mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
572 lines
14 KiB
572 lines
14 KiB
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <memory.h> |
|
|
|
#define TPB52 32 |
|
#define TPB50 32 |
|
#define TPB30 32 |
|
#define TPB20 32 |
|
|
|
#ifdef __INTELLISENSE__ |
|
/* just for vstudio code colors */ |
|
#define __CUDA_ARCH__ 200 |
|
#endif |
|
|
|
#include "cuda_lyra2_vectors.h" |
|
|
|
#ifdef __INTELLISENSE__ |
|
/* just for vstudio code colors */ |
|
#if __CUDA_ARCH__ >= 300 |
|
__device__ uint32_t __shfl(uint32_t a, uint32_t b, uint32_t c); |
|
#endif |
|
#endif |
|
|
|
#define Nrow 4 |
|
#define Ncol 4 |
|
#define memshift 3 |
|
|
|
__device__ uint2x4 *DState; |
|
|
|
__device__ __forceinline__ uint2 LD4S(const int index) |
|
{ |
|
extern __shared__ uint2 shared_mem[]; |
|
|
|
return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; |
|
} |
|
|
|
__device__ __forceinline__ void ST4S(const int index, const uint2 data) |
|
{ |
|
extern __shared__ uint2 shared_mem[]; |
|
|
|
shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data; |
|
} |
|
|
|
__device__ __forceinline__ |
|
void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d) |
|
{ |
|
a += b; d = eorswap32(a, d); |
|
c += d; b ^= c; b = ROR24(b); |
|
a += b; d ^= a; d = ROR16(d); |
|
c += d; b ^= c; b = ROR2(b, 63); |
|
} |
|
|
|
|
|
#if __CUDA_ARCH__ >= 300 |
|
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) |
|
{ |
|
return __shfl(a, b, c); |
|
} |
|
|
|
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) |
|
{ |
|
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); |
|
} |
|
|
|
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) |
|
{ |
|
a1 = WarpShuffle(a1, b1, c); |
|
a2 = WarpShuffle(a2, b2, c); |
|
a3 = WarpShuffle(a3, b3, c); |
|
} |
|
|
|
#else |
|
__device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) |
|
{ |
|
extern __shared__ uint2 shared_mem[]; |
|
|
|
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; |
|
uint32_t *_ptr = (uint32_t*)shared_mem; |
|
|
|
__threadfence_block(); |
|
uint32_t buf = _ptr[thread]; |
|
|
|
_ptr[thread] = a; |
|
__threadfence_block(); |
|
uint32_t result = _ptr[(thread&~(c - 1)) + (b&(c - 1))]; |
|
|
|
__threadfence_block(); |
|
_ptr[thread] = buf; |
|
|
|
__threadfence_block(); |
|
return result; |
|
} |
|
|
|
__device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) |
|
{ |
|
extern __shared__ uint2 shared_mem[]; |
|
|
|
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; |
|
|
|
__threadfence_block(); |
|
uint2 buf = shared_mem[thread]; |
|
|
|
shared_mem[thread] = a; |
|
__threadfence_block(); |
|
uint2 result = shared_mem[(thread&~(c - 1)) + (b&(c - 1))]; |
|
|
|
__threadfence_block(); |
|
shared_mem[thread] = buf; |
|
|
|
__threadfence_block(); |
|
return result; |
|
} |
|
|
|
__device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) |
|
{ |
|
extern __shared__ uint2 shared_mem[]; |
|
|
|
const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; |
|
|
|
__threadfence_block(); |
|
uint2 buf = shared_mem[thread]; |
|
|
|
shared_mem[thread] = a1; |
|
__threadfence_block(); |
|
a1 = shared_mem[(thread&~(c - 1)) + (b1&(c - 1))]; |
|
__threadfence_block(); |
|
shared_mem[thread] = a2; |
|
__threadfence_block(); |
|
a2 = shared_mem[(thread&~(c - 1)) + (b2&(c - 1))]; |
|
__threadfence_block(); |
|
shared_mem[thread] = a3; |
|
__threadfence_block(); |
|
a3 = shared_mem[(thread&~(c - 1)) + (b3&(c - 1))]; |
|
|
|
__threadfence_block(); |
|
shared_mem[thread] = buf; |
|
__threadfence_block(); |
|
} |
|
|
|
#endif |
|
|
|
|
|
__device__ __forceinline__ void round_lyra_v35(uint2 s[4]) |
|
{ |
|
Gfunc_v5(s[0], s[1], s[2], s[3]); |
|
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 1, threadIdx.x + 2, threadIdx.x + 3, 4); |
|
Gfunc_v5(s[0], s[1], s[2], s[3]); |
|
WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 3, threadIdx.x + 2, threadIdx.x + 1, 4); |
