|
|
|
@ -194,10 +194,10 @@ W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
@@ -194,10 +194,10 @@ W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22));
|
|
|
|
|
|
|
|
|
|
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); |
|
|
|
|
W[2]+=fw2; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[18]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
@ -205,38 +205,38 @@ W[21]+=Ma(W[16],W[22],W[23]);
@@ -205,38 +205,38 @@ W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
|
|
|
|
|
|
W[3]=nonce; |
|
|
|
|
W[3]+=fw3; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[19]; |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[4]+=0x80000000; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[20]; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[21]; |
|
|
|
|
|
|
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[21]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[6]+=0x00000280U; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[17]+=K[22]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
@ -244,19 +244,20 @@ W[17]+=Ma(W[20],W[18],W[19]);
@@ -244,19 +244,20 @@ W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
|
|
|
|
|
|
W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[7]+=fw0; |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[23]; |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
|
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[8]+=fw1; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[23]+=K[24]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
@ -264,19 +265,20 @@ W[23]+=Ma(W[18],W[16],W[17]);
@@ -264,19 +265,20 @@ W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
|
|
|
|
|
|
W[9]=W[2]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[25]; |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
|
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
W[10]=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[26]; |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
@ -284,19 +286,19 @@ W[21]+=Ma(W[16],W[22],W[23]);
@@ -284,19 +286,19 @@ W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
|
|
|
|
|
|
W[11]=W[4]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[27]; |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
W[12]=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[28]; |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
@ -304,20 +306,20 @@ W[19]+=Ma(W[22],W[20],W[21]);
@@ -304,20 +306,20 @@ W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
|
|
|
|
|
|
W[13]=W[6]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[29]; |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
W[14]=0x00a00055U; |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
@ -325,21 +327,21 @@ W[17]+=Ma(W[20],W[18],W[19]);
@@ -325,21 +327,21 @@ W[17]+=Ma(W[20],W[18],W[19]);
|
|
|
|
|
|
|
|
|
|
W[15]=fw15; |
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[31]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
W[0]=fw01r; |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
@ -349,10 +351,10 @@ W[1]=fw1;
@@ -349,10 +351,10 @@ W[1]=fw1;
|
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[33]; |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
@ -874,11 +876,11 @@ W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
@@ -874,11 +876,11 @@ W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22));
|
|
|
|
|
|
|
|
|
|
W[8]=0x80000000; |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[24]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
@ -886,19 +888,19 @@ W[23]+=Ma(W[18],W[16],W[17]);
@@ -886,19 +888,19 @@ W[23]+=Ma(W[18],W[16],W[17]);
|
|
|
|
|
|
|
|
|
|
W[9]=W[2]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[25]; |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
W[10]=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[26]; |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
@ -906,19 +908,19 @@ W[21]+=Ma(W[16],W[22],W[23]);
@@ -906,19 +908,19 @@ W[21]+=Ma(W[16],W[22],W[23]);
|
|
|
|
|
|
|
|
|
|
W[11]=W[4]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[27]; |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
W[12]=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[19]+=K[28]; |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
@ -926,20 +928,20 @@ W[19]+=Ma(W[22],W[20],W[21]);
@@ -926,20 +928,20 @@ W[19]+=Ma(W[22],W[20],W[21]);
|
|
|
|
|
|
|
|
|
|
W[13]=W[6]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[29]; |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
W[14]=0x00400022U; |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[30]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
@ -949,295 +951,324 @@ W[15]=0x00000100U;
@@ -949,295 +951,324 @@ W[15]=0x00000100U;
|
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[31]; |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=K[32]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
|
|
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[33]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=K[34]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
|
|
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[35]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=K[36]; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
|
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[37]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=K[38]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
|
