mirror of https://github.com/GOSTSec/ccminer
Tanguy Pruvot
9 years ago
23 changed files with 5150 additions and 1912 deletions
@ -0,0 +1,701 @@
@@ -0,0 +1,701 @@
|
||||
#include <memory.h> |
||||
|
||||
#ifdef __INTELLISENSE__ |
||||
/* just for vstudio code colors */ |
||||
#undef __CUDA_ARCH__ |
||||
#define __CUDA_ARCH__ 500 |
||||
#endif |
||||
|
||||
#include "cuda_helper.h" |
||||
|
||||
#define TPB50 32 |
||||
|
||||
#if __CUDA_ARCH__ == 500 |
||||
#include "cuda_lyra2_vectors.h" |
||||
|
||||
#define Nrow 8 |
||||
#define Ncol 8 |
||||
#define memshift 3 |
||||
|
||||
__device__ uint2 *DMatrix; |
||||
|
||||
__device__ __forceinline__ uint2 LD4S(const int index) |
||||
{ |
||||
extern __shared__ uint2 shared_mem[]; |
||||
|
||||
return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; |
||||
} |
||||
|
||||
__device__ __forceinline__ void ST4S(const int index, const uint2 data) |
||||
{ |
||||
extern __shared__ uint2 shared_mem[]; |
||||
|
||||
shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data; |
||||
} |
||||
|
||||
#if __CUDA_ARCH__ >= 300 |
||||
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) |
||||
{ |
||||
return __shfl(a, b, c); |
||||
} |
||||
|
||||
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) |
||||
{ |
||||
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); |
||||
} |
||||
|
||||
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) |
||||
{ |
||||
a1 = WarpShuffle(a1, b1, c); |
||||
a2 = WarpShuffle(a2, b2, c); |
||||
a3 = WarpShuffle(a3, b3, c); |
||||
} |
||||
|
||||
#else |
||||
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) |
||||
{ |
||||
extern __shared__ uint2 shared_mem[]; |
||||
|
||||
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; |
||||
uint32_t *_ptr = (uint32_t*)shared_mem; |
||||
|
||||
__threadfence_block(); |
||||
uint32_t buf = _ptr[thread]; |
||||
|
||||
_ptr[thread] = a; |
||||
__threadfence_block(); |
||||
uint32_t result = _ptr[(thread&~(c - 1)) + (b&(c - 1))]; |
||||
|
||||
__threadfence_block(); |
||||
_ptr[thread] = buf; |
||||
|
||||
__threadfence_block(); |
||||
return result; |
||||
} |
||||
|
||||
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) |
||||
{ |
||||
extern __shared__ uint2 shared_mem[]; |
||||
|
||||
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; |
||||
|
||||
__threadfence_block(); |
||||
uint2 buf = shared_mem[thread]; |
||||
|
||||
shared_mem[thread] = a; |
||||
__threadfence_block(); |
||||
uint2 result = shared_mem[(thread&~(c - 1)) + (b&(c - 1))]; |
||||
|
||||
__threadfence_block(); |
||||
shared_mem[thread] = buf; |
||||
|
||||
__threadfence_block(); |
||||
return result; |
||||
} |
||||
|
||||
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) |
||||
{ |
||||
extern __shared__ uint2 shared_mem[]; |
||||
|
||||
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; |
||||
|
||||
__threadfence_block(); |
||||
uint2 buf = shared_mem[thread]; |
||||
|
||||
shared_mem[thread] = a1; |
||||
__threadfence_block(); |
||||
a1 = shared_mem[(thread&~(c - 1)) + (b1&(c - 1))]; |
||||
__threadfence_block(); |
||||
shared_mem[thread] = a2; |
||||
__threadfence_block(); |
||||
a2 = shared_mem[(thread&~(c - 1)) + (b2&(c - 1))]; |
||||
__threadfence_block(); |
||||
shared_mem[thread] = a3; |
||||
__threadfence_block(); |
||||
a3 = shared_mem[(thread&~(c - 1)) + (b3&(c - 1))]; |
||||
|
||||
__threadfence_block(); |
||||
shared_mem[thread] = buf; |
||||
__threadfence_block(); |
||||
} |
||||
|
||||
#endif |
||||
|
||||
static __device__ __forceinline__ |
||||
void Gfunc(uint2 &a, uint2 &b, uint2 &c, uint2 &d) |
||||
{ |
||||
a += b; d ^= a; d = SWAPUINT2(d); |
||||
c += d; b ^= c; b = ROR2(b, 24); |
||||
a += b; d ^= a; d = ROR2(d, 16); |
||||
c += d; b ^= c; b = ROR2(b, 63); |
||||
} |
||||
|
||||
__device__ __forceinline__ void round_lyra(uint2 s[4]) |
||||
{ |
||||
Gfunc(s[0], s[1], s[2], s[3]); |
||||
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 1, threadIdx.x + 2, threadIdx.x + 3, 4); |
||||
Gfunc(s[0], s[1], s[2], s[3]); |
||||
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 3, threadIdx.x + 2, threadIdx.x + 1, 4); |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void round_lyra(uint2x4* s) |
||||
{ |
||||
Gfunc(s[0].x, s[1].x, s[2].x, s[3].x); |
||||
Gfunc(s[0].y, s[1].y, s[2].y, s[3].y); |
||||
Gfunc(s[0].z, s[1].z, s[2].z, s[3].z); |
