#include "miner.h" extern "C" { #include #include } #include "cuda_helper.h" static const uint64_t host_keccak_round_constants[24] = { 0x0000000000000001ull, 0x0000000000008082ull, 0x800000000000808aull, 0x8000000080008000ull, 0x000000000000808bull, 0x0000000080000001ull, 0x8000000080008081ull, 0x8000000000008009ull, 0x000000000000008aull, 0x0000000000000088ull, 0x0000000080008009ull, 0x000000008000000aull, 0x000000008000808bull, 0x800000000000008bull, 0x8000000000008089ull, 0x8000000000008003ull, 0x8000000000008002ull, 0x8000000000000080ull, 0x000000000000800aull, 0x800000008000000aull, 0x8000000080008081ull, 0x8000000000008080ull, 0x0000000080000001ull, 0x8000000080008008ull }; static uint32_t *d_KNonce[MAX_GPUS]; __constant__ uint32_t pTarget[8]; __constant__ uint64_t keccak_round_constants[24]; __constant__ uint64_t c_PaddedMessage80[10]; // padded message (80 bytes + padding?) #if __CUDA_ARCH__ >= 350 __device__ __forceinline__ static void keccak_blockv35(uint2 *s, const uint64_t *keccak_round_constants) { size_t i; uint2 t[5], u[5], v, w; #pragma unroll for (i = 0; i < 24; i++) { /* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; /* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ u[0] = t[4] ^ ROL2(t[1], 1); u[1] = t[0] ^ ROL2(t[2], 1); u[2] = t[1] ^ ROL2(t[3], 1); u[3] = t[2] ^ ROL2(t[4], 1); u[4] = t[3] ^ ROL2(t[0], 1); /* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; /* rho pi: b[..] = rotl(a[..], ..) */ v = s[1]; s[1] = ROL2(s[6], 44); s[6] = ROL2(s[9], 20); s[9] = ROL2(s[22], 61); s[22] = ROL2(s[14], 39); s[14] = ROL2(s[20], 18); s[20] = ROL2(s[2], 62); s[2] = ROL2(s[12], 43); s[12] = ROL2(s[13], 25); s[13] = ROL2(s[19], 8); s[19] = ROL2(s[23], 56); s[23] = ROL2(s[15], 41); s[15] = ROL2(s[4], 27); s[4] = ROL2(s[24], 14); s[24] = ROL2(s[21], 2); s[21] = ROL2(s[8], 55); s[8] = ROL2(s[16], 45); s[16] = ROL2(s[5], 36); s[5] = ROL2(s[3], 28); s[3] = ROL2(s[18], 21); s[18] = ROL2(s[17], 15); s[17] = ROL2(s[11], 10); s[11] = ROL2(s[7], 6); s[7] = ROL2(s[10], 3); s[10] = ROL2(v, 1); /* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ v = s[0]; w = s[1]; s[0] ^= (~w) & s[2]; s[1] ^= (~s[2]) & s[3]; s[2] ^= (~s[3]) & s[4]; s[3] ^= (~s[4]) & v; s[4] ^= (~v) & w; v = s[5]; w = s[6]; s[5] ^= (~w) & s[7]; s[6] ^= (~s[7]) & s[8]; s[7] ^= (~s[8]) & s[9]; s[8] ^= (~s[9]) & v; s[9] ^= (~v) & w; v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; /* iota: a[0,0] ^= round constant */ s[0] ^= vectorize(keccak_round_constants[i]); } } #else __device__ __forceinline__ static void keccak_blockv30(uint64_t *s, const uint64_t *keccak_round_constants) { size_t i; uint64_t t[5], u[5], v, w; /* absorb input */ for (i = 0; i < 24; i++) { /* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; /* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ u[0] = t[4] ^ ROTL64(t[1], 1); u[1] = t[0] ^ ROTL64(t[2], 1); u[2] = t[1] ^ ROTL64(t[3], 1); u[3] = t[2] ^ ROTL64(t[4], 1); u[4] = t[3] ^ ROTL64(t[0], 1); /* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; /* rho pi: b[..] = rotl(a[..], ..) */ v = s[ 1]; s[ 1] = ROTL64(s[ 6], 44); s[ 6] = ROTL64(s[ 9], 20); s[ 9] = ROTL64(s[22], 61); s[22] = ROTL64(s[14], 39); s[14] = ROTL64(s[20], 18); s[20] = ROTL64(s[ 2], 62); s[ 2] = ROTL64(s[12], 43); s[12] = ROTL64(s[13], 25); s[13] = ROTL64(s[19], 8); s[19] = ROTL64(s[23], 56); s[23] = ROTL64(s[15], 41); s[15] = ROTL64(s[ 4], 27); s[ 4] = ROTL64(s[24], 14); s[24] = ROTL64(s[21], 2); s[21] = ROTL64(s[ 8], 55); s[ 8] = ROTL64(s[16], 45); s[16] = ROTL64(s[ 5], 36); s[ 5] = ROTL64(s[ 3], 28); s[ 3] = ROTL64(s[18], 21); s[18] = ROTL64(s[17], 15); s[17] = ROTL64(s[11], 10); s[11] = ROTL64(s[ 7], 6); s[ 7] = ROTL64(s[10], 3); s[10] = ROTL64( v, 