|
|
|
@ -28,8 +28,8 @@ __constant uint K[64] = {
@@ -28,8 +28,8 @@ __constant uint K[64] = {
|
|
|
|
|
// added in the Phoenix Miner. |
|
|
|
|
|
|
|
|
|
// Some AMD devices have a BFI_INT opcode, which behaves exactly like the |
|
|
|
|
// SHA-256 Ch function, but provides it in exactly one instruction. If |
|
|
|
|
// detected, use it for Ch. Otherwise, construct Ch out of simpler logical |
|
|
|
|
// SHA-256 ch function, but provides it in exactly one instruction. If |
|
|
|
|
// detected, use it for ch. Otherwise, construct ch out of simpler logical |
|
|
|
|
// primitives. |
|
|
|
|
|
|
|
|
|
#define BFI_INTX |
|
|
|
@ -45,12 +45,12 @@ __constant uint K[64] = {
@@ -45,12 +45,12 @@ __constant uint K[64] = {
|
|
|
|
|
// patch it after compilation. |
|
|
|
|
|
|
|
|
|
// This is the BFI_INT function |
|
|
|
|
#define Ch(x, y, z) amd_bytealign(x, y, z) |
|
|
|
|
#define ch(x, y, z) amd_bytealign(x, y, z) |
|
|
|
|
|
|
|
|
|
// Ma can also be implemented in terms of BFI_INT... |
|
|
|
|
#define Ma(x, y, z) amd_bytealign((y), (x | z), (z & x)) |
|
|
|
|
#else |
|
|
|
|
#define Ch(x, y, z) (z ^ (x & (y ^ z))) |
|
|
|
|
#define ch(x, y, z) (z ^ (x & (y ^ z))) |
|
|
|
|
#define Ma(x, y, z) ((x & z) | (y & (x | z))) |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
@ -74,8 +74,8 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -74,8 +74,8 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2, |
|
|
|
|
__global uint * output) |
|
|
|
|
{ |
|
|
|
|
u W[26]; |
|
|
|
|
u A,B,C,D,E,F,G,H; |
|
|
|
|
u W[24]; |
|
|
|
|
u Vals[8]; |
|
|
|
|
u nonce; |
|
|
|
|
uint it; |
|
|
|
|
|
|
|
|
@ -88,229 +88,229 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -88,229 +88,229 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
W[3] = nonce + fw3; |
|
|
|
|
E = fcty_e + nonce; A = state0 + E; E = E + fcty_e2; |
|
|
|
|
D = d1 + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, b1, c1) + K[ 4] + 0x80000000; H = h1 + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma2(g1, E, f1); |
|
|
|
|
C = c1 + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, b1) + K[ 5]; G = g1 + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma2(f1, D, E); |
|
|
|
|
B = b1 + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6]; F = f1 + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000280U; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + fw0; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + fw1; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[4] = fcty_e + nonce; Vals[0] = state0 + Vals[4]; Vals[4] = Vals[4] + fcty_e2; |
|
|
|
|
Vals[3] = d1 + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], b1, c1) + K[ 4] + 0x80000000; Vals[7] = h1 + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma2(g1, Vals[4], f1); |
|
|
|
|
Vals[2] = c1 + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], b1) + K[ 5]; Vals[6] = g1 + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma2(f1, Vals[3], Vals[4]); |
|
|
|
|
Vals[1] = b1 + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[ 6]; Vals[5] = f1 + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[ 7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[ 8]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[ 9]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[10]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[11]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[12]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[13]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[14]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[15] + 0x00000280U; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[16] + fw0; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[17] + fw1; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[2] = (rotr(nonce, 7) ^ rotr(nonce, 18) ^ (nonce >> 3U)) + fw2; |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[18] + W[2]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[19] + W[3]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[4] = (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)) + 0x80000000; |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[20] + W[4]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[5] = (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[21] + W[5]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[6] = (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)) + 0x00000280U; |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[22] + W[6]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[7] = (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)) + fw0; |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[23] + W[7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[8] = (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)) + fw1; |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[24] + W[8]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[25] + W[9]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[26] + W[10]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[27] + W[11]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[28] + W[12]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[29] + W[13]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[14] = 0x00a00055U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[30] + W[14]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[15] = fw15 + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[31] + W[15]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[0] = fw01r + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[32] + W[0]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[1] = fw1 + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[33] + W[1]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[34] + W[2]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[35] + W[3]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[36] + W[4]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[37] + W[5]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[38] + W[6]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[39] + W[7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[40] + W[8]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[41] + W[9]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[42] + W[10]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[43] + W[11]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[44] + W[12]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[13] = W[13] + (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[45] + W[13]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[14] = W[14] + (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[46] + W[14]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[15] = W[15] + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[47] + W[15]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[48] + W[0]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[49] + W[1]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[50] + W[2]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[51] + W[3]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[52] + W[4]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[53] + W[5]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[54] + W[6]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[55] + W[7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[56] + W[8]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[57] + W[9]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[58] + W[10]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[59] + W[11]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[60] + W[12]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[13] = W[13] + (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[61] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[61] + W[13]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[14] = W[14] + (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[62] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[62] + W[14]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[15] = W[15] + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[63] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[63] + W[15]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
|
|
|
|
|
W[0] = A + state0; W[1] = B + state1; |
|
|
|
|
W[2] = C + state2; W[3] = D + state3; |
|
|
|
|
W[4] = E + state4; W[5] = F + state5; |
|
|
|
|
W[6] = G + state6; W[7] = H + state7; |
|
|
|
|
W[0] = Vals[0] + state0; W[1] = Vals[1] + state1; |
|
|
|
|
W[2] = Vals[2] + state2; W[3] = Vals[3] + state3; |
|
|
|
|
W[4] = Vals[4] + state4; W[5] = Vals[5] + state5; |
|
|
|
|
W[6] = Vals[6] + state6; W[7] = Vals[7] + state7; |
|
|
|
|
|
|
|
|
|
H = 0xb0edbdd0 + K[ 0] + W[0]; D = 0xa54ff53a + H; H = H + 0x08909ae5U; |
|
|
|
|
G = 0x1f83d9abU + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + (0x9b05688cU ^ (D & 0xca0b3af3U)) + K[ 1] + W[1]; C = 0x3c6ef372U + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma2(0xbb67ae85U, H, 0x6a09e667U); |
|
|
|
|
F = 0x9b05688cU + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, 0x510e527fU) + K[ 2] + W[2]; B = 0xbb67ae85U + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma2(0x6a09e667U, G, H); |
|
|
|
|
E = 0x510e527fU + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[ 3] + W[3]; A = 0x6a09e667U + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[ 4] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[ 5] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[ 6] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[ 7] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[ 8] + 0x80000000; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[ 9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[15] + 0x00000100U; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[7] = 0xb0edbdd0 + K[ 0] + W[0]; Vals[3] = 0xa54ff53a + Vals[7]; Vals[7] = Vals[7] + 0x08909ae5U; |
|
|
|
|
Vals[6] = 0x1f83d9abU + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + (0x9b05688cU ^ (Vals[3] & 0xca0b3af3U)) + K[ 1] + W[1]; Vals[2] = 0x3c6ef372U + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma2(0xbb67ae85U, Vals[7], 0x6a09e667U); |
|
|
|
|
Vals[5] = 0x9b05688cU + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], 0x510e527fU) + K[ 2] + W[2]; Vals[1] = 0xbb67ae85U + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma2(0x6a09e667U, Vals[6], Vals[7]); |
|
|
|
|
Vals[4] = 0x510e527fU + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[ 3] + W[3]; Vals[0] = 0x6a09e667U + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[ 4] + W[4]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[ 5] + W[5]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[ 6] + W[6]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[ 7] + W[7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[ 8] + 0x80000000; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[ 9]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[10]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[11]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[12]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[13]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[14]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[15] + 