx[1]);
x02 = (B[2] ^= Bx[2]);
x03 = (B[3] ^= Bx[3]);
x04 = (B[4] ^= Bx[4]);
x05 = (B[5] ^= Bx[5]);
x06 = (B[6] ^= Bx[6]);
x07 = (B[7] ^= Bx[7]);
x08 = (B[8] ^= Bx[8]);
x09 = (B[9] ^= Bx[9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
/* Operate on columns. */
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
/* Operate on rows. */
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
}
B[0] += x00;
B[1] += x01;
B[2] += x02;
B[3] += x03;
B[4] += x04;
B[5] += x05;
B[6] += x06;
B[7] += x07;
B[8] += x08;
B[9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
#undef ROTL
}
void sha256_hash(unsigned char *hash, const unsigned char *data, int len)
{
uint32_t S[16], T[16];
int i, r;
sha256_init(S);
for (r = len; r > -9; r -= 64) {
if (r < 64)
memset(T, 0, 64);
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));
if (r >= 0 && r < 64)
((unsigned char *)T)[r] = 0x80;
for (i = 0; i < 16; i++)
T[i] = be32dec(T + i);
if (r < 56)
T[15] = 8 * len;
sha256_transform(S, T, 0);
}
for (i = 0; i < 8; i++)
be32enc((uint32_t *)hash + i, S[i]);
}
void sha256_hash512(unsigned char *hash, const unsigned char *data)
{
uint32_t S[16], T[16];
int i;
sha256_init(S);
memcpy(T, data, 64);
for (i = 0; i < 16; i++)
T[i] = be32dec(T + i);
sha256_transform(S, T, 0);
memset(T, 0, 64);
//memcpy(T, data + 64, 0);
((unsigned char *)T)[0] = 0x80;
for (i = 0; i < 16; i++)
T[i] = be32dec(T + i);
T[15] = 8 * 64;
sha256_transform(S, T, 0);
for (i = 0; i < 8; i++)
be32enc((uint32_t *)hash + i, S[i]);
}
inline void pluckrehash(void *state, const void *input)
{
int i,j;
uint32_t data[20];
const int HASH_MEMORY = 128 * 1024;
uint8_t * scratchbuf = (uint8_t*)malloc(HASH_MEMORY);
memcpy(data,input,80);
uint8_t hashbuffer[128*1024]; //don't allocate this on stack, since it's huge..
int size = HASH_MEMORY;
memset(hashbuffer, 0, 64);
sha256_hash(&hashbuffer[0], (uint8_t*)data, 80);
for (i = 64; i < size - 32; i += 32)
{
int randmax = i - 4; //we could use size here, but then it's probable to use 0 as the value in most cases
uint32_t joint[16];
uint32_t randbuffer[16];
uint32_t randseed[16];
memcpy(randseed, &hashbuffer[i - 64], 64);
if (i>128)
{
memcpy(randbuffer, &hashbuffer[i - 128], 64);
}
else
{
memset(&randbuffer, 0, 64);
}
xor_salsa8(randbuffer, randseed);
memcpy(joint, &hashbuffer[i - 32], 32);
//use the last hash value as the seed
for (j = 32; j < 64; j += 4)
{
uint32_t rand = randbuffer[(j - 32) / 4] % (randmax - 32);
joint[j / 4] = *((uint32_t*)&hashbuffer[rand]);
}
sha256_hash512(&hashbuffer[i], (uint8_t*)joint);
memcpy(randseed, &hashbuffer[i - 32], 64);
if (i>128)
{
memcpy(randbuffer, &hashbuffer[i - 128], 64);
}
else
{
memset(randbuffer, 0, 64);
}
xor_salsa8(randbuffer, randseed);
for (j = 0; j < 32; j += 2)
{
uint32_t rand = randbuffer[j / 2] % randmax;
*((uint32_t*)&hashbuffer[rand]) = *((uint32_t*)&hashbuffer[j + i - 4]);
}
}
//printf("cpu hashbuffer %08x nonce %08x\n", ((uint32_t*)hashbuffer)[7],data[19]);
memcpy(state, hashbuffer, 32);
}
static const uint32_t diff1targ = 0x0000ffff;
/* Used externally as confirmation of correct OCL code */
int pluck_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce)
{
uint32_t tmp_hash7, Htarg = le32toh(((const uint32_t *)ptarget)[7]);
uint32_t data[20], ohash[8];
be32enc_vect(data, (const uint32_t *)pdata, 19);
data[19] = htobe32(nonce);
pluckrehash(ohash, data);
tmp_hash7 = be32toh(ohash[7]);
applog(LOG_DEBUG, "htarget %08lx diff1 %08lx hash %08lx",
(long unsigned int)Htarg,
(long unsigned int)diff1targ,
(long unsigned int)tmp_hash7);
if (tmp_hash7 > diff1targ)
return -1;
if (tmp_hash7 > Htarg)
return 0;
return 1;
}
void pluck_regenhash(struct work *work)
{
uint32_t data[20];
uint32_t *nonce = (uint32_t *)(work->data + 76);
uint32_t *ohash = (uint32_t *)(work->hash);
be32enc_vect(data, (const uint32_t *)work->data, 19);
data[19] = htobe32(*nonce);
pluckrehash(ohash, data);
}
bool scanhash_pluck(struct thr_info *thr, const unsigned char __maybe_unused *pmidstate,
unsigned char *pdata, unsigned char __maybe_unused *phash1,
unsigned char __maybe_unused *phash, const unsigned char *ptarget,
uint32_t max_nonce, uint32_t *last_nonce, uint32_t n)
{