||||
Gfunc(s[0].w, s[1].w, s[2].w, s[3].w); |
||||
Gfunc(s[0].x, s[1].y, s[2].z, s[3].w); |
||||
Gfunc(s[0].y, s[1].z, s[2].w, s[3].x); |
||||
Gfunc(s[0].z, s[1].w, s[2].x, s[3].y); |
||||
Gfunc(s[0].w, s[1].x, s[2].y, s[3].z); |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexV5(uint2 state[4], const uint32_t thread, const uint32_t threads) |
||||
{ |
||||
uint2 state1[3], state2[3]; |
||||
|
||||
const uint32_t ps0 = (memshift * Ncol * 0 * threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps1 = (memshift * Ncol * 1 * threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps2 = (memshift * Ncol * 2 * threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps3 = (memshift * Ncol * 3 * threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps4 = (memshift * Ncol * 4 * threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps5 = (memshift * Ncol * 5 * threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps6 = (memshift * Ncol * 6 * threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps7 = (memshift * Ncol * 7 * threads + thread)*blockDim.x + threadIdx.x; |
||||
|
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t s0 = memshift * Ncol * 0 + (Ncol - 1 - i) * memshift; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
ST4S(s0 + j, state[j]); |
||||
round_lyra(state); |
||||
} |
||||
|
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t s0 = memshift * Ncol * 0 + i * memshift; |
||||
const uint32_t s1 = ps1 + (7 - i)*memshift* threads*blockDim.x; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = LD4S(s0 + j); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
|
||||
round_lyra(state); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s1 + j*threads*blockDim.x) = state1[j] ^ state[j]; |
||||
} |
||||
|
||||
// 1, 0, 2 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t s0 = memshift * Ncol * 0 + i * memshift; |
||||
const uint32_t s1 = ps1 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s2 = ps2 + (7 - i)*memshift* threads*blockDim.x; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = *(DMatrix + s1 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = LD4S(s0 + j); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j] + state2[j]; |
||||
|
||||
round_lyra(state); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s2 + j*threads*blockDim.x) = state1[j] ^ state[j]; |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
ST4S(s0 + j, state2[j]); |
||||
} |
||||
|
||||
// 2, 1, 3 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t s1 = ps1 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s2 = ps2 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s3 = ps3 + (7 - i)*memshift* threads*blockDim.x; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = *(DMatrix + s2 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = *(DMatrix + s1 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j] + state2[j]; |
||||
|
||||
round_lyra(state); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s3 + j*threads*blockDim.x) = state1[j] ^ state[j]; |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s1 + j*threads*blockDim.x) = state2[j]; |
||||
} |
||||
|
||||
// 3, 0, 4 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t ls0 = memshift * Ncol * 0 + i * memshift; |
||||
const uint32_t s0 = ps0 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s3 = ps3 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s4 = ps4 + (7 - i)*memshift* threads*blockDim.x; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = *(DMatrix + s3 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = LD4S(ls0 + j); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j] + state2[j]; |
||||
|
||||
round_lyra(state); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s4 + j*threads*blockDim.x) = state1[j] ^ state[j]; |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s0 + j*threads*blockDim.x) = state2[j]; |
||||
} |
||||
|
||||
// 4, 3, 5 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t s3 = ps3 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s4 = ps4 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s5 = ps5 + (7 - i)*memshift* threads*blockDim.x; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = *(DMatrix + s4 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = *(DMatrix + s3 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j] + state2[j]; |