|
} |
|
|
|
__device__ __forceinline__ |
|
void round_lyra_v5(uint2x4* s) |
|
{ |
|
Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x); |
|
Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y); |
|
Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z); |
|
Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w); |
|
|
|
Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w); |
|
Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x); |
|
Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y); |
|
Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z); |
|
} |
|
|
|
|
|
__device__ __forceinline__ void reduceDuplexRowSetupV2(uint2 state[4]) |
|
{ |
|
int i, j; |
|
uint2 state1[Ncol][3], state0[Ncol][3], state2[3]; |
|
|
|
#if __CUDA_ARCH__ > 500 |
|
#pragma unroll |
|
#endif |
|
for (int i = 0; i < Ncol; i++) |
|
{ |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state0[Ncol - i - 1][j] = state[j]; |
|
round_lyra_v35(state); |
|
} |
|
|
|
//#pragma unroll 4 |
|
for (i = 0; i < Ncol; i++) |
|
{ |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= state0[i][j]; |
|
|
|
round_lyra_v35(state); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state1[Ncol - i - 1][j] = state0[i][j]; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state1[Ncol - i - 1][j] ^= state[j]; |
|
} |
|
|
|
for (i = 0; i < Ncol; i++) |
|
{ |
|
const uint32_t s0 = memshift * Ncol * 0 + i * memshift; |
|
const uint32_t s2 = memshift * Ncol * 2 + memshift * (Ncol - 1) - i*memshift; |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= state1[i][j] + state0[i][j]; |
|
|
|
round_lyra_v35(state); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state2[j] = state1[i][j]; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state2[j] ^= state[j]; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s2 + j, state2[j]); |
|
|
|
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
|
uint2 Data0 = state[0]; |
|
uint2 Data1 = state[1]; |
|
uint2 Data2 = state[2]; |
|
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) |
|
{ |
|
state0[i][0] ^= Data2; |
|
state0[i][1] ^= Data0; |
|
state0[i][2] ^= Data1; |
|
} |
|
else |
|
{ |
|
state0[i][0] ^= Data0; |
|
state0[i][1] ^= Data1; |
|
state0[i][2] ^= Data2; |
|
} |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s0 + j, state0[i][j]); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state0[i][j] = state2[j]; |
|
|
|
} |
|
|
|
for (i = 0; i < Ncol; i++) |
|
{ |
|
const uint32_t s1 = memshift * Ncol * 1 + i*memshift; |
|
const uint32_t s3 = memshift * Ncol * 3 + memshift * (Ncol - 1) - i*memshift; |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= state1[i][j] + state0[Ncol - i - 1][j]; |
|
|
|
round_lyra_v35(state); |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state0[Ncol - i - 1][j] ^= state[j]; |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s3 + j, state0[Ncol - i - 1][j]); |
|
|
|
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
|
uint2 Data0 = state[0]; |
|
uint2 Data1 = state[1]; |
|
uint2 Data2 = state[2]; |
|
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) |
|
{ |
|
state1[i][0] ^= Data2; |
|
state1[i][1] ^= Data0; |
|
state1[i][2] ^= Data1; |
|
} |
|
else |
|
{ |
|
state1[i][0] ^= Data0; |
|
state1[i][1] ^= Data1; |
|
state1[i][2] ^= Data2; |
|
} |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
ST4S(s1 + j, state1[i][j]); |
|
|
|
|
|
} |
|
} |
|
|
|
__device__ void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4]) |
|
{ |
|
uint2 state1[3], state2[3]; |
|
const uint32_t ps1 = memshift * Ncol * rowIn; |
|
const uint32_t ps2 = memshift * Ncol * rowInOut; |
|
const uint32_t ps3 = memshift * Ncol * rowOut; |
|
|
|
for (int i = 0; i < Ncol; i++) |
|
{ |
|
const uint32_t s1 = ps1 + i*memshift; |
|
const uint32_t s2 = ps2 + i*memshift; |
|