uint32_t *nonce = (uint32_t *)(pdata + 76);
uint32_t data[20];
uint32_t tmp_hash7;
uint32_t Htarg = le32toh(((const uint32_t *)ptarget)[7]);
bool ret = false;
be32enc_vect(data, (const uint32_t *)pdata, 19);
while (1)
{
uint32_t ostate[8];
*nonce = ++n;
data[19] = (n);
pluckrehash(ostate, data);
tmp_hash7 = (ostate[7]);
applog(LOG_INFO, "data7 %08lx", (long unsigned int)data[7]);
if (unlikely(tmp_hash7 <= Htarg))
{
((uint32_t *)pdata)[19] = htobe32(n);
*last_nonce = n;
ret = true;
break;
}
if (unlikely((n >= max_nonce) || thr->work_restart))
{
*last_nonce = n;
break;
}
}
return ret;
}

10
algorithm/pluck.h

@ -0,0 +1,10 @@ @@ -0,0 +1,10 @@
#ifndef PLUCK_H
#define PLUCK_H
#include "miner.h"
#define PLUCK_SCRATCHBUF_SIZE (128 * 1024)
extern int pluck_test(unsigned char *pdata, const unsigned char *ptarget,
uint32_t nonce);
extern void pluck_regenhash(struct work *work);
#endif /* PLUCK_H */

463
kernel/pluck.cl

@ -0,0 +1,463 @@ @@ -0,0 +1,463 @@
/*
* "pluck" kernel implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2015 djm34
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author djm34
*/
#if !defined(cl_khr_byte_addressable_store)
#error "Device does not support unaligned stores"
#endif
#define ROL32(x, n) rotate(x, (uint) n)
//#define ROL32(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define HASH_MEMORY 4096
#define SALSA(a,b,c,d) do { \
t =a+d; b^=rotate(t, 7U); \
t =b+a; c^=rotate(t, 9U); \
t =c+b; d^=rotate(t, 13U); \
t =d+c; a^=rotate(t, 18U); \
} while(0)
#define SALSA_CORE(state) do { \
\
SALSA(state.s0,state.s4,state.s8,state.sc); \
SALSA(state.s5,state.s9,state.sd,state.s1); \
SALSA(state.sa,state.se,state.s2,state.s6); \
SALSA(state.sf,state.s3,state.s7,state.sb); \
SALSA(state.s0,state.s1,state.s2,state.s3); \
SALSA(state.s5,state.s6,state.s7,state.s4); \
SALSA(state.sa,state.sb,state.s8,state.s9); \
SALSA(state.sf,state.sc,state.sd,state.se); \
} while(0)
/*
#define SALSA_CORE(state) do { \
state.s4 ^= rotate(state.s0 + state.sc, 7U); state.s8 ^= rotate(state.s4 + state.s0, 9U); state.sc ^= rotate(state.s8 + state.s4, 13U); state.s0 ^= rotate(state.sc + state.s8, 18U); \
state.s9 ^= rotate(state.s5 + state.s1, 7U); state.sd ^= rotate(state.s9 + state.s5, 9U); state.s1 ^= rotate(state.sd + state.s9, 13U); state.s5 ^= rotate(state.s1 + state.sd, 18U); \
state.se ^= rotate(state.sa + state.s6, 7U); state.s2 ^= rotate(state.se + state.sa, 9U); state.s6 ^= rotate(state.s2 + state.se, 13U); state.sa ^= rotate(state.s6 + state.s2, 18U); \
state.s3 ^= rotate(state.sf + state.sb, 7U); state.s7 ^= rotate(state.s3 + state.sf, 9U); state.sb ^= rotate(state.s7 + state.s3, 13U); state.sf ^= rotate(state.sb + state.s7, 18U); \
state.s1 ^= rotate(state.s0 + state.s3, 7U); state.s2 ^= rotate(state.s1 + state.s0, 9U); state.s3 ^= rotate(state.s2 + state.s1, 13U); state.s0 ^= rotate(state.s3 + state.s2, 18U); \
state.s6 ^= rotate(state.s5 + state.s4, 7U); state.s7 ^= rotate(state.s6 + state.s5, 9U); state.s4 ^= rotate(state.s7 + state.s6, 13U); state.s5 ^= rotate(state.s4 + state.s7, 18U); \
state.sb ^= rotate(state.sa + state.s9, 7U); state.s8 ^= rotate(state.sb + state.sa, 9U); state.s9 ^= rotate(state.s8 + state.sb, 13U); state.sa ^= rotate(state.s9 + state.s8, 18U); \
state.sc ^= rotate(state.sf + state.se, 7U); state.sd ^= rotate(state.sc + state.sf, 9U); state.se ^= rotate(state.sd + state.sc, 13U); state.sf ^= rotate(state.se + state.sd, 18U); \
} while(0)
*/
uint16 xor_salsa8(uint16 Bx)
{
uint t;
uint16 st = Bx;
SALSA_CORE(st);
SALSA_CORE(st);
SALSA_CORE(st);
SALSA_CORE(st);
return(st + Bx);
}
#define SHR(x, n) ((x) >> n)
#define SWAP32(a) (as_uint(as_uchar4(a).wzyx))
#define S0(x) (ROL32(x, 25) ^ ROL32(x, 14) ^ SHR(x, 3))
#define S1(x) (ROL32(x, 15) ^ ROL32(x, 13) ^ SHR(x, 10))
#define S2(x) (ROL32(x, 30) ^ ROL32(x, 19) ^ ROL32(x, 10))
#define S3(x) (ROL32(x, 26) ^ ROL32(x, 21) ^ ROL32(x, 7))
#define P(a,b,c,d,e,f,g,h,x,K) \
{ \
temp1 = h + S3(e) + F1(e,f,g) + (K + x); \
d += temp1; h = temp1 + S2(a) + F0(a,b,c); \
}
#define PLAST(a,b,c,d,e,f,g,h,x,K) \
{ \
d += h + S3(e) + F1(e,f,g) + (x + K); \
}
#define F0(y, x, z) bitselect(z, y, z ^ x)
#define F1(x, y, z) bitselect(z, y, x)
