GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

303 lines
10 KiB

#include "miner.h"
extern "C" {
#include <stdint.h>
#include <memory.h>
}
#include "cuda_helper.h"
static const uint64_t host_keccak_round_constants[24] = {
0x0000000000000001ull, 0x0000000000008082ull,
0x800000000000808aull, 0x8000000080008000ull,
0x000000000000808bull, 0x0000000080000001ull,
0x8000000080008081ull, 0x8000000000008009ull,
0x000000000000008aull, 0x0000000000000088ull,
0x0000000080008009ull, 0x000000008000000aull,
0x000000008000808bull, 0x800000000000008bull,
0x8000000000008089ull, 0x8000000000008003ull,
0x8000000000008002ull, 0x8000000000000080ull,
0x000000000000800aull, 0x800000008000000aull,
0x8000000080008081ull, 0x8000000000008080ull,
0x0000000080000001ull, 0x8000000080008008ull
};
static uint32_t *d_KNonce[MAX_GPUS];
__constant__ uint32_t pTarget[8];
__constant__ uint64_t keccak_round_constants[24];
__constant__ uint64_t c_PaddedMessage80[10]; // padded message (80 bytes + padding?)
#if __CUDA_ARCH__ >= 350
__device__ __forceinline__
static void keccak_blockv35(uint2 *s, const uint64_t *keccak_round_constants)
{
size_t i;
uint2 t[5], u[5], v, w;
#pragma unroll
for (i = 0; i < 24; i++) {
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */
u[0] = t[4] ^ ROL2(t[1], 1);
u[1] = t[0] ^ ROL2(t[2], 1);
u[2] = t[1] ^ ROL2(t[3], 1);
u[3] = t[2] ^ ROL2(t[4], 1);
u[4] = t[3] ^ ROL2(t[0], 1);
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0];
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1];
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2];
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3];
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4];
/* rho pi: b[..] = rotl(a[..], ..) */
v = s[1];
s[1] = ROL2(s[6], 44);
s[6] = ROL2(s[9], 20);
s[9] = ROL2(s[22], 61);
s[22] = ROL2(s[14], 39);
s[14] = ROL2(s[20], 18);
s[20] = ROL2(s[2], 62);
s[2] = ROL2(s[12], 43);
s[12] = ROL2(s[13], 25);
s[13] = ROL2(s[19], 8);
s[19] = ROL2(s[23], 56);
s[23] = ROL2(s[15], 41);
s[15] = ROL2(s[4], 27);
s[4] = ROL2(s[24], 14);
s[24] = ROL2(s[21], 2);
s[21] = ROL2(s[8], 55);
s[8] = ROL2(s[16], 45);
s[16] = ROL2(s[5], 36);
s[5] = ROL2(s[3], 28);
s[3] = ROL2(s[18], 21);
s[18] = ROL2(s[17], 15);
s[17] = ROL2(s[11], 10);
s[11] = ROL2(s[7], 6);
s[7] = ROL2(s[10], 3);
s[10] = ROL2(v, 1);
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */
v = s[0]; w = s[1]; s[0] ^= (~w) & s[2]; s[1] ^= (~s[2]) & s[3]; s[2] ^= (~s[3]) & s[4]; s[3] ^= (~s[4]) & v; s[4] ^= (~v) & w;
v = s[5]; w = s[6]; s[5] ^= (~w) & s[7]; s[6] ^= (~s[7]) & s[8]; s[7] ^= (~s[8]) & s[9]; s[8] ^= (~s[9]) & v; s[9] ^= (~v) & w;
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w;
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w;
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
/* iota: a[0,0] ^= round constant */
s[0] ^= vectorize(keccak_round_constants[i]);
}
}
#else
__device__ __forceinline__
static void keccak_blockv30(uint64_t *s, const uint64_t *keccak_round_constants)
{
size_t i;
uint64_t t[5], u[5], v, w;
/* absorb input */
for (i = 0; i < 24; i++) {
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */
u[0] = t[4] ^ ROTL64(t[1], 1);
u[1] = t[0] ^ ROTL64(t[2], 1);
u[2] = t[1] ^ ROTL64(t[3], 1);
u[3] = t[2] ^ ROTL64(t[4], 1);
u[4] = t[3] ^ ROTL64(t[0], 1);
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0];
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1];
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2];
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3];
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4];
/* rho pi: b[..] = rotl(a[..], ..) */
v = s[ 1];
s[ 1] = ROTL64(s[ 6], 44);
s[ 6] = ROTL64(s[ 9], 20);
s[ 9] = ROTL64(s[22], 61);
s[22] = ROTL64(s[14], 39);
s[14] = ROTL64(s[20], 18);
s[20] = ROTL64(s[ 2], 62);
s[ 2] = ROTL64(s[12], 43);
s[12] = ROTL64(s[13], 25);
s[13] = ROTL64(s[19], 8);
s[19] = ROTL64(s[23], 56);
s[23] = ROTL64(s[15], 41);
s[15] = ROTL64(s[ 4], 27);
s[ 4] = ROTL64(s[24], 14);
s[24] = ROTL64(s[21], 2);
s[21] = ROTL64(s[ 8], 55);
s[ 8] = ROTL64(s[16], 45);
s[16] = ROTL64(s[ 5], 36);
s[ 5] = ROTL64(s[ 3], 28);