||||
|
||||
round_lyra(state); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s5 + j*threads*blockDim.x) = state1[j] ^ state[j]; |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s3 + j*threads*blockDim.x) = state2[j]; |
||||
} |
||||
|
||||
// 5, 2, 6 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t s2 = ps2 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s5 = ps5 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s6 = ps6 + (7 - i)*memshift* threads*blockDim.x; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = *(DMatrix + s5 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = *(DMatrix + s2 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j] + state2[j]; |
||||
|
||||
round_lyra(state); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s6 + j*threads*blockDim.x) = state1[j] ^ state[j]; |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s2 + j*threads*blockDim.x) = state2[j]; |
||||
} |
||||
|
||||
// 6, 1, 7 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
const uint32_t s1 = ps1 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s6 = ps6 + i * memshift* threads*blockDim.x; |
||||
const uint32_t s7 = ps7 + (7 - i)*memshift* threads*blockDim.x; |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = *(DMatrix + s6 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = *(DMatrix + s1 + j*threads*blockDim.x); |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j] + state2[j]; |
||||
|
||||
round_lyra(state); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s7 + j*threads*blockDim.x) = state1[j] ^ state[j]; |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
*(DMatrix + s1 + j*threads*blockDim.x) = state2[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowV50(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], const uint32_t thread, const uint32_t threads) |
||||
{ |
||||
const uint32_t ps1 = (memshift * Ncol * rowIn*threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps2 = (memshift * Ncol * rowInOut *threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps3 = (memshift * Ncol * rowOut*threads + thread)*blockDim.x + threadIdx.x; |
||||
|
||||
#pragma unroll 1 |
||||
for (int i = 0; i < 8; i++) |
||||
{ |
||||
uint2 state1[3], state2[3]; |
||||
|
||||
const uint32_t s1 = ps1 + i*memshift*threads *blockDim.x; |
||||
const uint32_t s2 = ps2 + i*memshift*threads *blockDim.x; |
||||
const uint32_t s3 = ps3 + i*memshift*threads *blockDim.x; |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] = *(DMatrix + s1 + j*threads*blockDim.x); |
||||
state2[j] = *(DMatrix + s2 + j*threads*blockDim.x); |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] += state2[j]; |
||||
state[j] ^= state1[j]; |
||||
} |
||||
|
||||
round_lyra(state); |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
{ |
||||
*(DMatrix + s2 + j*threads*blockDim.x) = state2[j]; |
||||
*(DMatrix + s3 + j*threads*blockDim.x) ^= state[j]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowV50_8(const int rowInOut, uint2 state[4], const uint32_t thread, const uint32_t threads) |
||||
{ |
||||
const uint32_t ps1 = (memshift * Ncol * 2*threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps2 = (memshift * Ncol * rowInOut *threads + thread)*blockDim.x + threadIdx.x; |
||||
const uint32_t ps3 = (memshift * Ncol * 5*threads + thread)*blockDim.x + threadIdx.x; |
||||
|
||||
uint2 state1[3], last[3]; |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] = *(DMatrix + ps1 + j*threads*blockDim.x); |
||||
last[j] = *(DMatrix + ps2 + j*threads*blockDim.x); |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] += last[j]; |
||||
state[j] ^= state1[j]; |
||||
} |
||||
|
||||
round_lyra(state); |
||||
|
||||
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
||||
uint2 Data0 = state[0]; |
||||
uint2 Data1 = state[1]; |
||||
uint2 Data2 = state[2]; |
||||
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
last[0] ^= Data2; |
||||
last[1] ^= Data0; |
||||
last[2] ^= Data1; |
||||
} |
||||
else |
||||
{ |
||||
last[0] ^= Data0; |
||||
last[1] ^= Data1; |
||||
last[2] ^= Data2; |
||||
} |
||||
|
||||
if (rowInOut == 5) |
||||
{ |
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
last[j] ^= state[j]; |
||||
} |
||||
|
||||
for (int i = 1; i < 8; i++) |
||||
{ |
||||
const uint32_t s1 = ps1 + i*memshift*threads *blockDim.x; |