#define R0 (W0 = S1(W14) + W9 + S0(W1) + W0)
#define R1 (W1 = S1(W15) + W10 + S0(W2) + W1)
#define R2 (W2 = S1(W0) + W11 + S0(W3) + W2)
#define R3 (W3 = S1(W1) + W12 + S0(W4) + W3)
#define R4 (W4 = S1(W2) + W13 + S0(W5) + W4)
#define R5 (W5 = S1(W3) + W14 + S0(W6) + W5)
#define R6 (W6 = S1(W4) + W15 + S0(W7) + W6)
#define R7 (W7 = S1(W5) + W0 + S0(W8) + W7)
#define R8 (W8 = S1(W6) + W1 + S0(W9) + W8)
#define R9 (W9 = S1(W7) + W2 + S0(W10) + W9)
#define R10 (W10 = S1(W8) + W3 + S0(W11) + W10)
#define R11 (W11 = S1(W9) + W4 + S0(W12) + W11)
#define R12 (W12 = S1(W10) + W5 + S0(W13) + W12)
#define R13 (W13 = S1(W11) + W6 + S0(W14) + W13)
#define R14 (W14 = S1(W12) + W7 + S0(W15) + W14)
#define R15 (W15 = S1(W13) + W8 + S0(W0) + W15)
#define RD14 (S1(W12) + W7 + S0(W15) + W14)
#define RD15 (S1(W13) + W8 + S0(W0) + W15)
inline uint8 sha256_round1(uint16 data)
{
uint temp1;
uint8 res;
uint W0 = SWAP32(data.s0);
uint W1 = SWAP32(data.s1);
uint W2 = SWAP32(data.s2);
uint W3 = SWAP32(data.s3);
uint W4 = SWAP32(data.s4);
uint W5 = SWAP32(data.s5);
uint W6 = SWAP32(data.s6);
uint W7 = SWAP32(data.s7);
uint W8 = SWAP32(data.s8);
uint W9 = SWAP32(data.s9);
uint W10 = SWAP32(data.sA);
uint W11 = SWAP32(data.sB);
uint W12 = SWAP32(data.sC);
uint W13 = SWAP32(data.sD);
uint W14 = SWAP32(data.sE);
uint W15 = SWAP32(data.sF);
uint v0 = 0x6A09E667;
uint v1 = 0xBB67AE85;
uint v2 = 0x3C6EF372;
uint v3 = 0xA54FF53A;
uint v4 = 0x510E527F;
uint v5 = 0x9B05688C;
uint v6 = 0x1F83D9AB;
uint v7 = 0x5BE0CD19;
P(v0, v1, v2, v3, v4, v5, v6, v7, W0, 0x428A2F98);
P(v7, v0, v1, v2, v3, v4, v5, v6, W1, 0x71374491);
P(v6, v7, v0, v1, v2, v3, v4, v5, W2, 0xB5C0FBCF);
P(v5, v6, v7, v0, v1, v2, v3, v4, W3, 0xE9B5DBA5);
P(v4, v5, v6, v7, v0, v1, v2, v3, W4, 0x3956C25B);
P(v3, v4, v5, v6, v7, v0, v1, v2, W5, 0x59F111F1);
P(v2, v3, v4, v5, v6, v7, v0, v1, W6, 0x923F82A4);
P(v1, v2, v3, v4, v5, v6, v7, v0, W7, 0xAB1C5ED5);
P(v0, v1, v2, v3, v4, v5, v6, v7, W8, 0xD807AA98);
P(v7, v0, v1, v2, v3, v4, v5, v6, W9, 0x12835B01);
P(v6, v7, v0, v1, v2, v3, v4, v5, W10, 0x243185BE);
P(v5, v6, v7, v0, v1, v2, v3, v4, W11, 0x550C7DC3);
P(v4, v5, v6, v7, v0, v1, v2, v3, W12, 0x72BE5D74);
P(v3, v4, v5, v6, v7, v0, v1, v2, W13, 0x80DEB1FE);
P(v2, v3, v4, v5, v6, v7, v0, v1, W14, 0x9BDC06A7);
P(v1, v2, v3, v4, v5, v6, v7, v0, W15, 0xC19BF174);
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0xE49B69C1);
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0xEFBE4786);
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x0FC19DC6);
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x240CA1CC);
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x2DE92C6F);
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4A7484AA);
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5CB0A9DC);
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x76F988DA);
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x983E5152);
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA831C66D);
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xB00327C8);
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xBF597FC7);
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xC6E00BF3);
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD5A79147);
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0x06CA6351);
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x14292967);
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x27B70A85);
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x2E1B2138);
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x4D2C6DFC);
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x53380D13);
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x650A7354);
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x766A0ABB);
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x81C2C92E);
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x92722C85);
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0xA2BFE8A1);
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA81A664B);
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xC24B8B70);
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xC76C51A3);
