mirror of https://github.com/GOSTSec/sgminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1302 lines
38 KiB
1302 lines
38 KiB
// -ck modified kernel taken from Phoenix taken from poclbm, with aspects of |
|
// phatk and others. |
|
// Modified version copyright 2011-2012 Con Kolivas |
|
|
|
// This file is taken and modified from the public-domain poclbm project, and |
|
// we have therefore decided to keep it public-domain in Phoenix. |
|
|
|
#ifdef VECTORS4 |
|
typedef uint4 u; |
|
#elif defined VECTORS2 |
|
typedef uint2 u; |
|
#else |
|
typedef uint u; |
|
#endif |
|
|
|
__constant uint K[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
|
|
// This part is not from the stock poclbm kernel. It's part of an optimization |
|
// added in the Phoenix Miner. |
|
|
|
// Some AMD devices have a BFI_INT opcode, which behaves exactly like the |
|
// SHA-256 ch function, but provides it in exactly one instruction. If |
|
// detected, use it for ch. Otherwise, construct ch out of simpler logical |
|
// primitives. |
|
|
|
#ifdef BITALIGN |
|
#pragma OPENCL EXTENSION cl_amd_media_ops : enable |
|
#define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y) |
|
#ifdef BFI_INT |
|
// Well, slight problem... It turns out BFI_INT isn't actually exposed to |
|
// OpenCL (or CAL IL for that matter) in any way. However, there is |
|
// a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via |
|
// amd_bytealign, takes the same inputs, and provides the same output. |
|
// We can use that as a placeholder for BFI_INT and have the application |
|
// patch it after compilation. |
|
|
|
// This is the BFI_INT function |
|
#define ch(x, y, z) amd_bytealign(x, y, z) |
|
|
|
// Ma can also be implemented in terms of BFI_INT... |
|
#define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) ) |
|
#else // BFI_INT |
|
// Later SDKs optimise this to BFI INT without patching and GCN |
|
// actually fails if manually patched with BFI_INT |
|
|
|
#define ch(x, y, z) bitselect((u)z, (u)y, (u)x) |
|
#define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x) |
|
#endif |
|
#else // BITALIGN |
|
#define ch(x, y, z) (z ^ (x & (y ^ z))) |
|
#define Ma(x, y, z) ((x & z) | (y & (x | z))) |
|
#define rotr(x, y) rotate((u)x, (u)(32 - y)) |
|
#endif |
|
|
|
// AMD's KernelAnalyzer throws errors compiling the kernel if we use |
|
// amd_bytealign on constants with vectors enabled, so we use this to avoid |
|
// problems. (this is used 4 times, and likely optimized out by the compiler.) |
|
#define Ma2(x, y, z) ((y & z) | (x & (y | z))) |
|
|
|
__kernel void search(const uint state0, const uint state1, const uint state2, const uint state3, |
|
const uint state4, const uint state5, const uint state6, const uint state7, |
|
const uint b1, const uint c1, const uint d1, |
|
const uint f1, const uint g1, const uint h1, |
|
const u base, |
|
const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2, |
|
__global uint * output) |
|
{ |
|
u W[24]; |
|
//u Vals[8]; Now put at W[16] to be in same array |
|
|
|
#ifdef VECTORS4 |
|
const u nonce = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u); |
|
#elif defined VECTORS2 |
|
const u nonce = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u); |
|
#else |
|
const u nonce = base + get_local_id(0) + get_group_id(0) * (WORKSIZE); |
|
#endif |
|
|
|
W[20]=fcty_e; |
|
W[20]+=nonce; |
|
|
|
W[16]=W[20]; |
|
W[16]+=state0; |
|
|
|
W[19]=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=d1; |
|
W[19]+=ch(W[16],b1,c1); |
|
W[19]+=K[4]; |
|
W[19]+=0x80000000; |
|
|
|
W[23]=W[19]; |
|
W[23]+=h1; |
|
W[20]+=fcty_e2; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
|
|
W[18]=c1; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],b1); |
|
W[18]+=K[5]; |
|
|
|
W[22]=W[18]; |
|
W[22]+=g1; |
|
W[19]+=Ma2(g1,W[20],f1); |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[17]=b1; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[6]; |
|
|
|
W[21]=W[17]; |
|
W[21]+=f1; |
|
W[18]+=Ma2(f1,W[19],W[20]); |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[7]; |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[8]; |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[9]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[10]; |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[11]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[12]; |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[13]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[14]; |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[15]; |
|
W[16]+=0x00000280U; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[16]; |
|
W[23]+=fw0; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[17]; |
|
W[22]+=fw1; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U)); |
|
W[2]+=fw2; |
|
W[21]+=W[2]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[18]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[3]=nonce; |
|
W[3]+=fw3; |
|
W[20]+=W[3]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[19]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
W[4]+=0x80000000; |