s[ 3] = ROTL64(s[18], 21);
s[18] = ROTL64(s[17], 15);
s[17] = ROTL64(s[11], 10);
s[11] = ROTL64(s[ 7], 6);
s[ 7] = ROTL64(s[10], 3);
s[10] = ROTL64( v, 1);
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w;
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w;
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w;
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w;
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
/* iota: a[0,0] ^= round constant */
s[0] ^= keccak_round_constants[i];
}
}
#endif
__global__ __launch_bounds__(128,5)
void keccak256_sm3_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = startNounce + thread;
#if __CUDA_ARCH__ >= 350
uint2 keccak_gpu_state[25];
#pragma unroll 25
for (int i=0; i<25; i++) {
if (i<9) keccak_gpu_state[i] = vectorize(c_PaddedMessage80[i]);
else keccak_gpu_state[i] = make_uint2(0, 0);
}
keccak_gpu_state[9]= vectorize(c_PaddedMessage80[9]);
keccak_gpu_state[9].y = cuda_swab32(nounce);
keccak_gpu_state[10] = make_uint2(1, 0);
keccak_gpu_state[16] = make_uint2(0, 0x80000000);
keccak_blockv35(keccak_gpu_state,keccak_round_constants);
if (devectorize(keccak_gpu_state[3]) <= ((uint64_t*)pTarget)[3]) {resNounce[0] = nounce;}
#else
uint64_t keccak_gpu_state[25];
#pragma unroll 25
for (int i=0; i<25; i++) {
if (i<9) keccak_gpu_state[i] = c_PaddedMessage80[i];
else keccak_gpu_state[i] = 0;
}
keccak_gpu_state[9] = REPLACE_HIDWORD(c_PaddedMessage80[9], cuda_swab32(nounce));
keccak_gpu_state[10] = 0x0000000000000001;
keccak_gpu_state[16] = 0x8000000000000000;
keccak_blockv30(keccak_gpu_state, keccak_round_constants);
if (keccak_gpu_state[3] <= ((uint64_t*)pTarget)[3]) { resNounce[0] = nounce; }
#endif
}
}
__host__
void keccak256_sm3_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *resNonces, int order)
{
cudaMemset(d_KNonce[thr_id], 0xff, 2*sizeof(uint32_t));
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
keccak256_sm3_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_KNonce[thr_id]);
cudaMemcpy(resNonces, d_KNonce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost);
cudaThreadSynchronize();
}
#if 0
__global__ __launch_bounds__(256,3)
void keccak256_sm3_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
#if __CUDA_ARCH__ >= 350 /* tpr: to double check if faster on SM5+ */
uint2 keccak_gpu_state[25];
#pragma unroll 25
for (int i = 0; i<25; i++) {
if (i<4) keccak_gpu_state[i] = vectorize(outputHash[i*threads+thread]);
else keccak_gpu_state[i] = make_uint2(0, 0);
}
keccak_gpu_state[4] = make_uint2(1, 0);
keccak_gpu_state[16] = make_uint2(0, 0x80000000);
keccak_blockv35(keccak_gpu_state, keccak_round_constants);
#pragma unroll 4
for (int i=0; i<4; i++)
outputHash[i*threads+thread] = devectorize(keccak_gpu_state[i]);
#else
uint64_t keccak_gpu_state[25];
#pragma unroll 25
for (int i = 0; i<25; i++) {
if (i<4)
keccak_gpu_state[i] = outputHash[i*threads+thread];
else
keccak_gpu_state[i] = 0;
}
keccak_gpu_state[4] = 0x0000000000000001;
keccak_gpu_state[16] = 0x8000000000000000;
keccak_blockv30(keccak_gpu_state, keccak_round_constants);
#pragma unroll 4
for (int i = 0; i<4; i++)
outputHash[i*threads + thread] = keccak_gpu_state[i];
#endif
}
}
__host__
void keccak256_sm3_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
{
const uint32_t threadsperblock = 256;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
keccak256_sm3_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash);
MyStreamSynchronize(NULL, order, thr_id);
}
#endif
__host__
void keccak256_sm3_setBlock_80(void *pdata,const void *pTargetIn)
{
unsigned char PaddedMessage[80];
memcpy(PaddedMessage, pdata, 80);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, pTargetIn, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 10*sizeof(uint64_t), 0, cudaMemcpyHostToDevice));
}
__host__
void keccak256_sm3_init(int thr_id, uint32_t threads)
{
CUDA_SAFE_CALL(cudaMemcpyToSymbol(keccak_round_constants, host_keccak_round_constants,
sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMalloc(&d_KNonce[thr_id], 2*sizeof(uint32_t)));
}
__host__
void keccak256_sm3_free(int thr_id)
{
cudaFree(d_KNonce[thr_id]);
}