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xD192E819);
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD6990624);
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0xF40E3585);
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x106AA070);
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x19A4C116);
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x1E376C08);
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x2748774C);
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x34B0BCB5);
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x391C0CB3);
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4ED8AA4A);
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5B9CCA4F);
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x682E6FF3);
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x748F82EE);
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0x78A5636F);
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0x84C87814);
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0x8CC70208);
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0x90BEFFFA);
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xA4506CEB);
P(v2, v3, v4, v5, v6, v7, v0, v1, RD14, 0xBEF9A3F7);
P(v1, v2, v3, v4, v5, v6, v7, v0, RD15, 0xC67178F2);
res.s0 = v0 + 0x6A09E667;
res.s1 = v1 + 0xBB67AE85;
res.s2 = v2 + 0x3C6EF372;
res.s3 = v3 + 0xA54FF53A;
res.s4 = v4 + 0x510E527F;
res.s5 = v5 + 0x9B05688C;
res.s6 = v6 + 0x1F83D9AB;
res.s7 = v7 + 0x5BE0CD19;
return (res);
}
inline uint8 sha256_round2(uint16 data,uint8 buf)
{
uint temp1;
uint8 res;
uint W0 = data.s0;
uint W1 = data.s1;
uint W2 = data.s2;
uint W3 = data.s3;
uint W4 = data.s4;
uint W5 = data.s5;
uint W6 = data.s6;
uint W7 = data.s7;
uint W8 = data.s8;
uint W9 = data.s9;
uint W10 = data.sA;
uint W11 = data.sB;
uint W12 = data.sC;
uint W13 = data.sD;
uint W14 = data.sE;
uint W15 = data.sF;
uint v0 = buf.s0;
uint v1 = buf.s1;
uint v2 = buf.s2;
uint v3 = buf.s3;
uint v4 = buf.s4;
uint v5 = buf.s5;
uint v6 = buf.s6;
uint v7 = buf.s7;
P(v0, v1, v2, v3, v4, v5, v6, v7, W0, 0x428A2F98);
P(v7, v0, v1, v2, v3, v4, v5, v6, W1, 0x71374491);
P(v6, v7, v0, v1, v2, v3, v4, v5, W2, 0xB5C0FBCF);
P(v5, v6, v7, v0, v1, v2, v3, v4, W3, 0xE9B5DBA5);
P(v4, v5, v6, v7, v0, v1, v2, v3, W4, 0x3956C25B);
P(v3, v4, v5, v6, v7, v0, v1, v2, W5, 0x59F111F1);
P(v2, v3, v4, v5, v6, v7, v0, v1, W6, 0x923F82A4);
P(v1, v2, v3, v4, v5, v6, v7, v0, W7, 0xAB1C5ED5);
P(v0, v1, v2, v3, v4, v5, v6, v7, W8, 0xD807AA98);
P(v7, v0, v1, v2, v3, v4, v5, v6, W9, 0x12835B01);
P(v6, v7, v0, v1, v2, v3, v4, v5, W10, 0x243185BE);
P(v5, v6, v7, v0, v1, v2, v3, v4, W11, 0x550C7DC3);
P(v4, v5, v6, v7, v0, v1, v2, v3, W12, 0x72BE5D74);
P(v3, v4, v5, v6, v7, v0, v1, v2, W13, 0x80DEB1FE);
P(v2, v3, v4, v5, v6, v7, v0, v1, W14, 0x9BDC06A7);
P(v1, v2, v3, v4, v5, v6, v7, v0, W15, 0xC19BF174);
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0xE49B69C1);
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0xEFBE4786);
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x0FC19DC6);
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x240CA1CC);
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x2DE92C6F);
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4A7484AA);
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5CB0A9DC);
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x76F988DA);
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x983E5152);
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA831C66D);
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xB00327C8);
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xBF597FC7);
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xC6E00BF3);
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD5A79147);
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0x06CA6351);
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x14292967);
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x27B70A85);
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x2E1B2138);
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x4D2C6DFC);
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x53380D13);