|
W[19]+=W[4]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[20]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
W[18]+=W[5]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[21]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
W[6]+=0x00000280U; |
|
W[17]+=W[6]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[22]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
W[7]+=fw0; |
|
W[16]+=W[7]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[23]; |
|
|
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
W[8]+=fw1; |
|
W[23]+=W[8]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[24]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[9]=W[2]; |
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
W[22]+=W[9]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[25]; |
|
|
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[10]=W[3]; |
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
W[21]+=W[10]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[26]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[11]=W[4]; |
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
W[20]+=W[11]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[27]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[12]=W[5]; |
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
W[19]+=W[12]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[28]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[13]=W[6]; |
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
W[18]+=W[13]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[29]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[14]=0x00a00055U; |
|
W[14]+=W[7]; |
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
W[17]+=W[14]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[30]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[15]=fw15; |
|
W[15]+=W[8]; |
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
W[16]+=W[15]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[31]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[0]=fw01r; |
|
W[0]+=W[9]; |
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
W[23]+=W[0]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[32]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[1]=fw1; |
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
W[1]+=W[10]; |
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
W[22]+=W[1]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[33]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
W[2]+=W[11]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
W[21]+=K[34]; |
|
W[21]+=W[2]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
W[3]+=W[12]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[35]; |
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
W[20]+=W[3]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
W[4]+=W[13]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
W[19]+=K[36]; |
|
W[19]+=W[4]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
W[5]+=W[14]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[37]; |
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
W[18]+=W[5]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
W[6]+=W[15]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
W[17]+=K[38]; |
|
W[17]+=W[6]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
W[7]+=W[0]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[39]; |
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
W[16]+=W[7]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
W[8]+=W[1]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
W[23]+=K[40]; |
|
W[23]+=W[8]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
W[9]+=W[2]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[41]; |
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
W[22]+=W[9]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
W[10]+=W[3]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
W[21]+=K[42]; |
|
W[21]+=W[10]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
W[11]+=W[4]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[43]; |
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
W[20]+=W[11]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
W[12]+=W[5]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
W[19]+=K[44]; |
|
W[19]+=W[12]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); |
|
W[13]+=W[6]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[45]; |
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
W[18]+=W[13]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
W[14]+=W[7]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
W[17]+=K[46]; |
|
W[17]+=W[14]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
W[15]+=W[8]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[47]; |
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
W[16]+=W[15]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
W[0]+=W[9]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
W[23]+=K[48]; |
|
W[23]+=W[0]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
W[1]+=W[10]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[49]; |