const uint32_t s3 = ps3 + i*memshift; |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state1[j] = LD4S(s1 + j); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state2[j] = LD4S(s2 + j); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state[j] ^= state1[j] + state2[j]; |
|
|
|
round_lyra_v35(state); |
|
|
|
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
|
uint2 Data0 = state[0]; |
|
uint2 Data1 = state[1]; |
|
uint2 Data2 = state[2]; |
|
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) |
|
{ |
|
state2[0] ^= Data2; |
|
state2[1] ^= Data0; |
|
state2[2] ^= Data1; |
|
} |
|
else |
|
{ |
|
state2[0] ^= Data0; |
|
state2[1] ^= Data1; |
|
state2[2] ^= Data2; |
|
} |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
ST4S(s2 + j, state2[j]); |
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
ST4S(s3 + j, LD4S(s3 + j) ^ state[j]); |
|
} |
|
} |
|
|
|
__device__ void reduceDuplexRowtV2_4(const int rowInOut, uint2 state[4]) |
|
{ |
|
const int rowIn = 2; |
|
const int rowOut = 3; |
|
|
|
int i, j; |
|
uint2 state2[3], state1[3], last[3]; |
|
const uint32_t ps1 = memshift * Ncol * rowIn; |
|
const uint32_t ps2 = memshift * Ncol * rowInOut; |
|
const uint32_t ps3 = memshift * Ncol * rowOut; |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
last[j] = LD4S(ps2 + j); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state[j] ^= LD4S(ps1 + j) + last[j]; |
|
|
|
round_lyra_v35(state); |
|
|
|
//一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) |
|
uint2 Data0 = state[0]; |
|
uint2 Data1 = state[1]; |
|
uint2 Data2 = state[2]; |
|
WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); |
|
|
|
if (threadIdx.x == 0) |
|
{ |
|
last[0] ^= Data2; |
|
last[1] ^= Data0; |
|
last[2] ^= Data1; |
|
} |
|
else |
|
{ |
|
last[0] ^= Data0; |
|
last[1] ^= Data1; |
|
last[2] ^= Data2; |
|
} |
|
|
|
if (rowInOut == rowOut) |
|
{ |
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
last[j] ^= state[j]; |
|
} |
|
|
|
for (i = 1; i < Ncol; i++) |
|
{ |
|
const uint32_t s1 = ps1 + i*memshift; |
|
const uint32_t s2 = ps2 + i*memshift; |
|
|
|
#pragma unroll |
|
for (j = 0; j < 3; j++) |
|
state[j] ^= LD4S(s1 + j) + LD4S(s2 + j); |
|
|
|
round_lyra_v35(state); |
|
} |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 3; j++) |
|
state[j] ^= last[j]; |
|
} |
|
|
|
__constant__ uint28 blake2b_IV[2] = { |
|
0xf3bcc908lu, 0x6a09e667lu, |
|
0x84caa73blu, 0xbb67ae85lu, |
|
0xfe94f82blu, 0x3c6ef372lu, |
|
0x5f1d36f1lu, 0xa54ff53alu, |
|
0xade682d1lu, 0x510e527flu, |
|
0x2b3e6c1flu, 0x9b05688clu, |
|
0xfb41bd6blu, 0x1f83d9ablu, |
|
0x137e2179lu, 0x5be0cd19lu |
|
}; |
|
|
|
__constant__ uint28 Mask[2] = { |
|
0x00000020lu, 0x00000000lu, |
|
0x00000020lu, 0x00000000lu, |
|
0x00000020lu, 0x00000000lu, |
|
0x00000001lu, 0x00000000lu, |
|
0x00000004lu, 0x00000000lu, |
|
0x00000004lu, 0x00000000lu, |
|
0x00000080lu, 0x00000000lu, |
|
0x00000000lu, 0x01000000lu |
|
}; |
|
|
|
__global__ __launch_bounds__(64, 1) |
|
void lyra2v2_gpu_hash_32_1(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
|
{ |
|
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
|
|
|
uint28 state[4]; |
|
|
|
if (thread < threads) |
|
{ |
|
state[0].x = state[1].x = __ldg(&outputHash[thread + threads * 0]); |
|
state[0].y = state[1].y = __ldg(&outputHash[thread + threads * 1]); |
|
state[0].z = state[1].z = __ldg(&outputHash[thread + threads * 2]); |
|
state[0].w = state[1].w = __ldg(&outputHash[thread + threads * 3]); |
|
state[2] = blake2b_IV[0]; |
|
state[3] = blake2b_IV[1]; |
|
|
|
for (int i = 0; i<12; i++) |
|
round_lyra_v5(state); |
|
|
|
state[0] ^= Mask[0]; |
|
state[1] ^= Mask[1]; |
|
|
|
for (int i = 0; i<12; i++) |
|
round_lyra_v5(state); |
|
|
|
DState[blockDim.x * gridDim.x * 0 + blockDim.x * blockIdx.x + threadIdx.x] = state[0]; |
|
DState[blockDim.x * gridDim.x * 1 + blockDim.x * blockIdx.x + threadIdx.x] = state[1]; |
|
DState[blockDim.x * gridDim.x * 2 + blockDim.x * blockIdx.x + threadIdx.x] = state[2]; |