1); /* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; /* iota: a[0,0] ^= round constant */ s[0] ^= keccak_round_constants[i]; } } #endif __global__ __launch_bounds__(128,5) void keccak256_sm3_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = startNounce + thread; #if __CUDA_ARCH__ >= 350 uint2 keccak_gpu_state[25]; #pragma unroll 25 for (int i=0; i<25; i++) { if (i<9) keccak_gpu_state[i] = vectorize(c_PaddedMessage80[i]); else keccak_gpu_state[i] = make_uint2(0, 0); } keccak_gpu_state[9]= vectorize(c_PaddedMessage80[9]); keccak_gpu_state[9].y = cuda_swab32(nounce); keccak_gpu_state[10] = make_uint2(1, 0); keccak_gpu_state[16] = make_uint2(0, 0x80000000); keccak_blockv35(keccak_gpu_state,keccak_round_constants); if (devectorize(keccak_gpu_state[3]) <= ((uint64_t*)pTarget)[3]) {resNounce[0] = nounce;} #else uint64_t keccak_gpu_state[25]; #pragma unroll 25 for (int i=0; i<25; i++) { if (i<9) keccak_gpu_state[i] = c_PaddedMessage80[i]; else keccak_gpu_state[i] = 0; } keccak_gpu_state[9] = REPLACE_HIDWORD(c_PaddedMessage80[9], cuda_swab32(nounce)); keccak_gpu_state[10] = 0x0000000000000001; keccak_gpu_state[16] = 0x8000000000000000; keccak_blockv30(keccak_gpu_state, keccak_round_constants); if (keccak_gpu_state[3] <= ((uint64_t*)pTarget)[3]) { resNounce[0] = nounce; } #endif } } __host__ void keccak256_sm3_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *resNonces, int order) { cudaMemset(d_KNonce[thr_id], 0xff, 2*sizeof(uint32_t)); const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; keccak256_sm3_gpu_hash_80<<>>(threads, startNounce, d_KNonce[thr_id]); cudaMemcpy(resNonces, d_KNonce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost); cudaThreadSynchronize(); } #if 0 __global__ __launch_bounds__(256,3) void keccak256_sm3_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { #if __CUDA_ARCH__ >= 350 /* tpr: to double check if faster on SM5+ */ uint2 keccak_gpu_state[25]; #pragma unroll 25 for (int i = 0; i<25; i++) { if (i<4) keccak_gpu_state[i] = vectorize(outputHash[i*threads+thread]); else keccak_gpu_state[i] = make_uint2(0, 0); } keccak_gpu_state[4] = make_uint2(1, 0); keccak_gpu_state[16] = make_uint2(0, 0x80000000); keccak_blockv35(keccak_gpu_state, keccak_round_constants); #pragma unroll 4 for (int i=0; i<4; i++) outputHash[i*threads+thread] = devectorize(keccak_gpu_state[i]); #else uint64_t keccak_gpu_state[25]; #pragma unroll 25 for (int i = 0; i<25; i++) { if (i<4) keccak_gpu_state[i] = outputHash[i*threads+thread]; else keccak_gpu_state[i] = 0; } keccak_gpu_state[4] = 0x0000000000000001; keccak_gpu_state[16] = 0x8000000000000000; keccak_blockv30(keccak_gpu_state, keccak_round_constants); #pragma unroll 4 for (int i = 0; i<4; i++) outputHash[i*threads + thread] = keccak_gpu_state[i]; #endif } } __host__ void keccak256_sm3_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) { const uint32_t threadsperblock = 256; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); keccak256_sm3_gpu_hash_32 <<>> (threads, startNounce, d_outputHash); MyStreamSynchronize(NULL, order, thr_id); } #endif __host__ void keccak256_sm3_setBlock_80(void *pdata,const void *pTargetIn) { unsigned char PaddedMessage[80]; memcpy(PaddedMessage, pdata, 80); CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, pTargetIn, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 10*sizeof(uint64_t), 0, cudaMemcpyHostToDevice)); } __host__ void keccak256_sm3_init(int thr_id, uint32_t threads) { CUDA_SAFE_CALL(cudaMemcpyToSymbol(keccak_round_constants, host_keccak_round_constants, sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMalloc(&d_KNonce[thr_id], 2*sizeof(uint32_t))); } __host__ void keccak256_sm3_free(int thr_id) { cudaFree(d_KNonce[thr_id]); }