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
W[22]+=W[1]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
W[2]+=W[11]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
W[21]+=K[50]; |
|
W[21]+=W[2]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
W[3]+=W[12]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[51]; |
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
W[20]+=W[3]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
W[4]+=W[13]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
W[19]+=K[52]; |
|
W[19]+=W[4]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
W[5]+=W[14]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[53]; |
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
W[18]+=W[5]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
W[6]+=W[15]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
W[17]+=K[54]; |
|
W[17]+=W[6]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
W[7]+=W[0]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[55]; |
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
W[16]+=W[7]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
W[8]+=W[1]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
W[23]+=K[56]; |
|
W[23]+=W[8]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
W[9]+=W[2]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[57]; |
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
W[22]+=W[9]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
W[10]+=W[3]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
W[21]+=K[58]; |
|
W[21]+=W[10]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
W[11]+=W[4]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[59]; |
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
W[20]+=W[11]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
W[12]+=W[5]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
W[19]+=K[60]; |
|
W[19]+=W[12]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); |
|
W[13]+=W[6]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[61]; |
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
W[18]+=W[13]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
W[14]+=W[7]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
W[17]+=K[62]; |
|
W[17]+=W[14]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
W[15]+=W[8]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[63]; |
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
W[16]+=W[15]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
|
|
W[0]=W[16]; |
|
|
|
W[7]=state7; |
|
W[7]+=W[23]; |
|
|
|
W[23]=0xb0edbdd0; |
|
W[23]+=K[0]; |
|
W[0]+=state0; |
|
W[23]+=W[0]; |
|
|
|
W[3]=state3; |
|
W[3]+=W[19]; |
|
|
|
W[19]=0xa54ff53a; |
|
W[19]+=W[23]; |
|
|
|
W[1]=W[17]; |
|
W[1]+=state1; |
|
|
|
W[6]=state6; |
|
W[6]+=W[22]; |
|
|
|
W[22]=0x1f83d9abU; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=(0x9b05688cU^(W[19]&0xca0b3af3U)); |
|
W[22]+=K[1]; |
|
|
|
W[2]=state2; |
|
W[2]+=W[18]; |
|
|
|
W[18]=0x3c6ef372U; |
|
W[22]+=W[1]; |
|
W[18]+=W[22]; |
|
W[23]+=0x08909ae5U; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[5]=state5; |
|
W[5]+=W[21]; |
|
|
|
W[21]=0x9b05688cU; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],0x510e527fU); |
|
W[21]+=K[2]; |
|
W[21]+=W[2]; |
|
|
|
W[17]=0xbb67ae85U; |
|
W[17]+=W[21]; |
|
W[22]+=Ma2(0xbb67ae85U,W[23],0x6a09e667U); |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
|
|
W[4]=state4; |
|
W[4]+=W[20]; |
|
|
|
W[20]=0x510e527fU; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[3]; |
|
W[20]+=W[3]; |
|
|
|
W[16]=W[20]; |
|
W[16]+=0x6a09e667U; |
|
W[21]+=Ma2(0x6a09e667U,W[22],W[23]); |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[4]; |
|
W[19]+=W[4]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[5]; |
|
W[18]+=W[5]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[6]; |
|
W[17]+=W[6]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[7]; |
|
W[16]+=W[7]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[8]; |
|
W[23]+=0x80000000; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[9]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[10]; |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[11]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[12]; |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[13]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[14]; |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[15]; |
|
W[16]+=0x00000100U; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
W[23]+=K[16]; |
|
W[23]+=W[0]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
W[1]+=0x00a00000U; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[17]; |
|
W[22]+=W[1]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[18]; |
|
W[21]+=W[2]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[19]; |
|
W[20]+=W[3]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[20]; |
|
W[19]+=W[4]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[21]; |
|
W[18]+=W[5]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