|
DState[blockDim.x * gridDim.x * 3 + blockDim.x * blockIdx.x + threadIdx.x] = state[3]; |
|
|
|
} //thread |
|
} |
|
|
|
#if __CUDA_ARCH__ < 300 |
|
__global__ __launch_bounds__(TPB20, 1) |
|
#elif __CUDA_ARCH__ < 500 |
|
__global__ __launch_bounds__(TPB30, 1) |
|
#elif __CUDA_ARCH__ == 500 |
|
__global__ __launch_bounds__(TPB50, 1) |
|
#else |
|
__global__ __launch_bounds__(TPB52, 1) |
|
#endif |
|
void lyra2v2_gpu_hash_32_2(uint32_t threads, uint32_t startNounce, uint64_t *outputHash) |
|
{ |
|
const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y; |
|
|
|
if (thread < threads) |
|
{ |
|
uint2 state[4]; |
|
state[0] = ((uint2*)DState)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
state[1] = ((uint2*)DState)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
state[2] = ((uint2*)DState)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
state[3] = ((uint2*)DState)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
|
|
|
reduceDuplexRowSetupV2(state); |
|
|
|
uint32_t rowa; |
|
int prev = 3; |
|
|
|
for (int i = 0; i < 3; i++) |
|
{ |
|
rowa = WarpShuffle(state[0].x, 0, 4) & 3; |
|
reduceDuplexRowtV2(prev, rowa, i, state); |
|
prev = i; |
|
} |
|
|
|
rowa = WarpShuffle(state[0].x, 0, 4) & 3; |
|
reduceDuplexRowtV2_4(rowa, state); |
|
|
|
((uint2*)DState)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[0]; |
|
((uint2*)DState)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[1]; |
|
((uint2*)DState)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[2]; |
|
((uint2*)DState)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[3]; |
|
} //thread |
|
} |
|
|
|
__global__ __launch_bounds__(64, 1) |
|
void lyra2v2_gpu_hash_32_3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
|
{ |
|
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
|
|
|
uint28 state[4]; |
|
|
|
if (thread < threads) |
|
{ |
|
state[0] = __ldg4(&DState[blockDim.x * gridDim.x * 0 + blockDim.x * blockIdx.x + threadIdx.x]); |
|
state[1] = __ldg4(&DState[blockDim.x * gridDim.x * 1 + blockDim.x * blockIdx.x + threadIdx.x]); |
|
state[2] = __ldg4(&DState[blockDim.x * gridDim.x * 2 + blockDim.x * blockIdx.x + threadIdx.x]); |
|
state[3] = __ldg4(&DState[blockDim.x * gridDim.x * 3 + blockDim.x * blockIdx.x + threadIdx.x]); |
|
|
|
for (int i = 0; i < 12; i++) |
|
round_lyra_v5(state); |
|
|
|
outputHash[thread + threads * 0] = state[0].x; |
|
outputHash[thread + threads * 1] = state[0].y; |
|
outputHash[thread + threads * 2] = state[0].z; |
|
outputHash[thread + threads * 3] = state[0].w; |
|
|
|
} //thread |
|
} |
|
|
|
__host__ |
|
void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix) |
|
{ |
|
int dev_id = device_map[thr_id % MAX_GPUS]; |
|
// just assign the device pointer allocated in main loop |
|
cudaMemcpyToSymbol(DState, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); |
|
} |
|
|
|
__host__ |
|
void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, int order) |
|
{ |
|
int dev_id = device_map[thr_id % MAX_GPUS]; |
|
|
|
uint32_t tpb = TPB52; |
|
|
|
if (cuda_arch[dev_id] > 500) tpb = TPB52; |
|
else if (cuda_arch[dev_id] == 500) tpb = TPB50; |
|
else if (cuda_arch[dev_id] >= 300) tpb = TPB30; |
|
else if (cuda_arch[dev_id] >= 200) tpb = TPB20; |
|
|
|
dim3 grid1((threads * 4 + tpb - 1) / tpb); |
|
dim3 block1(4, tpb >> 2); |
|
|
|
dim3 grid2((threads + 64 - 1) / 64); |
|
dim3 block2(64); |
|
|
|
if (cuda_arch[dev_id] < 500) |
|
cudaFuncSetCacheConfig(lyra2v2_gpu_hash_32_2, cudaFuncCachePreferShared); |
|
|
|
lyra2v2_gpu_hash_32_1 << <grid2, block2 >> > (threads, startNounce, (uint2*)g_hash); |
|
|
|
lyra2v2_gpu_hash_32_2 << <grid1, block1, 48 * sizeof(uint2) * tpb >> > (threads, startNounce, g_hash); |
|
|
|
lyra2v2_gpu_hash_32_3 << <grid2, block2 >> > (threads, startNounce, (uint2*)g_hash); |
|
//MyStreamSynchronize(NULL, order, thr_id); |
|
}
|
|
|