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[39]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[40]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
|
|
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[41]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=K[42]; |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
|
|
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[43]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[19]+=K[44]; |
|
|
|
|
W[19]+=W[12]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
|
|
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); |
|
|
|
|
W[13]+=W[6]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[45]; |
|
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
|
|
|
W[18]+=W[13]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
|
|
|
W[14]+=W[7]; |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
|
|
|
W[17]+=K[46]; |
|
|
|
|
W[17]+=W[14]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
|
|
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
|
|
|
W[15]+=W[8]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[47]; |
|
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
|
|
|
W[16]+=W[15]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
|
|
|
W[0]+=W[9]; |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
|
|
|
W[23]+=K[48]; |
|
|
|
|
W[23]+=W[0]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
|
|
|
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
|
|
|
W[1]+=W[10]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[49]; |
|
|
|
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
|
|
|
W[22]+=W[1]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
|
|
|
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
|
|
|
W[2]+=W[11]; |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
|
|
|
W[21]+=K[50]; |
|
|
|
|
W[21]+=W[2]; |
|
|
|
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
|
|
|
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
|
|
|
W[3]+=W[12]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[51]; |
|
|
|
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
|
|
|
W[20]+=W[3]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
|
|
|
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
|
|
|
W[4]+=W[13]; |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[19]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
|
|
|
W[19]+=K[52]; |
|
|
|
|
W[19]+=W[4]; |
|
|
|
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
|
|
|
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
|
|
|
W[5]+=W[14]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
|
|
|
W[18]+=ch(W[23],W[16],W[17]); |
|
|
|
|
W[18]+=K[53]; |
|
|
|
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
|
|
|
W[18]+=W[5]; |
|
|
|
|
W[22]+=W[18]; |
|
|
|
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
|
|
|
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
|
|
|
W[6]+=W[15]; |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
|
|
|
W[17]+=ch(W[22],W[23],W[16]); |
|
|
|
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
|
|
|
W[17]+=K[54]; |
|
|
|
|
W[17]+=W[6]; |
|
|
|
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
|
|
|
W[21]+=W[17]; |
|
|
|
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
|
|
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
|
|
|
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
|
|
|
W[7]+=W[0]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
|
|
|
W[16]+=ch(W[21],W[22],W[23]); |
|
|
|
|
W[16]+=K[55]; |
|
|
|
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
|
|
|
W[16]+=W[7]; |
|
|
|
|
W[20]+=W[16]; |
|
|
|
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
|
|
|
W[8]+=W[1]; |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
|
|
|
W[23]+=ch(W[20],W[21],W[22]); |
|
|
|
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
|
|
|
W[23]+=K[56]; |
|
|
|
|
W[23]+=W[8]; |
|
|
|
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
|
W[19]+=W[23]; |
|
|
|
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
|
|
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
|
|
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
|
|
|
W[9]+=W[2]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
|
|
|
W[22]+=ch(W[19],W[20],W[21]); |
|
|
|
|
W[22]+=K[57]; |
|
|
|
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
|
|
|
W[22]+=W[9]; |
|
|
|
|
|
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
|
|
|
W[10]+=W[3]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
W[18]+=W[22]; |
|
|
|
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
|
|
|
W[21]+=ch(W[18],W[19],W[20]); |
|
|
|
|
W[21]+=K[58]; |
|
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
|
|
|
W[21]+=W[10]; |
|
|
|
|
|
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
|
|
|
W[11]+=W[4]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
W[17]+=W[21]; |
|
|
|
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
|
|
|
W[20]+=ch(W[17],W[18],W[19]); |
|
|
|
|
W[20]+=K[59]; |
|
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
|
|
|
W[20]+=W[11]; |
|
|
|
|
|
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
|
|
|
W[12]+=W[5]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[23]+=W[12]; |
|
|
|
|
W[16]+=W[20]; |
|
|
|
|
W[23]+=W[19]; |
|
|
|
|
W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
|
|
|
W[23]+=ch(W[16],W[17],W[18]); |
|
|
|
|
W[23]+=K[60]; |
|
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
|
|
|
W[23]+=W[12]; |
|
|
|
|
|
|
|
|
|
#define FOUND (0x80) |
|
|
|
|
#define NFLAG (0x7F) |
|
|
|
|