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x650A7354);
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x766A0ABB);
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x81C2C92E);
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x92722C85);
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0xA2BFE8A1);
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0xA81A664B);
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0xC24B8B70);
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0xC76C51A3);
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0xD192E819);
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xD6990624);
P(v2, v3, v4, v5, v6, v7, v0, v1, R14, 0xF40E3585);
P(v1, v2, v3, v4, v5, v6, v7, v0, R15, 0x106AA070);
P(v0, v1, v2, v3, v4, v5, v6, v7, R0, 0x19A4C116);
P(v7, v0, v1, v2, v3, v4, v5, v6, R1, 0x1E376C08);
P(v6, v7, v0, v1, v2, v3, v4, v5, R2, 0x2748774C);
P(v5, v6, v7, v0, v1, v2, v3, v4, R3, 0x34B0BCB5);
P(v4, v5, v6, v7, v0, v1, v2, v3, R4, 0x391C0CB3);
P(v3, v4, v5, v6, v7, v0, v1, v2, R5, 0x4ED8AA4A);
P(v2, v3, v4, v5, v6, v7, v0, v1, R6, 0x5B9CCA4F);
P(v1, v2, v3, v4, v5, v6, v7, v0, R7, 0x682E6FF3);
P(v0, v1, v2, v3, v4, v5, v6, v7, R8, 0x748F82EE);
P(v7, v0, v1, v2, v3, v4, v5, v6, R9, 0x78A5636F);
P(v6, v7, v0, v1, v2, v3, v4, v5, R10, 0x84C87814);
P(v5, v6, v7, v0, v1, v2, v3, v4, R11, 0x8CC70208);
P(v4, v5, v6, v7, v0, v1, v2, v3, R12, 0x90BEFFFA);
P(v3, v4, v5, v6, v7, v0, v1, v2, R13, 0xA4506CEB);
P(v2, v3, v4, v5, v6, v7, v0, v1, RD14, 0xBEF9A3F7);
P(v1, v2, v3, v4, v5, v6, v7, v0, RD15, 0xC67178F2);
res.s0 = SWAP32(v0 + buf.s0);
res.s1 = SWAP32(v1 + buf.s1);
res.s2 = SWAP32(v2 + buf.s2);
res.s3 = SWAP32(v3 + buf.s3);
res.s4 = SWAP32(v4 + buf.s4);
res.s5 = SWAP32(v5 + buf.s5);
res.s6 = SWAP32(v6 + buf.s6);
res.s7 = SWAP32(v7 + buf.s7);
return (res);
}
inline uint8 sha256_80(uint* data,uint nonce)
{
uint8 buf = sha256_round1( ((uint16*)data)[0]);
uint in[16];
for (int i = 0; i<3; i++) { in[i] = SWAP32(data[i + 16]); }
in[3] = SWAP32(nonce);
in[4] = 0x80000000;
in[15] = 0x280;
for (int i = 5; i<15; i++) { in[i] = 0; }
return(sha256_round2(((uint16*)in)[0], buf));
}
inline uint8 sha256_64(uint* data)
{
uint8 buf=sha256_round1(((uint16*)data)[0]);
uint in[16];
for (int i = 1; i<15; i++) { in[i] = 0; }
in[0] = 0x80000000;
in[15] = 0x200;
return(sha256_round2(((uint16*)in)[0],buf));
}
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void search(__global const uchar* restrict input, __global uint* restrict output, __global uchar *padcache, const uint target)
{
__global uchar *hashbuffer = (__global uchar *)(padcache + (1024*128 * (get_global_id(0) % MAX_GLOBAL_THREADS)));
uint data[20];
((uint16 *)data)[0] = ((__global const uint16 *)input)[0];
((uint4 *)data)[4] = ((__global const uint4 *)input)[4];
((__global uint8*)hashbuffer)[0] = sha256_80(data,get_global_id(0));
((__global uint8*)hashbuffer)[1] = 0;
for (int i = 2; i < 4096 - 1; i++)
{
uint randmax = i * 32 - 4;
uint randseed[16];
uint randbuffer[16];
uint joint[16];
((uint8*)randseed)[0] = ((__global uint8*)hashbuffer)[i - 2];
((uint8*)randseed)[1] = ((__global uint8*)hashbuffer)[i - 1];
if (i>4)
{
((uint8*)randseed)[0] ^= ((__global uint8*)hashbuffer)[i - 4];
((uint8*)randseed)[1] ^= ((__global uint8*)hashbuffer)[i - 3];
}
((uint16*)randbuffer)[0] = xor_salsa8(((uint16*)randseed)[0]);
((uint8*)joint)[0] = ((__global uint8*)hashbuffer)[i - 1];
for (int j = 0; j < 8; j++)
{
uint rand = randbuffer[j] % (randmax - 32);
((uchar4*)joint)[(j + 8)].x =((__global uchar*)(hashbuffer))[0+rand];
((uchar4*)joint)[(j + 8)].y =((__global uchar*)(hashbuffer))[1+rand];
((uchar4*)joint)[(j + 8)].z =((__global uchar*)(hashbuffer))[2+rand];
((uchar4*)joint)[(j + 8)].w =((__global uchar*)(hashbuffer))[3+rand];
}
((__global uint8*)(hashbuffer))[i] = sha256_64(joint);
(( uint8*)randseed)[0] = ((__global uint8*)(hashbuffer))[i - 1];
(( uint8*)randseed)[1] = ((__global uint8*)(hashbuffer))[i];
if (i>4)
{
((uint8*)randseed)[0] ^= ((__global uint8*)(hashbuffer))[i - 4];
((uint8*)randseed)[1] ^= ((__global uint8*)(hashbuffer))[i - 3];
}
((uint16*)randbuffer)[0] = xor_salsa8(((uint16*)randseed)[0]);
for (int j = 0; j < 32; j += 2)