0x00000100U; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[16] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[16] + W[0]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + 0x00a00000U; |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[17] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[17] + W[1]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[18] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[18] + W[2]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[19] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[19] + W[3]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[20] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[20] + W[4]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[21] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[21] + W[5]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + 0x00000100U + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[22] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[22] + W[6]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[7] = W[7] + 0x11002000U + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[23] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[23] + W[7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[8] = 0x80000000 + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[24] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[24] + W[8]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[25] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[25] + W[9]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[26] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[26] + W[10]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[27] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[27] + W[11]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[28] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[28] + W[12]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[29] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[29] + W[13]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[14] = 0x00400022U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[30] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[30] + W[14]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[15] = 0x00000100U + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[31] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[31] + W[15]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[32] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[32] + W[0]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[33] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[33] + W[1]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[34] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[34] + W[2]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[35] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[35] + W[3]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[36] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[36] + W[4]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[37] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[37] + W[5]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[38] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[38] + W[6]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[39] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[39] + W[7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[40] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[40] + W[8]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[41] + W[9]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[41] + W[9]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[42] + W[10]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[42] + W[10]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[43] + W[11]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[43] + W[11]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[44] + W[12]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[44] + W[12]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[13] = W[13] + (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[45] + W[13]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[45] + W[13]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[14] = W[14] + (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[46] + W[14]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[46] + W[14]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[15] = W[15] + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[47] + W[15]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[47] + W[15]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[0] = W[0] + (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[48] + W[0]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[48] + W[0]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[1] = W[1] + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[49] + W[1]; C = C + G; G = G + (rotr(H, 2) ^ rotr(H, 13) ^ rotr(H, 22)) + Ma(B, H, A); |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[49] + W[1]; Vals[2] = Vals[2] + Vals[6]; Vals[6] = Vals[6] + (rotr(Vals[7], 2) ^ rotr(Vals[7], 13) ^ rotr(Vals[7], 22)) + Ma(Vals[1], Vals[7], Vals[0]); |
|
|
|
|
W[2] = W[2] + (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[50] + W[2]; B = B + F; F = F + (rotr(G, 2) ^ rotr(G, 13) ^ rotr(G, 22)) + Ma(A, G, H); |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[50] + W[2]; Vals[1] = Vals[1] + Vals[5]; Vals[5] = Vals[5] + (rotr(Vals[6], 2) ^ rotr(Vals[6], 13) ^ rotr(Vals[6], 22)) + Ma(Vals[0], Vals[6], Vals[7]); |
|
|
|
|
