GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

572 lines
14 KiB

#include <stdio.h>
#include <stdint.h>
#include <memory.h>
#define TPB52 32
#define TPB50 32
#define TPB30 32
#define TPB20 32
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 200
#endif
#include "cuda_lyra2_vectors.h"
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#if __CUDA_ARCH__ >= 300
__device__ uint32_t __shfl(uint32_t a, uint32_t b, uint32_t c);
#endif
#endif
#define Nrow 4
#define Ncol 4
#define memshift 3
__device__ uint2x4 *DState;
__device__ __forceinline__ uint2 LD4S(const int index)
{
extern __shared__ uint2 shared_mem[];
return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x];
}
__device__ __forceinline__ void ST4S(const int index, const uint2 data)
{
extern __shared__ uint2 shared_mem[];
shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data;
}
__device__ __forceinline__
void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
{
a += b; d = eorswap32(a, d);
c += d; b ^= c; b = ROR24(b);
a += b; d ^= a; d = ROR16(d);
c += d; b ^= c; b = ROR2(b, 63);
}
#if __CUDA_ARCH__ >= 300
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c)
{
return __shfl(a, b, c);
}
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c)
{
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c));
}
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c)
{
a1 = WarpShuffle(a1, b1, c);
a2 = WarpShuffle(a2, b2, c);
a3 = WarpShuffle(a3, b3, c);
}
#else
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c)
{
extern __shared__ uint2 shared_mem[];
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x;
uint32_t *_ptr = (uint32_t*)shared_mem;
__threadfence_block();
uint32_t buf = _ptr[thread];
_ptr[thread] = a;
__threadfence_block();
uint32_t result = _ptr[(thread&~(c - 1)) + (b&(c - 1))];
__threadfence_block();
_ptr[thread] = buf;
__threadfence_block();
return result;
}
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c)
{
extern __shared__ uint2 shared_mem[];
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x;
__threadfence_block();
uint2 buf = shared_mem[thread];
shared_mem[thread] = a;
__threadfence_block();
uint2 result = shared_mem[(thread&~(c - 1)) + (b&(c - 1))];
__threadfence_block();
shared_mem[thread] = buf;
__threadfence_block();
return result;
}
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c)
{
extern __shared__ uint2 shared_mem[];
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x;
__threadfence_block();
uint2 buf = shared_mem[thread];
shared_mem[thread] = a1;
__threadfence_block();
a1 = shared_mem[(thread&~(c - 1)) + (b1&(c - 1))];
__threadfence_block();
shared_mem[thread] = a2;
__threadfence_block();
a2 = shared_mem[(thread&~(c - 1)) + (b2&(c - 1))];
__threadfence_block();
shared_mem[thread] = a3;
__threadfence_block();
a3 = shared_mem[(thread&~(c - 1)) + (b3&(c - 1))];
__threadfence_block();
shared_mem[thread] = buf;
__threadfence_block();
}
#endif
__device__ __forceinline__ void round_lyra_v35(uint2 s[4])
{
Gfunc_v5(s[0], s[1], s[2], s[3]);
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 1, threadIdx.x + 2, threadIdx.x + 3, 4);
Gfunc_v5(s[0], s[1], s[2], s[3]);
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 3, threadIdx.x + 2, threadIdx.x + 1, 4);
}
__device__ __forceinline__
void round_lyra_v5(uint2x4* s)
{
Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x);
Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y);
Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z);
Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w);
Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w);
Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x);
Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y);
Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z);
}
__device__ __forceinline__ void reduceDuplexRowSetupV2(uint2 state[4])
{
int i, j;
uint2 state1[Ncol][3], state0[Ncol][3], state2[3];
#if __CUDA_ARCH__ > 500
#pragma unroll
#endif
for (int i = 0; i < Ncol; i++)
{
#pragma unroll
for (j = 0; j < 3; j++)
state0[Ncol - i - 1][j] = state[j];
round_lyra_v35(state);
}
//#pragma unroll 4
for (i = 0; i < Ncol; i++)
{
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= state0[i][j];
round_lyra_v35(state);
#pragma unroll
for (j = 0; j < 3; j++)
state1[Ncol - i - 1][j] = state0[i][j];
#pragma unroll
for (j = 0; j < 3; j++)
state1[Ncol - i - 1][j] ^= state[j];
}
for (i = 0; i < Ncol; i++)
{
const uint32_t s0 = memshift * Ncol * 0 + i * memshift;