W[6]+=0x00000100U; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
W[17]+=K[22]; |
|
W[17]+=W[6]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
W[7]+=0x11002000U; |
|
W[7]+=W[0]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[23]; |
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
W[16]+=W[7]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[8]=0x80000000; |
|
W[8]+=W[1]; |
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
W[23]+=W[8]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[24]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[9]=W[2]; |
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
W[22]+=W[9]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[25]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[10]=W[3]; |
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
W[21]+=W[10]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[26]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[11]=W[4]; |
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
W[20]+=W[11]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[27]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[12]=W[5]; |
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
W[19]+=W[12]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[28]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[13]=W[6]; |
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
W[18]+=W[13]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[29]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[14]=0x00400022U; |
|
W[14]+=W[7]; |
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
W[17]+=W[14]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[30]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[15]=0x00000100U; |
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
W[15]+=W[8]; |
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
W[16]+=W[15]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[31]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
W[0]+=W[9]; |
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
W[23]+=W[0]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[32]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
W[1]+=W[10]; |
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
W[22]+=W[1]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[33]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
W[2]+=W[11]; |
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
W[21]+=W[2]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[34]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
W[3]+=W[12]; |
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
W[20]+=W[3]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[35]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
W[4]+=W[13]; |
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
W[19]+=W[4]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[36]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
W[5]+=W[14]; |
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
W[18]+=W[5]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[37]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
W[6]+=W[15]; |
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
W[17]+=W[6]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[38]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
W[7]+=W[0]; |
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
W[16]+=W[7]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[39]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
W[8]+=W[1]; |
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
W[23]+=W[8]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[40]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
W[9]+=W[2]; |
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
W[22]+=W[9]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[41]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
W[10]+=W[3]; |
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
W[21]+=W[10]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[42]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
W[11]+=W[4]; |
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
W[20]+=W[11]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[43]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
W[12]+=W[5]; |
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
W[19]+=W[12]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[44]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U)); |
|
W[13]+=W[6]; |
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U)); |
|
W[18]+=W[13]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[45]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U)); |
|
W[14]+=W[7]; |
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U)); |
|
W[17]+=W[14]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[46]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U)); |
|
W[15]+=W[8]; |
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U)); |
|
W[16]+=W[15]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[47]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U)); |