||||
const uint32_t s2 = ps2 + i*memshift*threads *blockDim.x; |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= *(DMatrix + s1 + j*threads*blockDim.x) + *(DMatrix + s2 + j*threads*blockDim.x); |
||||
|
||||
round_lyra(state); |
||||
} |
||||
|
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= last[j]; |
||||
|
||||
} |
||||
|
||||
__global__ __launch_bounds__(64, 1) |
||||
void lyra2_gpu_hash_32_1_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) |
||||
{ |
||||
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
const uint2x4 blake2b_IV[2] = { |
||||
{ { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a } }, |
||||
{ { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } } |
||||
}; |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
uint2x4 state[4]; |
||||
|
||||
((uint2*)state)[0] = __ldg(&g_hash[thread]); |
||||
((uint2*)state)[1] = __ldg(&g_hash[thread + threads]); |
||||
((uint2*)state)[2] = __ldg(&g_hash[thread + threads * 2]); |
||||
((uint2*)state)[3] = __ldg(&g_hash[thread + threads * 3]); |
||||
|
||||
state[1] = state[0]; |
||||
state[2] = blake2b_IV[0]; |
||||
state[3] = blake2b_IV[1]; |
||||
|
||||
for (int i = 0; i < 24; i++) |
||||
round_lyra(state); //because 12 is not enough |
||||
|
||||
((uint2x4*)DMatrix)[0 * threads + thread] = state[0]; |
||||
((uint2x4*)DMatrix)[1 * threads + thread] = state[1]; |
||||
((uint2x4*)DMatrix)[2 * threads + thread] = state[2]; |
||||
((uint2x4*)DMatrix)[3 * threads + thread] = state[3]; |
||||
} |
||||
} |
||||
|
||||
__global__ __launch_bounds__(TPB50, 1) |
||||
void lyra2_gpu_hash_32_2_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) |
||||
{ |
||||
const uint32_t thread = (blockDim.y * blockIdx.x + threadIdx.y); |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
uint2 state[4]; |
||||
|
||||
state[0] = __ldg(&DMatrix[(0 * threads + thread)*blockDim.x + threadIdx.x]); |
||||
state[1] = __ldg(&DMatrix[(1 * threads + thread)*blockDim.x + threadIdx.x]); |
||||
state[2] = __ldg(&DMatrix[(2 * threads + thread)*blockDim.x + threadIdx.x]); |
||||
state[3] = __ldg(&DMatrix[(3 * threads + thread)*blockDim.x + threadIdx.x]); |
||||
|
||||
reduceDuplexV5(state, thread, threads); |
||||
|
||||
uint32_t rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50(7, rowa, 0, state, thread, threads); |
||||
rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50(0, rowa, 3, state, thread, threads); |
||||
rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50(3, rowa, 6, state, thread, threads); |
||||
rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50(6, rowa, 1, state, thread, threads); |
||||
rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50(1, rowa, 4, state, thread, threads); |
||||
rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50(4, rowa, 7, state, thread, threads); |
||||
rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50(7, rowa, 2, state, thread, threads); |
||||
rowa = WarpShuffle(state[0].x, 0, 4) & 7; |
||||
reduceDuplexRowV50_8(rowa, state, thread, threads); |
||||
|
||||
DMatrix[(0 * threads + thread)*blockDim.x + threadIdx.x] = state[0]; |
||||
DMatrix[(1 * threads + thread)*blockDim.x + threadIdx.x] = state[1]; |
||||
DMatrix[(2 * threads + thread)*blockDim.x + threadIdx.x] = state[2]; |
||||
DMatrix[(3 * threads + thread)*blockDim.x + threadIdx.x] = state[3]; |
||||
} |
||||
} |
||||
|
||||
__global__ __launch_bounds__(64, 1) |
||||
void lyra2_gpu_hash_32_3_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) |
||||
{ |
||||
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
uint2x4 state[4]; |
||||
|
||||
state[0] = __ldg4(&((uint2x4*)DMatrix)[0 * threads + thread]); |
||||
state[1] = __ldg4(&((uint2x4*)DMatrix)[1 * threads + thread]); |
||||
state[2] = __ldg4(&((uint2x4*)DMatrix)[2 * threads + thread]); |
||||
state[3] = __ldg4(&((uint2x4*)DMatrix)[3 * threads + thread]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra(state); |
||||
|
||||
g_hash[thread] = ((uint2*)state)[0]; |
||||
g_hash[thread + threads] = ((uint2*)state)[1]; |
||||
g_hash[thread + threads * 2] = ((uint2*)state)[2]; |
||||
g_hash[thread + threads * 3] = ((uint2*)state)[3]; |
||||
} |
||||
} |
||||
|
||||
#else |
||||
/* if __CUDA_ARCH__ != 500 .. host */ |
||||
__global__ void lyra2_gpu_hash_32_1_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} |
||||
