1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-24 05:24:16 +00:00

quark: final cleanup for the 1.7

This commit is contained in:
Tanguy Pruvot 2015-11-06 14:55:43 +01:00
parent 2247605d23
commit 64e14b7d82

View File

@ -1,25 +1,23 @@
/* /**
* REQUIRE SM 3.0 arch! * __shfl_up require SM 3.0 arch!
*
* SM 2 alternative method by tpruvot@github 2015
*/ */
#include <stdio.h> #include <stdio.h>
#include <memory.h> #include <memory.h>
#include "cuda_helper.h" #include "cuda_helper.h"
#include <sm_30_intrinsics.h>
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 300
#define __shfl_up(var, delta, width) (0)
#endif
static uint32_t *h_numValid[MAX_GPUS]; static uint32_t *h_numValid[MAX_GPUS];
static uint32_t *d_tempBranch1Nonces[MAX_GPUS]; static uint32_t *d_tempBranch1Nonces[MAX_GPUS];
static uint32_t *d_partSum[2][MAX_GPUS]; // für bis zu vier partielle Summen static uint32_t *d_partSum[2][MAX_GPUS]; // für bis zu vier partielle Summen
#if __CUDA_ARCH__ < 300
/**
* __shfl_up() calculates a source lane ID by subtracting delta from the caller's lane ID, and clamping to the range 0..width-1
*/
#undef __shfl_up
#define __shfl_up(var, delta, width) (0)
#endif
// True/False tester // True/False tester
typedef uint32_t(*cuda_compactTestFunction_t)(uint32_t *inpHash); typedef uint32_t(*cuda_compactTestFunction_t)(uint32_t *inpHash);
@ -80,6 +78,7 @@ __global__
void quark_compactTest_gpu_SCAN(uint32_t *data, const int width, uint32_t *partial_sums=NULL, cuda_compactTestFunction_t testFunc=NULL, void quark_compactTest_gpu_SCAN(uint32_t *data, const int width, uint32_t *partial_sums=NULL, cuda_compactTestFunction_t testFunc=NULL,
uint32_t threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) uint32_t threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL)
{ {
#if __CUDA_ARCH__ >= 300
extern __shared__ uint32_t sums[]; extern __shared__ uint32_t sums[];
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
//int lane_id = id % warpSize; //int lane_id = id % warpSize;
@ -182,6 +181,7 @@ void quark_compactTest_gpu_SCAN(uint32_t *data, const int width, uint32_t *parti
{ {
partial_sums[blockIdx.x] = value; partial_sums[blockIdx.x] = value;
} }
#endif // SM3+
} }
// Uniform add: add partial sums array // Uniform add: add partial sums array
@ -202,9 +202,9 @@ void quark_compactTest_gpu_ADD(uint32_t *data, uint32_t *partial_sums, int len)
data[id] += buf; data[id] += buf;
} }
// Der Scatter
__global__ __global__
void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTestFunction_t testFunc, uint32_t threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTestFunction_t testFunc,
uint32_t threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL)
{ {
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
uint32_t actNounce = id; uint32_t actNounce = id;
@ -254,7 +254,7 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32
cuda_compactTestFunction_t function, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable) cuda_compactTestFunction_t function, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable)
{ {
int orgThreads = threads; int orgThreads = threads;
threads = (int)quark_compactTest_roundUpExp((uint32_t)threads); threads = quark_compactTest_roundUpExp(threads);
// threadsPerBlock ausrechnen // threadsPerBlock ausrechnen
int blockSize = 256; int blockSize = 256;
int nSummen = threads / blockSize; int nSummen = threads / blockSize;
@ -286,14 +286,11 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32
else else
cudaMemcpy(nrm, &(d_partSum[0][thr_id])[nSummen-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); cudaMemcpy(nrm, &(d_partSum[0][thr_id])[nSummen-1], sizeof(uint32_t), cudaMemcpyDeviceToHost);
// Addieren
if(callThrid) { if(callThrid) {
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2); quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2);