{
uint rand = randbuffer[j / 2] % randmax;
uchar4 Tohere;
Tohere.x = ((__global uchar*)(hashbuffer))[randmax + j];
Tohere.y = ((__global uchar*)(hashbuffer))[randmax + j + 1];
Tohere.z = ((__global uchar*)(hashbuffer))[randmax + j + 2];
Tohere.w = ((__global uchar*)(hashbuffer))[randmax + j + 3];
((__global uchar*)(hashbuffer))[rand] = Tohere.x;
((__global uchar*)(hashbuffer))[rand+1] = Tohere.y;
((__global uchar*)(hashbuffer))[rand+2] = Tohere.z;
((__global uchar*)(hashbuffer))[rand+3] = Tohere.w;
}
} // main loop
if( ((__global uint *)hashbuffer)[7] <= (target)) {output[atomic_inc(output + 0xFF)] = SWAP32(get_global_id(0));
//printf("gpu hashbuffer %08x nonce %08x\n",((__global uint *)hashbuffer)[7] ,SWAP32(get_global_id(0)));
}
/////////////////////////////////////////////////////////////////
}

146
ocl.c

@ -17,11 +17,11 @@ @@ -17,11 +17,11 @@
#include <sys/types.h>
#ifdef WIN32
#include <winsock2.h>
#include <winsock2.h>
#else
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#endif
#include <time.h>
@ -35,6 +35,7 @@ @@ -35,6 +35,7 @@
#include "ocl/build_kernel.h"
#include "ocl/binary_kernel.h"
#include "algorithm/neoscrypt.h"
#include "algorithm/pluck.h"
/* FIXME: only here for global config vars, replace with configuration.h
* or similar as soon as config is in a struct instead of littered all
@ -198,7 +199,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -198,7 +199,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
struct cgpu_info *cgpu = &gpus[gpu];
cl_platform_id platform = NULL;
char pbuff[256];
build_kernel_data *build_data = (build_kernel_data *) alloca(sizeof(struct _build_kernel_data));
build_kernel_data *build_data = (build_kernel_data *)alloca(sizeof(struct _build_kernel_data));
cl_uint preferred_vwidth;
cl_device_id *devices;
cl_uint numDevices;
@ -210,7 +211,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -210,7 +211,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
numDevices = clDevicesNum();
if (numDevices <= 0 ) return NULL;
if (numDevices <= 0) return NULL;
devices = (cl_device_id *)alloca(numDevices*sizeof(cl_device_id));
@ -284,7 +285,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -284,7 +285,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
clState->compute_shaders = compute_units * 64;
applog(LOG_DEBUG, "Max shaders calculated %d", (int)(clState->compute_shaders));
status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_MEM_ALLOC_SIZE , sizeof(cl_ulong), (void *)&cgpu->max_alloc, NULL);
status = clGetDeviceInfo(devices[gpu], CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), (void *)&cgpu->max_alloc, NULL);
if (status != CL_SUCCESS) {
applog(LOG_ERR, "Error %d: Failed to clGetDeviceInfo when trying to get CL_DEVICE_MAX_MEM_ALLOC_SIZE", status);
return NULL;
@ -299,7 +300,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -299,7 +300,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
char filename[255];
char strbuf[32];
sprintf(strbuf, "%s.cl", (!empty_string(cgpu->algorithm.kernelfile)?cgpu->algorithm.kernelfile:cgpu->algorithm.name));
sprintf(strbuf, "%s.cl", (!empty_string(cgpu->algorithm.kernelfile) ? cgpu->algorithm.kernelfile : cgpu->algorithm.name));
strcpy(filename, strbuf);
applog(LOG_DEBUG, "Using source file %s", filename);
@ -333,7 +334,8 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -333,7 +334,8 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
if (!cgpu->opt_lg) {
applog(LOG_DEBUG, "GPU %d: selecting lookup gap of 2", gpu);
cgpu->lookup_gap = 2;
} else
}
else
cgpu->lookup_gap = cgpu->opt_lg;
if ((strcmp(cgpu->algorithm.name, "zuikkis") == 0) && (cgpu->lookup_gap != 2)) {
@ -359,16 +361,16 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -359,16 +361,16 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
type = 2;
}
else if (cgpu->xintensity > 0) {
glob_thread_count = clState->compute_shaders * ((cgpu->algorithm.xintensity_shift)?(1UL << (cgpu->algorithm.xintensity_shift + cgpu->xintensity)):cgpu->xintensity);
glob_thread_count = clState->compute_shaders * ((cgpu->algorithm.xintensity_shift) ? (1UL << (cgpu->algorithm.xintensity_shift + cgpu->xintensity)) : cgpu->xintensity);