const uint32_t s2 = memshift * Ncol * 2 + memshift * (Ncol - 1) - i*memshift;
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= state1[i][j] + state0[i][j];
round_lyra_v35(state);
#pragma unroll
for (j = 0; j < 3; j++)
state2[j] = state1[i][j];
#pragma unroll
for (j = 0; j < 3; j++)
state2[j] ^= state[j];
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s2 + j, state2[j]);
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る)
uint2 Data0 = state[0];
uint2 Data1 = state[1];
uint2 Data2 = state[2];
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4);
if (threadIdx.x == 0)
{
state0[i][0] ^= Data2;
state0[i][1] ^= Data0;
state0[i][2] ^= Data1;
}
else
{
state0[i][0] ^= Data0;
state0[i][1] ^= Data1;
state0[i][2] ^= Data2;
}
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s0 + j, state0[i][j]);
#pragma unroll
for (j = 0; j < 3; j++)
state0[i][j] = state2[j];
}
for (i = 0; i < Ncol; i++)
{
const uint32_t s1 = memshift * Ncol * 1 + i*memshift;
const uint32_t s3 = memshift * Ncol * 3 + memshift * (Ncol - 1) - i*memshift;
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= state1[i][j] + state0[Ncol - i - 1][j];
round_lyra_v35(state);
#pragma unroll
for (j = 0; j < 3; j++)
state0[Ncol - i - 1][j] ^= state[j];
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s3 + j, state0[Ncol - i - 1][j]);
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る)
uint2 Data0 = state[0];
uint2 Data1 = state[1];
uint2 Data2 = state[2];
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4);
if (threadIdx.x == 0)
{
state1[i][0] ^= Data2;
state1[i][1] ^= Data0;
state1[i][2] ^= Data1;
}
else
{
state1[i][0] ^= Data0;
state1[i][1] ^= Data1;
state1[i][2] ^= Data2;
}
#pragma unroll
for (j = 0; j < 3; j++)
ST4S(s1 + j, state1[i][j]);
}
}
__device__ void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4])
{
uint2 state1[3], state2[3];
const uint32_t ps1 = memshift * Ncol * rowIn;
const uint32_t ps2 = memshift * Ncol * rowInOut;
const uint32_t ps3 = memshift * Ncol * rowOut;
for (int i = 0; i < Ncol; i++)
{
const uint32_t s1 = ps1 + i*memshift;
const uint32_t s2 = ps2 + i*memshift;
const uint32_t s3 = ps3 + i*memshift;
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] = LD4S(s1 + j);
#pragma unroll
for (int j = 0; j < 3; j++)
state2[j] = LD4S(s2 + j);
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= state1[j] + state2[j];
round_lyra_v35(state);
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る)
uint2 Data0 = state[0];
uint2 Data1 = state[1];
uint2 Data2 = state[2];
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4);
if (threadIdx.x == 0)
{
state2[0] ^= Data2;
state2[1] ^= Data0;
state2[2] ^= Data1;
}
else
{
state2[0] ^= Data0;
state2[1] ^= Data1;
state2[2] ^= Data2;
}
#pragma unroll
for (int j = 0; j < 3; j++)
ST4S(s2 + j, state2[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
ST4S(s3 + j, LD4S(s3 + j) ^ state[j]);
}
}
__device__ void reduceDuplexRowtV2_4(const int rowInOut, uint2 state[4])
{
const int rowIn = 2;
const int rowOut = 3;
int i, j;
uint2 state2[3], state1[3], last[3];
const uint32_t ps1 = memshift * Ncol * rowIn;
const uint32_t ps2 = memshift * Ncol * rowInOut;
const uint32_t ps3 = memshift * Ncol * rowOut;
#pragma unroll
for (int j = 0; j < 3; j++)
last[j] = LD4S(ps2 + j);
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= LD4S(ps1 + j) + last[j];
round_lyra_v35(state);
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る)
uint2 Data0 = state[0];
uint2 Data1 = state[1];
uint2 Data2 = state[2];
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4);
if (threadIdx.x == 0)
{
last[0] ^= Data2;
last[1] ^= Data0;
last[2] ^= Data1;
}
else
{
last[0] ^= Data0;
last[1] ^= Data1;
last[2] ^= Data2;
}
if (rowInOut == rowOut)
{
#pragma unroll
for (j = 0; j < 3; j++)
last[j] ^= state[j];
}
for (i = 1; i < Ncol; i++)
{
const uint32_t s1 = ps1 + i*memshift;
const uint32_t s2 = ps2 + i*memshift;
#pragma unroll
for (j = 0; j < 3; j++)
state[j] ^= LD4S(s1 + j) + LD4S(s2 + j);
round_lyra_v35(state);
}
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= last[j];
}
__constant__ uint28 blake2b_IV[2] = {
0xf3bcc908lu, 0x6a09e667lu,
0x84caa73blu, 0xbb67ae85lu,
0xfe94f82blu, 0x3c6ef372lu,
0x5f1d36f1lu, 0xa54ff53alu,
0xade682d1lu, 0x510e527flu,
0x2b3e6c1flu, 0x9b05688clu,
0xfb41bd6blu, 0x1f83d9ablu,
0x137e2179lu, 0x5be0cd19lu
};
__constant__ uint28 Mask[2] = {
0x00000020lu, 0x00000000lu,
0x00000020lu, 0x00000000lu,