__global__ void lyra2_gpu_hash_32_2_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} |
||||
__global__ void lyra2_gpu_hash_32_3_sm5(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} |
||||
#endif |
@ -1,338 +0,0 @@
@@ -1,338 +0,0 @@
|
||||
/* SM 2/3/3.5 Variant for lyra2REv2 */ |
||||
|
||||
#ifdef __INTELLISENSE__ |
||||
/* just for vstudio code colors */ |
||||
#undef __CUDA_ARCH__ |
||||
#define __CUDA_ARCH__ 350 |
||||
#endif |
||||
|
||||
#define TPB20 64 |
||||
#define TPB30 64 |
||||
#define TPB35 64 |
||||
|
||||
#if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ < 500 |
||||
|
||||
#include "cuda_lyra2_vectors.h" |
||||
|
||||
#define Nrow 4 |
||||
#define Ncol 4 |
||||
|
||||
#define vectype ulonglong4 |
||||
#define memshift 4 |
||||
|
||||
__device__ vectype *DMatrix; |
||||
|
||||
static __device__ __forceinline__ |
||||
void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d) |
||||
{ |
||||
a += b; d ^= a; d = ROTR64(d, 32); |
||||
c += d; b ^= c; b = ROTR64(b, 24); |
||||
a += b; d ^= a; d = ROTR64(d, 16); |
||||
c += d; b ^= c; b = ROTR64(b, 63); |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void round_lyra_v35(vectype* s) |
||||
{ |
||||
Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x); |
||||
Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y); |
||||
Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z); |
||||
Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w); |
||||
|
||||
Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w); |
||||
Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x); |
||||
Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y); |
||||
Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z); |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexV3(vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state1[3]; |
||||
uint32_t ps1 = (Nrow * Ncol * memshift * thread); |
||||
uint32_t ps2 = (memshift * (Ncol - 1) * Nrow + memshift * 1 + Nrow * Ncol * memshift * thread); |
||||
|
||||
#pragma unroll 4 |
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + Nrow * i *memshift; |
||||
uint32_t s2 = ps2 - Nrow * i *memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state1[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state2[3], state1[3]; |
||||
|
||||
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps3 = (Nrow * memshift * (Ncol - 1) + memshift * rowOut + Nrow * Ncol * memshift * thread); |
||||
|
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + Nrow*i*memshift; |
||||
uint32_t s2 = ps2 + Nrow*i*memshift; |
||||
uint32_t s3 = ps3 - Nrow*i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1 )[j]); |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = __ldg4(&(DMatrix + s2 )[j]); |
||||
for (int j = 0; j < 3; j++) { |
||||
vectype tmp = state1[j] + state2[j]; |
||||
state[j] ^= tmp; |
||||
} |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] ^= state[j]; |
||||
(DMatrix + s3)[j] = state1[j]; |
||||
} |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread) |
||||
{ |
||||
vectype state1[3], state2[3]; |
||||
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps3 = (memshift * rowOut + Nrow * Ncol * memshift * thread); |
||||
|
||||
#pragma nounroll |
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + Nrow * i*memshift; |
||||
uint32_t s2 = ps2 + Nrow * i*memshift; |
||||
uint32_t s3 = ps3 + Nrow * i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = __ldg4(&(DMatrix + s2)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] += state2[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
|
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
||||
|
||||
if (rowInOut != rowOut) { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s3)[j] ^= state[j]; |
||||
|
||||
} else { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
#if __CUDA_ARCH__ >= 300 |
||||
__global__ __launch_bounds__(TPB35, 1) |
||||
void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
vectype state[4]; |
||||
vectype blake2b_IV[2]; |
||||
vectype padding[2]; |
||||
|
||||
if (threadIdx.x == 0) { |
||||
|
||||
((uint16*)blake2b_IV)[0] = make_uint16( |
||||
0xf3bcc908, 0x6a09e667 , 0x84caa73b, 0xbb67ae85, |
||||
0xfe94f82b, 0x3c6ef372 , 0x5f1d36f1, 0xa54ff53a, |
||||
0xade682d1, 0x510e527f , 0x2b3e6c1f, 0x9b05688c, |
||||