max_int = cgpu->xintensity;
type = 1;
}
else {
glob_thread_count = 1UL << (cgpu->algorithm.intensity_shift + cgpu->intensity);
max_int = ((cgpu->dynamic)?MAX_INTENSITY:cgpu->intensity);
max_int = ((cgpu->dynamic) ? MAX_INTENSITY : cgpu->intensity);
}
glob_thread_count = ((glob_thread_count < cgpu->work_size)?cgpu->work_size:glob_thread_count);
glob_thread_count = ((glob_thread_count < cgpu->work_size) ? cgpu->work_size : glob_thread_count);
// if TC * scratchbuf size is too big for memory... reduce to max
if ((glob_thread_count * NEOSCRYPT_SCRATCHBUF_SIZE) >= (uint64_t)cgpu->max_alloc) {
@ -429,10 +431,97 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -429,10 +431,97 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency));
} else if (!cgpu->opt_tc) {
}
/////////////////////////////////// pluck
// neoscrypt TC
else if (!safe_cmp(cgpu->algorithm.name, "pluck") && !cgpu->opt_tc) {
size_t glob_thread_count;
long max_int;
unsigned char type = 0;
// determine which intensity type to use
if (cgpu->rawintensity > 0) {
glob_thread_count = cgpu->rawintensity;
max_int = glob_thread_count;
type = 2;
}
else if (cgpu->xintensity > 0) {
glob_thread_count = clState->compute_shaders * ((cgpu->algorithm.xintensity_shift) ? (1UL << (cgpu->algorithm.xintensity_shift + cgpu->xintensity)) : cgpu->xintensity);
max_int = cgpu->xintensity;
type = 1;
}
else {
glob_thread_count = 1UL << (cgpu->algorithm.intensity_shift + cgpu->intensity);
max_int = ((cgpu->dynamic) ? MAX_INTENSITY : cgpu->intensity);
}
glob_thread_count = ((glob_thread_count < cgpu->work_size) ? cgpu->work_size : glob_thread_count);
// if TC * scratchbuf size is too big for memory... reduce to max
if ((glob_thread_count * PLUCK_SCRATCHBUF_SIZE) >= (uint64_t)cgpu->max_alloc) {
/* Selected intensity will not run on this GPU. Not enough memory.
* Adapt the memory setting. */
// depending on intensity type used, reduce the intensity until it fits into the GPU max_alloc
switch (type) {
//raw intensity
case 2:
while ((glob_thread_count * PLUCK_SCRATCHBUF_SIZE) > (uint64_t)cgpu->max_alloc) {
--glob_thread_count;
}
max_int = glob_thread_count;
cgpu->rawintensity = glob_thread_count;
break;
//x intensity
case 1:
glob_thread_count = cgpu->max_alloc / PLUCK_SCRATCHBUF_SIZE;
max_int = glob_thread_count / clState->compute_shaders;
while (max_int && ((clState->compute_shaders * (1UL << max_int)) > glob_thread_count)) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_XINTENSITY) {
applog(LOG_ERR, "GPU %d: Max xintensity is below minimum.", gpu);
max_int = MIN_XINTENSITY;
}
cgpu->xintensity = max_int;
glob_thread_count = clState->compute_shaders * (1UL << max_int);
break;
default:
glob_thread_count = cgpu->max_alloc / PLUCK_SCRATCHBUF_SIZE;
while (max_int && ((1UL << max_int) & glob_thread_count) == 0) {
--max_int;
}
/* Check if max_intensity is >0. */
if (max_int < MIN_INTENSITY) {
applog(LOG_ERR, "GPU %d: Max intensity is below minimum.", gpu);
max_int = MIN_INTENSITY;
}
cgpu->intensity = max_int;
glob_thread_count = 1UL << max_int;
break;
}
}
// TC is glob thread count
cgpu->thread_concurrency = glob_thread_count;
applog(LOG_DEBUG, "GPU %d: computing max. global thread count to %u", gpu, (unsigned)(cgpu->thread_concurrency));
}
else if (!cgpu->opt_tc) {
unsigned int sixtyfours;
sixtyfours = cgpu->max_alloc / 131072 / 64 / (algorithm->n/1024) - 1;
sixtyfours = cgpu->max_alloc / 131072 / 64 / (algorithm->n / 1024) - 1;
cgpu->thread_concurrency = sixtyfours * 64;
if (cgpu->shaders && cgpu->thread_concurrency > cgpu->shaders) {
cgpu->thread_concurrency -= cgpu->thread_concurrency % cgpu->shaders;
@ -442,7 +531,8 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -442,7 +531,8 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
}
}
applog(LOG_DEBUG, "GPU %d: selecting thread concurrency of %d", gpu, (int)(cgpu->thread_concurrency));
} else {
}
else {
cgpu->thread_concurrency = cgpu->opt_tc;
}
@ -470,7 +560,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -470,7 +560,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
build_data->opencl_version = get_opencl_version(devices[gpu]);
build_data->patch_bfi = needs_bfi_patch(build_data);