0x00000020lu, 0x00000000lu,
0x00000001lu, 0x00000000lu,
0x00000004lu, 0x00000000lu,
0x00000004lu, 0x00000000lu,
0x00000080lu, 0x00000000lu,
0x00000000lu, 0x01000000lu
};
__global__ __launch_bounds__(64, 1)
void lyra2v2_gpu_hash_32_1(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
uint28 state[4];
if (thread < threads)
{
state[0].x = state[1].x = __ldg(&outputHash[thread + threads * 0]);
state[0].y = state[1].y = __ldg(&outputHash[thread + threads * 1]);
state[0].z = state[1].z = __ldg(&outputHash[thread + threads * 2]);
state[0].w = state[1].w = __ldg(&outputHash[thread + threads * 3]);
state[2] = blake2b_IV[0];
state[3] = blake2b_IV[1];
for (int i = 0; i<12; i++)
round_lyra_v5(state);
state[0] ^= Mask[0];
state[1] ^= Mask[1];
for (int i = 0; i<12; i++)
round_lyra_v5(state);
DState[blockDim.x * gridDim.x * 0 + blockDim.x * blockIdx.x + threadIdx.x] = state[0];
DState[blockDim.x * gridDim.x * 1 + blockDim.x * blockIdx.x + threadIdx.x] = state[1];
DState[blockDim.x * gridDim.x * 2 + blockDim.x * blockIdx.x + threadIdx.x] = state[2];
DState[blockDim.x * gridDim.x * 3 + blockDim.x * blockIdx.x + threadIdx.x] = state[3];
} //thread
}
#if __CUDA_ARCH__ < 300
__global__ __launch_bounds__(TPB20, 1)
#elif __CUDA_ARCH__ < 500
__global__ __launch_bounds__(TPB30, 1)
#elif __CUDA_ARCH__ == 500
__global__ __launch_bounds__(TPB50, 1)
#else
__global__ __launch_bounds__(TPB52, 1)
#endif
void lyra2v2_gpu_hash_32_2(uint32_t threads, uint32_t startNounce, uint64_t *outputHash)
{
const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y;
if (thread < threads)
{
uint2 state[4];
state[0] = ((uint2*)DState)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
state[1] = ((uint2*)DState)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
state[2] = ((uint2*)DState)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
state[3] = ((uint2*)DState)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
reduceDuplexRowSetupV2(state);
uint32_t rowa;
int prev = 3;
for (int i = 0; i < 3; i++)
{
rowa = WarpShuffle(state[0].x, 0, 4) & 3;
reduceDuplexRowtV2(prev, rowa, i, state);
prev = i;
}
rowa = WarpShuffle(state[0].x, 0, 4) & 3;
reduceDuplexRowtV2_4(rowa, state);
((uint2*)DState)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[0];
((uint2*)DState)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[1];
((uint2*)DState)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[2];
((uint2*)DState)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[3];
} //thread
}
__global__ __launch_bounds__(64, 1)
void lyra2v2_gpu_hash_32_3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
uint28 state[4];
if (thread < threads)
{
state[0] = __ldg4(&DState[blockDim.x * gridDim.x * 0 + blockDim.x * blockIdx.x + threadIdx.x]);
state[1] = __ldg4(&DState[blockDim.x * gridDim.x * 1 + blockDim.x * blockIdx.x + threadIdx.x]);
state[2] = __ldg4(&DState[blockDim.x * gridDim.x * 2 + blockDim.x * blockIdx.x + threadIdx.x]);
state[3] = __ldg4(&DState[blockDim.x * gridDim.x * 3 + blockDim.x * blockIdx.x + threadIdx.x]);
for (int i = 0; i < 12; i++)
round_lyra_v5(state);
outputHash[thread + threads * 0] = state[0].x;
outputHash[thread + threads * 1] = state[0].y;
outputHash[thread + threads * 2] = state[0].z;
outputHash[thread + threads * 3] = state[0].w;
} //thread
}
__host__
void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix)
{
int dev_id = device_map[thr_id % MAX_GPUS];
// just assign the device pointer allocated in main loop
cudaMemcpyToSymbol(DState, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice);
}
__host__
void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, int order)
{
int dev_id = device_map[thr_id % MAX_GPUS];
uint32_t tpb = TPB52;
if (cuda_arch[dev_id] > 500) tpb = TPB52;
else if (cuda_arch[dev_id] == 500) tpb = TPB50;
else if (cuda_arch[dev_id] >= 300) tpb = TPB30;
else if (cuda_arch[dev_id] >= 200) tpb = TPB20;
dim3 grid1((threads * 4 + tpb - 1) / tpb);
dim3 block1(4, tpb >> 2);
dim3 grid2((threads + 64 - 1) / 64);
dim3 block2(64);
if (cuda_arch[dev_id] < 500)
cudaFuncSetCacheConfig(lyra2v2_gpu_hash_32_2, cudaFuncCachePreferShared);
lyra2v2_gpu_hash_32_1 << <grid2, block2 >> > (threads, startNounce, (uint2*)g_hash);
lyra2v2_gpu_hash_32_2 << <grid1, block1, 48 * sizeof(uint2) * tpb >> > (threads, startNounce, g_hash);
lyra2v2_gpu_hash_32_3 << <grid2, block2 >> > (threads, startNounce, (uint2*)g_hash);
//MyStreamSynchronize(NULL, order, thr_id);
}