0xfb41bd6b, 0x1f83d9ab , 0x137e2179, 0x5be0cd19 |
||||
); |
||||
((uint16*)padding)[0] = make_uint16( |
||||
0x20, 0x0 , 0x20, 0x0 , 0x20, 0x0 , 0x01, 0x0, |
||||
0x04, 0x0 , 0x04, 0x0 , 0x80, 0x0 , 0x0, 0x01000000 |
||||
); |
||||
} |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
((uint2*)state)[0] = __ldg(&outputHash[thread]); |
||||
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]); |
||||
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]); |
||||
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]); |
||||
|
||||
state[1] = state[0]; |
||||
state[2] = shuffle4(((vectype*)blake2b_IV)[0], 0); |
||||
state[3] = shuffle4(((vectype*)blake2b_IV)[1], 0); |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
state[0] ^= shuffle4(((vectype*)padding)[0], 0); |
||||
state[1] ^= shuffle4(((vectype*)padding)[1], 0); |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread); |
||||
|
||||
//#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
uint32_t s1 = ps1 - 4 * memshift * i; |
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s1)[j] = (state)[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
} |
||||
|
||||
reduceDuplexV3(state, thread); |
||||
reduceDuplexRowSetupV3(1, 0, 2, state, thread); |
||||
reduceDuplexRowSetupV3(2, 1, 3, state, thread); |
||||
|
||||
uint32_t rowa; |
||||
int prev = 3; |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
rowa = ((uint2*)state)[0].x & 3; reduceDuplexRowtV3(prev, rowa, i, state, thread); |
||||
prev = i; |
||||
} |
||||
|
||||
uint32_t shift = (memshift * rowa + 16 * memshift * thread); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
outputHash[thread] = ((uint2*)state)[0]; |
||||
outputHash[thread + threads] = ((uint2*)state)[1]; |
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2]; |
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3]; |
||||
|
||||
} //thread |
||||
} |
||||
#elif __CUDA_ARCH__ >= 200 |
||||
__global__ __launch_bounds__(TPB20, 1) |
||||
void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
vectype state[4]; |
||||
vectype blake2b_IV[2]; |
||||
vectype padding[2]; |
||||
|
||||
((uint16*)blake2b_IV)[0] = make_uint16( |
||||
0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85, |
||||
0xfe94f82b, 0x3c6ef372, 0x5f1d36f1, 0xa54ff53a, |
||||
0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c, |
||||
0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19 |
||||
); |
||||
((uint16*)padding)[0] = make_uint16( |
||||
0x20, 0x0, 0x20, 0x0, 0x20, 0x0, 0x01, 0x0, |
||||
0x04, 0x0, 0x04, 0x0, 0x80, 0x0, 0x0, 0x01000000 |
||||
); |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
|
||||
((uint2*)state)[0] = outputHash[thread]; |
||||
((uint2*)state)[1] = outputHash[thread + threads]; |
||||
((uint2*)state)[2] = outputHash[thread + 2 * threads]; |
||||
((uint2*)state)[3] = outputHash[thread + 3 * threads]; |
||||
|
||||
state[1] = state[0]; |
||||
state[2] = ((vectype*)blake2b_IV)[0]; |
||||
state[3] = ((vectype*)blake2b_IV)[1]; |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
state[0] ^= ((vectype*)padding)[0]; |
||||
state[1] ^= ((vectype*)padding)[1]; |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread); |
||||
|
||||
//#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
uint32_t s1 = ps1 - 4 * memshift * i; |
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s1)[j] = (state)[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
} |
||||
|
||||
reduceDuplexV3(state, thread); |
||||
reduceDuplexRowSetupV3(1, 0, 2, state, thread); |
||||
reduceDuplexRowSetupV3(2, 1, 3, state, thread); |
||||
|
||||
uint32_t rowa; |
||||
int prev = 3; |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
rowa = ((uint2*)state)[0].x & 3; reduceDuplexRowtV3(prev, rowa, i, state, thread); |
||||
prev = i; |
||||
} |
||||
|
||||
uint32_t shift = (memshift * rowa + 16 * memshift * thread); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
outputHash[thread] = ((uint2*)state)[0]; |
||||
outputHash[thread + threads] = ((uint2*)state)[1]; |
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2]; |
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3]; |
||||
|
||||
} //thread |
||||
} |
||||
#endif |
||||
|
||||
#else |
||||
/* host & sm5+ */ |
||||
__global__ void lyra2v2_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) {} |
||||
#endif |
Loading…
Reference in new issue