} }
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads); quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads);
// Scatter
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1,
function, orgThreads, startNounce, inpHashes, d_validNonceTable); function, orgThreads, startNounce, inpHashes, d_validNonceTable);
@ -301,12 +298,9 @@ void quark_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32
cudaStreamSynchronize(NULL); cudaStreamSynchronize(NULL);
} }
#ifdef __INTELLISENSE__ #if __CUDA_ARCH__ < 300
#define atomicAdd(x,n) ( *(x)+=n )
#endif
__global__ __launch_bounds__(128, 8) __global__ __launch_bounds__(128, 8)
void quark_filter_gpu_sm2(const uint32_t threads, const uint32_t* d_hash, uint32_t* d_branch2, uint32_t* d_NonceBranch, uint32_t &count) void quark_filter_gpu_sm2(const uint32_t threads, const uint32_t* d_hash, uint32_t* d_branch2, uint32_t* d_NonceBranch)
{ {
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads) if (thread < threads)
@ -315,7 +309,6 @@ void quark_filter_gpu_sm2(const uint32_t threads, const uint32_t* d_hash, uint32
uint4 *psrc = (uint4*) (&d_hash[offset]); uint4 *psrc = (uint4*) (&d_hash[offset]);
d_NonceBranch[thread] = ((uint8_t*)psrc)[0] & 0x8; d_NonceBranch[thread] = ((uint8_t*)psrc)[0] & 0x8;
if (d_NonceBranch[thread]) return; if (d_NonceBranch[thread]) return;
//uint32_t off_br = atomicAdd(&count, 1) * 16U;
// uint4 = 4x uint32_t = 16 bytes // uint4 = 4x uint32_t = 16 bytes
uint4 *pdst = (uint4*) (&d_branch2[offset]); uint4 *pdst = (uint4*) (&d_branch2[offset]);
pdst[0] = psrc[0]; pdst[0] = psrc[0];
@ -331,7 +324,7 @@ void quark_merge_gpu_sm2(const uint32_t threads, uint32_t* d_hash, uint32_t* d_b
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads && !d_NonceBranch[thread]) if (thread < threads && !d_NonceBranch[thread])
{ {
const uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t); const uint32_t offset = thread * 16U;
uint4 *pdst = (uint4*) (&d_hash[offset]); uint4 *pdst = (uint4*) (&d_hash[offset]);
uint4 *psrc = (uint4*) (&d_branch2[offset]); uint4 *psrc = (uint4*) (&d_branch2[offset]);
pdst[0] = psrc[0]; pdst[0] = psrc[0];
@ -340,17 +333,20 @@ void quark_merge_gpu_sm2(const uint32_t threads, uint32_t* d_hash, uint32_t* d_b
pdst[3] = psrc[3]; pdst[3] = psrc[3];
} }
} }
#else
__global__ void quark_filter_gpu_sm2(const uint32_t threads, const uint32_t* d_hash, uint32_t* d_branch2, uint32_t* d_NonceBranch) {}
__global__ void quark_merge_gpu_sm2(const uint32_t threads, uint32_t* d_hash, uint32_t* d_branch2, uint32_t* const d_NonceBranch) {}
#endif
__host__ __host__
uint32_t quark_filter_cpu_sm2(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2) uint32_t quark_filter_cpu_sm2(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2)
{ {
uint32_t branch2_nonces = 0;
const uint32_t threadsperblock = 128; const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock); dim3 block(threadsperblock);
// copy all hashes in the right branch buffer // extract algo permution hashes to a second branch buffer
quark_filter_gpu_sm2 <<<grid, block>>> (threads, inpHashes, d_branch2, d_tempBranch1Nonces[thr_id], branch2_nonces); quark_filter_gpu_sm2 <<<grid, block>>> (threads, inpHashes, d_branch2, d_tempBranch1Nonces[thr_id]);
return branch2_nonces; return threads;
} }
__host__ __host__
@ -359,7 +355,7 @@ void quark_merge_cpu_sm2(const int thr_id, const uint32_t threads, uint32_t *out
const uint32_t threadsperblock = 128; const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock); dim3 block(threadsperblock);
// copy second branch hashes to d_hash // put back second branch hashes to the common buffer d_hash
quark_merge_gpu_sm2 <<<grid, block>>> (threads, outpHashes, d_branch2, d_tempBranch1Nonces[thr_id]); quark_merge_gpu_sm2 <<<grid, block>>> (threads, outpHashes, d_branch2, d_tempBranch1Nonces[thr_id]);
} }