|
W[0]+=W[9]; |
|
W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U)); |
|
W[23]+=W[0]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[48]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U)); |
|
W[1]+=W[10]; |
|
W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U)); |
|
W[22]+=W[1]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[49]; |
|
W[18]+=W[22]; |
|
W[22]+=(rotr(W[23],2)^rotr(W[23],13)^rotr(W[23],22)); |
|
|
|
W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U)); |
|
W[2]+=W[11]; |
|
W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U)); |
|
W[21]+=W[2]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[50]; |
|
W[22]+=Ma(W[17],W[23],W[16]); |
|
W[17]+=W[21]; |
|
W[21]+=(rotr(W[22],2)^rotr(W[22],13)^rotr(W[22],22)); |
|
W[21]+=Ma(W[16],W[22],W[23]); |
|
|
|
W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U)); |
|
W[3]+=W[12]; |
|
W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U)); |
|
W[20]+=W[3]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[51]; |
|
W[16]+=W[20]; |
|
W[20]+=(rotr(W[21],2)^rotr(W[21],13)^rotr(W[21],22)); |
|
|
|
W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U)); |
|
W[4]+=W[13]; |
|
W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U)); |
|
W[19]+=W[4]; |
|
W[19]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[19]+=ch(W[16],W[17],W[18]); |
|
W[19]+=K[52]; |
|
W[20]+=Ma(W[23],W[21],W[22]); |
|
W[23]+=W[19]; |
|
W[19]+=(rotr(W[20],2)^rotr(W[20],13)^rotr(W[20],22)); |
|
W[19]+=Ma(W[22],W[20],W[21]); |
|
|
|
W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U)); |
|
W[5]+=W[14]; |
|
W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U)); |
|
W[18]+=W[5]; |
|
W[18]+=(rotr(W[23],6)^rotr(W[23],11)^rotr(W[23],25)); |
|
W[18]+=ch(W[23],W[16],W[17]); |
|
W[18]+=K[53]; |
|
W[22]+=W[18]; |
|
W[18]+=(rotr(W[19],2)^rotr(W[19],13)^rotr(W[19],22)); |
|
|
|
W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U)); |
|
W[6]+=W[15]; |
|
W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U)); |
|
W[17]+=W[6]; |
|
W[17]+=(rotr(W[22],6)^rotr(W[22],11)^rotr(W[22],25)); |
|
W[17]+=ch(W[22],W[23],W[16]); |
|
W[17]+=K[54]; |
|
W[18]+=Ma(W[21],W[19],W[20]); |
|
W[21]+=W[17]; |
|
W[17]+=(rotr(W[18],2)^rotr(W[18],13)^rotr(W[18],22)); |
|
W[17]+=Ma(W[20],W[18],W[19]); |
|
|
|
W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U)); |
|
W[7]+=W[0]; |
|
W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U)); |
|
W[16]+=W[7]; |
|
W[16]+=(rotr(W[21],6)^rotr(W[21],11)^rotr(W[21],25)); |
|
W[16]+=ch(W[21],W[22],W[23]); |
|
W[16]+=K[55]; |
|
W[20]+=W[16]; |
|
W[16]+=(rotr(W[17],2)^rotr(W[17],13)^rotr(W[17],22)); |
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U)); |
|
W[8]+=W[1]; |
|
W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U)); |
|
W[23]+=W[8]; |
|
W[23]+=(rotr(W[20],6)^rotr(W[20],11)^rotr(W[20],25)); |
|
W[23]+=ch(W[20],W[21],W[22]); |
|
W[23]+=K[56]; |
|
W[16]+=Ma(W[19],W[17],W[18]); |
|
W[19]+=W[23]; |
|
W[23]+=(rotr(W[16],2)^rotr(W[16],13)^rotr(W[16],22)); |
|
W[23]+=Ma(W[18],W[16],W[17]); |
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U)); |
|
W[9]+=W[2]; |
|
W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U)); |
|
W[22]+=W[9]; |
|
W[22]+=(rotr(W[19],6)^rotr(W[19],11)^rotr(W[19],25)); |
|
W[22]+=ch(W[19],W[20],W[21]); |
|
W[22]+=K[57]; |
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U)); |
|
W[10]+=W[3]; |
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U)); |
|
W[21]+=W[10]; |
|
W[18]+=W[22]; |
|
W[21]+=(rotr(W[18],6)^rotr(W[18],11)^rotr(W[18],25)); |
|
W[21]+=ch(W[18],W[19],W[20]); |
|
W[21]+=K[58]; |
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U)); |
|
W[11]+=W[4]; |
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U)); |
|
W[20]+=W[11]; |
|
W[17]+=W[21]; |
|
W[20]+=(rotr(W[17],6)^rotr(W[17],11)^rotr(W[17],25)); |
|
W[20]+=ch(W[17],W[18],W[19]); |
|
W[20]+=K[59]; |
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U)); |
|
W[12]+=W[5]; |
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U)); |
|
W[23]+=W[12]; |
|
W[16]+=W[20]; |
|
W[23]+=W[19]; |
|
W[23]+=(rotr(W[16],6)^rotr(W[16],11)^rotr(W[16],25)); |
|
W[23]+=ch(W[16],W[17],W[18]); |
|
W[23]+=K[60]; |
|
|
|
#define FOUND (0x80) |
|
#define NFLAG (0x7F) |
|
|
|
#if defined(VECTORS4) |
|
W[23] ^= -0x5be0cd19U; |
|
bool result = W[23].x & W[23].y & W[23].z & W[23].w; |
|
if (!result) { |
|
if (!W[23].x) |
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x; |
|
if (!W[23].y) |
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y; |
|
if (!W[23].z) |
|
output[FOUND] = output[NFLAG & nonce.z] = nonce.z; |
|
if (!W[23].w) |
|
output[FOUND] = output[NFLAG & nonce.w] = nonce.w; |
|
} |
|
#elif defined(VECTORS2) |
|
W[23] ^= -0x5be0cd19U; |
|
bool result = W[23].x & W[23].y; |
|
if (!result) { |
|
if (!W[23].x) |
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x; |
|
if (!W[23].y) |
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y; |
|
} |
|
#else |
|
if (W[23] == -0x5be0cd19U) |
|
output[FOUND] = output[NFLAG & nonce] = nonce; |
|
#endif |
|
}
|
|
|