strcpy(build_data->binary_filename, (!empty_string(cgpu->algorithm.kernelfile)?cgpu->algorithm.kernelfile:cgpu->algorithm.name));
strcpy(build_data->binary_filename, (!empty_string(cgpu->algorithm.kernelfile) ? cgpu->algorithm.kernelfile : cgpu->algorithm.name));
strcat(build_data->binary_filename, name);
if (clState->goffset)
strcat(build_data->binary_filename, "g");
@ -495,7 +585,8 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -495,7 +585,8 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
clReleaseProgram(clState->program);
clState->program = load_opencl_binary_kernel(build_data);
}
} else {
}
else {
if (build_data->patch_bfi)
quit(1, "Could not save kernel to file, but it is necessary to apply BFI patch");
}
@ -519,7 +610,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -519,7 +610,7 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
unsigned int i;
char kernel_name[9]; // max: search99 + 0x0
clState->extra_kernels = (cl_kernel *)malloc(sizeof(cl_kernel) * clState->n_extra_kernels);
clState->extra_kernels = (cl_kernel *)malloc(sizeof(cl_kernel)* clState->n_extra_kernels);
for (i = 0; i < clState->n_extra_kernels; i++) {
snprintf(kernel_name, 9, "%s%d", "search", i + 1);
@ -546,13 +637,26 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg @@ -546,13 +637,26 @@ _clState *initCl(unsigned int gpu, char *name, size_t nameSize, algorithm_t *alg
applog(LOG_DEBUG, "Neoscrypt buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
// scrypt/n-scrypt
} else {
}
else if (!safe_cmp(algorithm->name, "pluck")) {
/* The scratch/pad-buffer needs 32kBytes memory per thread. */
bufsize = PLUCK_SCRATCHBUF_SIZE * cgpu->thread_concurrency;
/* This is the input buffer. For pluck this is guaranteed to be
* 80 bytes only. */
readbufsize = 80;
applog(LOG_DEBUG, "pluck buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
// scrypt/n-scrypt
}
else {
size_t ipt = (algorithm->n / cgpu->lookup_gap + (algorithm->n % cgpu->lookup_gap > 0));
bufsize = 128 * ipt * cgpu->thread_concurrency;
applog(LOG_DEBUG, "Scrypt buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
}
} else {
bufsize = (size_t) algorithm->rw_buffer_size;
}
else {
bufsize = (size_t)algorithm->rw_buffer_size;
applog(LOG_DEBUG, "Buffer sizes: %lu RW, %lu R", (unsigned long)bufsize, (unsigned long)readbufsize);
}

2
sgminer.c

@ -7080,7 +7080,7 @@ bool test_nonce(struct work *work, uint32_t nonce) @@ -7080,7 +7080,7 @@ bool test_nonce(struct work *work, uint32_t nonce)
rebuild_nonce(work, nonce);
// for Neoscrypt, the diff1targ value is in work->target
if (!safe_cmp(work->pool->algorithm.name, "neoscrypt")) {
if (!safe_cmp(work->pool->algorithm.name, "neoscrypt") || !safe_cmp(work->pool->algorithm.name, "pluck")) {
diff1targ = ((uint32_t *)work->target)[7];
}
else {

2
winbuild/sgminer.vcxproj

@ -266,6 +266,7 @@ @@ -266,6 +266,7 @@
<ClCompile Include="..\algorithm\lyra2.c" />
<ClCompile Include="..\algorithm\lyra2re.c" />
<ClCompile Include="..\algorithm\neoscrypt.c" />
<ClCompile Include="..\algorithm\pluck.c" />
<ClCompile Include="..\algorithm\sponge.c" />
<ClCompile Include="..\algorithm\talkcoin.c" />
<ClCompile Include="..\algorithm\whirlpoolx.c" />
@ -331,6 +332,7 @@ @@ -331,6 +332,7 @@
<ClInclude Include="..\algorithm\lyra2.h" />
<ClInclude Include="..\algorithm\lyra2re.h" />
<ClInclude Include="..\algorithm\neoscrypt.h" />
<ClInclude Include="..\algorithm\pluck.h" />
<ClInclude Include="..\algorithm\sponge.h" />
<ClInclude Include="..\algorithm\talkcoin.h" />
<ClInclude Include="..\algorithm\whirlpoolx.h" />

6
winbuild/sgminer.vcxproj.filters

@ -218,6 +218,9 @@ @@ -218,6 +218,9 @@
<ClCompile Include="..\algorithm\sponge.c">
<Filter>Source Files\algorithm</Filter>
</ClCompile>
<ClCompile Include="..\algorithm\pluck.c">
<Filter>Source Files\algorithm</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\adl.h">
@ -415,6 +418,9 @@ @@ -415,6 +418,9 @@
<ClInclude Include="..\algorithm\sponge.h">
<Filter>Header Files\algorithm</Filter>
</ClInclude>
<ClInclude Include="..\algorithm\pluck.h">
<Filter>Header Files\algorithm</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<None Include="README.txt" />

Loading…
Cancel
Save