W[3] = W[3] + (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[51] + W[3]; A = A + E; E = E + (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + Ma(H, F, G); |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[51] + W[3]; Vals[0] = Vals[0] + Vals[4]; Vals[4] = Vals[4] + (rotr(Vals[5], 2) ^ rotr(Vals[5], 13) ^ rotr(Vals[5], 22)) + Ma(Vals[7], Vals[5], Vals[6]); |
|
|
|
|
W[4] = W[4] + (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)); |
|
|
|
|
D = D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[52] + W[4]; H = H + D; D = D + (rotr(E, 2) ^ rotr(E, 13) ^ rotr(E, 22)) + Ma(G, E, F); |
|
|
|
|
Vals[3] = Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[52] + W[4]; Vals[7] = Vals[7] + Vals[3]; Vals[3] = Vals[3] + (rotr(Vals[4], 2) ^ rotr(Vals[4], 13) ^ rotr(Vals[4], 22)) + Ma(Vals[6], Vals[4], Vals[5]); |
|
|
|
|
W[5] = W[5] + (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U)); |
|
|
|
|
C = C + (rotr(H, 6) ^ rotr(H, 11) ^ rotr(H, 25)) + Ch(H, A, B) + K[53] + W[5]; G = G + C; C = C + (rotr(D, 2) ^ rotr(D, 13) ^ rotr(D, 22)) + Ma(F, D, E); |
|
|
|
|
Vals[2] = Vals[2] + (rotr(Vals[7], 6) ^ rotr(Vals[7], 11) ^ rotr(Vals[7], 25)) + ch(Vals[7], Vals[0], Vals[1]) + K[53] + W[5]; Vals[6] = Vals[6] + Vals[2]; Vals[2] = Vals[2] + (rotr(Vals[3], 2) ^ rotr(Vals[3], 13) ^ rotr(Vals[3], 22)) + Ma(Vals[5], Vals[3], Vals[4]); |
|
|
|
|
W[6] = W[6] + (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)); |
|
|
|
|
B = B + (rotr(G, 6) ^ rotr(G, 11) ^ rotr(G, 25)) + Ch(G, H, A) + K[54] + W[6]; F = F + B; B = B + (rotr(C, 2) ^ rotr(C, 13) ^ rotr(C, 22)) + Ma(E, C, D); |
|
|
|
|
Vals[1] = Vals[1] + (rotr(Vals[6], 6) ^ rotr(Vals[6], 11) ^ rotr(Vals[6], 25)) + ch(Vals[6], Vals[7], Vals[0]) + K[54] + W[6]; Vals[5] = Vals[5] + Vals[1]; Vals[1] = Vals[1] + (rotr(Vals[2], 2) ^ rotr(Vals[2], 13) ^ rotr(Vals[2], 22)) + Ma(Vals[4], Vals[2], Vals[3]); |
|
|
|
|
W[7] = W[7] + (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)); |
|
|
|
|
A = A + (rotr(F, 6) ^ rotr(F, 11) ^ rotr(F, 25)) + Ch(F, G, H) + K[55] + W[7]; E = E + A; A = A + (rotr(B, 2) ^ rotr(B, 13) ^ rotr(B, 22)) + Ma(D, B, C); |
|
|
|
|
Vals[0] = Vals[0] + (rotr(Vals[5], 6) ^ rotr(Vals[5], 11) ^ rotr(Vals[5], 25)) + ch(Vals[5], Vals[6], Vals[7]) + K[55] + W[7]; Vals[4] = Vals[4] + Vals[0]; Vals[0] = Vals[0] + (rotr(Vals[1], 2) ^ rotr(Vals[1], 13) ^ rotr(Vals[1], 22)) + Ma(Vals[3], Vals[1], Vals[2]); |
|
|
|
|
W[8] = W[8] + (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)); |
|
|
|
|
H = H + (rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25)) + Ch(E, F, G) + K[56] + W[8]; D = D + H; H = H + (rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22)) + Ma(C, A, B); |
|
|
|
|
Vals[7] = Vals[7] + (rotr(Vals[4], 6) ^ rotr(Vals[4], 11) ^ rotr(Vals[4], 25)) + ch(Vals[4], Vals[5], Vals[6]) + K[56] + W[8]; Vals[3] = Vals[3] + Vals[7]; Vals[7] = Vals[7] + (rotr(Vals[0], 2) ^ rotr(Vals[0], 13) ^ rotr(Vals[0], 22)) + Ma(Vals[2], Vals[0], Vals[1]); |
|
|
|
|
W[9] = W[9] + (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U)); |
|
|
|
|
G = G + (rotr(D, 6) ^ rotr(D, 11) ^ rotr(D, 25)) + Ch(D, E, F) + K[57] + W[9]; C = C + G; |
|
|
|
|
Vals[6] = Vals[6] + (rotr(Vals[3], 6) ^ rotr(Vals[3], 11) ^ rotr(Vals[3], 25)) + ch(Vals[3], Vals[4], Vals[5]) + K[57] + W[9]; Vals[2] = Vals[2] + Vals[6]; |
|
|
|
|
W[10] = W[10] + (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U)); |
|
|
|
|
F = F + (rotr(C, 6) ^ rotr(C, 11) ^ rotr(C, 25)) + Ch(C, D, E) + K[58] + W[10]; B = B + F; |
|
|
|
|
Vals[5] = Vals[5] + (rotr(Vals[2], 6) ^ rotr(Vals[2], 11) ^ rotr(Vals[2], 25)) + ch(Vals[2], Vals[3], Vals[4]) + K[58] + W[10]; Vals[1] = Vals[1] + Vals[5]; |
|
|
|
|
W[11] = W[11] + (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U)); |
|
|
|
|
E = E + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + Ch(B, C, D) + K[59] + W[11]; A = A + E; |
|
|
|
|
Vals[4] = Vals[4] + (rotr(Vals[1], 6) ^ rotr(Vals[1], 11) ^ rotr(Vals[1], 25)) + ch(Vals[1], Vals[2], Vals[3]) + K[59] + W[11]; Vals[0] = Vals[0] + Vals[4]; |
|
|
|
|
W[12] = W[12] + (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U)); |
|
|
|
|
H = H + D + (rotr(A, 6) ^ rotr(A, 11) ^ rotr(A, 25)) + Ch(A, B, C) + K[60] + W[12]; |
|
|
|
|
Vals[7] = Vals[7] + Vals[3] + (rotr(Vals[0], 6) ^ rotr(Vals[0], 11) ^ rotr(Vals[0], 25)) + ch(Vals[0], Vals[1], Vals[2]) + K[60] + W[12]; |
|
|
|
|
|
|
|
|
|
H+=0x5be0cd19U; |
|
|
|
|
Vals[7]+=0x5be0cd19U; |
|
|
|
|
|
|
|
|
|
#if defined(VECTORS4) || defined(VECTORS2) |
|
|
|
|
if (H.x == 0) |
|
|
|
|
if (Vals[7].x == 0) |
|
|
|
|
{ |
|
|
|
|
for (it = 0; it != 127; it++) { |
|
|
|
|
if (!output[it]) { |
|
|
|
@ -320,7 +320,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -320,7 +320,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (H.y == 0) |
|
|
|
|
if (Vals[7].y == 0) |
|
|
|
|
{ |
|
|
|
|
for (it = 0; it != 127; it++) { |
|
|
|
|
if (!output[it]) { |
|
|
|
@ -331,7 +331,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -331,7 +331,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#ifdef VECTORS4 |
|
|
|
|
if (H.z == 0) |
|
|
|
|
if (Vals[7].z == 0) |
|
|
|
|
{ |
|
|
|
|
for (it = 0; it != 127; it++) { |
|
|
|
|
if (!output[it]) { |
|
|
|
@ -341,7 +341,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -341,7 +341,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (H.w == 0) |
|
|
|
|
if (Vals[7].w == 0) |
|
|
|
|
{ |
|
|
|
|
for (it = 0; it != 127; it++) { |
|
|
|
|
if (!output[it]) { |
|
|
|
@ -353,7 +353,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
@@ -353,7 +353,7 @@ __kernel void search( const uint state0, const uint state1, const uint state2, c
|
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
#else |
|
|
|
|
if (H == 0) |
|
|
|
|
if (Vals[7] == 0) |
|
|
|
|
{ |
|
|
|
|
for (it = 0; it != 127; it++) { |
|
|
|
|
if (!output[it]) { |
|
|
|
|